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Background: Quantitative systems pharmacology (QSP) is an emerging discipline that integrates diverse data to
quantitatively explore the interactions between drugs and multi-scale systems including small compounds, nucleic
acids, proteins, pathways, cells, organs and disease processes.
Results: Various computational methods such as ADME/Tevaluation, molecular modeling, logical modeling, network
modeling, pathway analysis, multi-scale systems pharmacology platforms and virtual patient for QSP have been
developed. We reviewed the major progresses and broad applications in medical guidance, drug discovery and
exploration of pharmacodynamic material basis and mechanism of traditional Chinese medicine.
Conclusion: QSP has significant achievements in recent years and is a promising approach for quantitative evaluation
of drug efficacy and systematic exploration of mechanisms of action of drugs.
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Author summary: Quantitative systems pharmacology (QSP) is an emerging discipline that integrates diverse data to
quantitatively explore the interactions between drugs and multi-scale systems including small compounds, nucleic acids,
proteins, pathways, cells, organs and disease processes. This review is an attempt to introduce the computational methods for
QSP, including ADME/T (absorption, distribution, metabolism, excretion and toxicity) evaluation, molecular modeling,
logical modeling, network modeling, pathway analysis, multi-scale systems pharmacology platforms and virtual patient as
well as their applications in medical guidance, drug discovery and explorations of pharmacodynamics material basis and
mechanism of traditional Chinese medicine.

INTRODUCTION

Systems pharmacology (SP) combines systems biology
approaches and computational methods to enable drug
discovery for complex diseases and understand mechan-
isms of action (MoA) of drugs [1–4]. SP provides holistic
approaches to facilitate the prediction of effectiveness and
safety of molecules during the process of drug discovery.
The human body is a complicated and integrated system,
which can be regarded as biological networks [5].
Methods that can be applied to quantitative evaluation
of the complex interactions between drugs and disease-
related systems are urgently needed. The etiology and
pathogenesis of complex diseases such as cancer,

schizophrenia, and Alzheimer’s disease concern lots of
genes, gene products, small molecules and pathways, and
there are still challenges in disease treatment [6–10].
Quantitative systems pharmacology (QSP), as a branch of
SP, is an emerging approach to understand the interaction
mechanism between drugs and the body and to predict the
pharmacological effects of drugs [11–13]. QSP integrates
diverse data, including preclinical and clinical informa-
tion to analyze dynamic interactions between a drug or
drug combination and multi-scale biological systems, that
aims to understand the behavior of the systems as a whole
[14,15]. It can also provide quantitative insights into
biological and pharmacological processes [16]. QSP gets
more and more attention in pharmacological research and
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pharmaceutical industry [13,17,18].
QSP is usually described as three steps: gathering

enough information such as disease-related targets,
biomarkers, pathways, drug-target interactions and phe-
notypic characteristics; building a primary model based
on the above information, calibrating and validating the
model by comparing predictions with preclinical and
clinical data [19,20]. QSP is a promising approach to
quantitatively explore the interactions between drugs and
the systems including targets, pathways, cells and organs
and provides a comprehensive insight into the underlying
mechanisms of drug action [21].
QSP has been becoming a discipline and the research in

QSP involves describing pharmacokinetic/pharmacody-
namic (PK/PD) characteristics of drugs, identifying the
targets and drug-target interactions and investigating the
factors that cause differences in the omics data of cells,
tissues and patients [22,23]. Traditional drug discovery
holds the thought “one drug, one target, one disease” and
tries to treat the disease by adjustment of a single target
which is responsible for the disease. This simple strategy
pushes drug design to focus on selective drugs for specific
targets. With the in-depth understanding of biological
processes and pathogenesis, the disease phenotypes often
represent a complex regulating network with multiple
targets, pathways and cell signal transduction [1,24–29].
A single target can also be related directly or indirectly
with many kinds of diseases [30,31]. QSP integrates the
understanding of complex networks of diseases and
adopts quantitative analytical and predictive methods,
which provides a feasible approach for the development
of new multi-target drugs and exploration of their MoAs.
This review is an attempt to introduce the computational

methods and applications for QSP, including ADME/T
(absorption, distribution, metabolism, excretion and
toxicity) prediction, network pharmacology and multi-
scale systems pharmacology platforms (Table 1).

METHODS FOR QSP

Molecular-level evaluation and simulation

At the molecular level, QSP focuses on the evaluation of
molecular properties and identification of drug-target
interactions. These methods such as ADME/T analysis,
chemical space analysis, drug-likeness evaluation can
provide information about the characteristics of metabo-
lism of drugs or compounds. The widely used PK/PD
models provide the most basic data about drug absorption,
distribution, metabolism, excretion and toxic character-
istics [32,69–71]. PK and PD data indicate how drugs
change in vivo over time and the characteristics of targets
to elucidate the mechanism of drug action [14,32–34,69].
For example, Rostami-Hodjegan took into account the
knowledge of physiology and biology based PK to predict
the effects of intrinsic and extrinsic factors of drugs [69].
There are several computational methods to simulate

the drug-target interaction such as molecular docking,
molecualr dynamics simulation, machine learning and
similarity analysis. Molecular docking and molecular
dynamics simulation are feasible approaches for drug
discovery, which give insights into the conformation of
drug-target interaction and provide theoretical basis for
virtual screening of lead compounds [37,38,72,73].
Rational drug design can be carried out by simulating
the characteristics of targets and interactions with drugs

Table 1 Computational methods for QSP
Method classification Description Refs.

Molecular level Evaluation of molecular

characteristics

Providing information about molecular properties of drugs (ADME/T, PK/PD

model, chemical space analysis and drug-likeness evaluation)

[1–4,32–36]

Identification of

drug-target interaction

Predicting and evaluating drug/compound-target interaction (molecular docking,

molecular dynamics simulation, machine learning and similarity analysis)

[37–42]

Network level Drug-target network

analysis

Analyzing the interactions between drugs and targets [43–45]

Protein-protein interaction

network analysis

Analyzing topological structures of complicated protein–protein interaction

network

[46]

Pathway analysis Investigating the connections between drug targets and regulatory networks of

diseases, and evaluating drug efficacy in thecontext of pathway network

[47–50]

Systems level Logical modeling A mechanism-based mathematical method to endow the object with logical

structure.

[51]

Multiscale systems

pharmacology platform

Evaluating the treatment effects of therapeutic regimens and exploring the MoA

by integrating preclinical/clinical data of drugs and disease phenotypes (TCMSP,

Virtual Tumour, CancerHSP, etc.)

[52–64]

Virtual patient A simplified model to translate complex biological processes into a series of

intuitive equations

[65–68]
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and the high-throughput virtual screening is accomplished
by analyzing the binding affinity between compound and
target. For example, Omer discovered two novel antiviral
molecules (Calanolide A and Chaetochromin B) and their
target HRAS by molecular docking and molecular
dynamics simulation [73]. In our recent work, a binding
energy-weighted polypharmacological index was intro-
duced to evaluate the importance of target-related path-
ways which had close correlation with the pathogenesis of
psoriasis [74].
Machine learning and similarity analysis are another

two important approaches to explore drug-target interac-
tions and drug-drug interactions. Machine learning is a
method used to improve the performance on a specific
model with data, and plays an important role in systems
pharmacology [39–42]. For example, Chiu and Xie
integrated coarse-grained normal mode analysis with
multi-target machine learning to predict protein-ligand
binding/unbinding kinetics accurately [41]. Yang et al.
constructed three best-performing model to screen
inhibitors for P-glycoprotein (P-gp) by machine learning
algorithm, and these models were employed as a virtual
screening tool for identifying 875 potential P-gp inhibi-
tors and 15 inhibitor-rich herbs from TCMSP [75].
Compounds that have similar structures would have
similar functions. Predicting targets for a new molecule
by comparing the similarity with active compounds
whose targets are known is a traditional method.
BindingDB [76] and BATMAN-TCM [77] are two
famous web-server which can predict drug-target inter-
action by analyzing molecular similarity.

Network modeling and pathway analysis

Network modeling integrates disease-related genes, path-
ways, targets and drugs into a complex network model
and provides frameworks for understanding of how
regulation arises from the interactions between cellular
components [1,2,43–45]. The biological systems can be
regarded as networks, where nodes represent molecular
entities (DNA, RNA, protein and small compound) and
processes, edges represent the relationships between
nodes. Important nodes and edges in the network can be
identified by network analysis. The change of global
characteristics of network can be determined by network
dynamics simulation. The network model can provide
important information such as key targets in regulatory
networks, the mechanism of interactions between drugs
and targets. The results of network modeling can provide
theoretical basis and guide for the development of multi-
target drug, drug combination and credible options for
personalized treatment as well as a feasible way to explore
the pathogenesis of diseases. These network-based
approaches are useful in understanding the basis for

cancer combination therapy [3], discovering treatment
regimens for optimal efficacy [78], identifying the origins
of drug induced adverse events [79–81], and indicating
how drug combinations can mitigate serious adverse
events [82]. For example, Wu developed an integrated
network and cheminformatics tool (SDTNBI) for
systematic prediction of drug-target interactions and
drug repositioning [83,84]. Wang applied network
topologies and dynamics parameters to obtain two
potential weak-binding drug candidates whose effects
were validated by in vitro experiments so as to provide a
feasible way for drug discovery [85].
Pathway analysis is an approach to investigate the

therapeutic mechanism by analyzing the connections
between drug targets and regulatory networks of diseases
[47]. It is a universal way that provides various
information as the basis of many models in QSP [86].
Topological analysis is usually used to measure the
importance of genes to simplify the complex pathway
network into a structured collection of related genes. It
can effectively reduce the difficulty of modeling and
analyzing the pathway network which is responsible for
the disease phenotype. But it may reduce the accuracy of
the results as it ignores some potentially valuable
information such as the connections of genes that belong
to different pathways and potential pathogenic genes [87].
Nie et al. studied the regulation mechanism of Toutongn-
ing capsule by analyzing the signaling pathway of the
migraine and the results showed that 19 active com-
pounds and 8 targets played a crucial role in the treatment
of migraine through TNF pathway [88].
We have developed a pathway network-based method

by combining network modeling and molecular docking
to evaluate drug efficacy. Network efficiency (NE) and
network flux (NF) are both global measures of the
network connectivity. We used NE and NF to quantita-
tively evaluate the inhibitory effects of compounds. The
edge values of the pathway network were reset according
to the Michaelis-Menten equation, which used the
binding constant and drug concentration to determine
the degree of inhibition of the target protein in the
pathway. The dose-response curve was sigmoid and the
predicted effects of compounds were in good agreement
with experimental results [5,48–50]. Moreover, This
approach can be used for predictions of drug combination
and drug repositioning [5,89].

Systems-level methods

Logical modeling

Logical modeling is a kind of mathematical method based
on the mechanism which can endow the object with
logical structure. It can provide insights into a variety of

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019 5

Computational methods and applications for quantitative systems pharmacology



phenomics profiles through the analysis of the logical
relationship between phenotype and mechanism
[51,90–92]. This modeling method can be established
according to the known information of the biological
process and optimized by calibrating the modeling results
with experimental data. Then altering parameters of the
model to simulate the changes of biosystems to obtain
various outcomes which can provide useful information
and meaningful predictions to the process. This approach
can provide reasonable way to build enormous biological
network models in lack of various preclinical and clinical
data by predicting the logical relationship. However, it is
important to be aware of the simplification in this
mechanism-based simulation which would cause the
impossibility of representing the complexity and diversity
of biological systems [51]. Poltz et al. built a discrete
logical model of signal transduction of DNA damage
response to screen target proteins for DNA-damaging
agents that could be suitable for radio- and chemo-
therapy, and contributed to the design of more effective
therapies [90].

Multi-scale systems pharmacology platforms

QSP takes the whole body as the starting point of research
to seek the relationship between drug administration
and disease to speculate the underlying mechanisms.
It is also used to guide personalized medicine by
integrating genomics knowledges. Multi-scale systems
pharmacology focuses on disease-related multiple drugs,
targets, pathways, biomarkers and phenomics. Several
multi-scale systems pharmacology platforms have been
developed such as TCMSP [52], Virtual Tumour [53],
CancerHSP [54], C2Maps [55], VisANT 4.0 [56],
PDTCM [57], CVDHD [58], Lipoprotein Metabolism
and Kinetics (LMK) Platform [59], Rheumatoid Arthritis
PhysioLab platform [60], and others [61–64].
TCMSP is a unique systems pharmacology platform of

Chinese herbal medicines and sparks a new interest in the
search of candidate drugs from TCM [52]. TCMSP
contains chemicals and their pharmacokinetic properties,
targets and drug-target networks, drug-target-disease
networks to capture the relationships between drugs,
targets and diseases. Virtual Tumour Preclinical platform
integrates available PK and cell cycle PD measurements
for chemotherapeutic and targeted cancer treatment
agents into a model of cell cycle and xenograft tumor
growth [53]. Musante et al. reported an Immuno-
Oncology (I-O) platform to investigate the effects of
two kinds of regimens for cancer and suggest possible
applications based on clinical data and analysis of
mechanism [59]. Kirouac et al. developed a multi-scale

systems model of ErbB signaling to support the
preclinical investigation of a bispecific antibody targeting
HER2 and HER3 in cancer [93]. Another important QSP
modeling platform is the DILIsym® which is developed
by the non-profit Hamner Institutes of Health Sciences. It
can be used for drug development [94], explaining the
mechanisms of hepatotoxicity [95] and liver toxicities
[96]. PDTCM [57] and CVDHD [58] are two online
servers that developed for psoriasis and cardiovascular
disease, respectively. PDTCM and CVDHD integrated
medicinal herbs, natural products, disease-related pro-
teins, docking results and clinical biomarkers. By using
virtual screening and network pharmacological methods,
PDTCM and CVDHD streamline drug/lead discovery
from natural products and explore the action mechanism
of medicinal herbs and formulae [57,58].
These platforms that combine the preclinical/clinical

data of many aspects and a variety of disease phenotypes
are able to evaluate the treatment effects of therapeutic
regimens and explore the MoA. These models are also
applicable to different diseases after appropriate adjust-
ment. However, the development of these platforms
requires a certain depth of clinical research on the diseases
and a wider range of preclinical and clinical data [59].

Virtual patient

Using QSP model to translate complex biological
processes into a series of intuitive equations is a
promising way to get insights into curative effects in
drug discovery and disease treatment. However, the
preclinical and clinical data for the establishment of
models is lacking in some aspects. Many scientists
simplified the models by alternative parameterization to
reduce the need for data, and this method is also called
“virtual patient” [65–68,97]. Moreover, a mechanisti-
cally-based weighting method to match clinical trial
statistics at population level was introduced in a
comprehensive analysis (virtual population) [60]. Geerts
et al. used a mechanism-based QSP platform, virtual
human patient, to simulate the biological processes of
Alzheimer’s disease and to build a tool to realize
personalized drug treatment [66]. Allen et al. [68]
developed a new approach to generate virtual population
without the step of weighting. This approach includes
following steps: define plausible ranges for model
parameters and initialize parameters; calibrate the model
by comparing the prediction with database, then repeat
the selection and optimization steps until the available
model patients are plentiful enough. Finally, a credible
virtual population model is constructed after calculating
probability of inclusion into virtual population and
optimizing the inclusion rate.
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APPLICATIONS

Drug discovery

The strategy of drug discovery has been shifting from
searching selective drug for single target that aimed to
decrease side effects into looking for drugs that can
rebalance the biological processes and regulatory net-
works [1,25,98–104]. The in vivo dynamics and kinetics
of drug-target interactions can be simulated and evaluated
by establishing QSP models to reduce the cost of money
and time in a certain extent comparing with the traditional
in vivo experiments [78,105]. QSP models integrate
multiple regulatory networks of disease-related biological
processes and build platforms for screening. The applica-
tions of these platforms can increase the efficiency of
high-throughput screening of candidate compounds and
reduce the time required to study the links between drugs
and complex networks. Unwanted side effects and
toxicity of candidate drugs can be evaluated by adverse
drug reactions [82,106–109] and toxicity models
[70,110]. Liu et al. [111] applied a comprehensive
systems approach to identify 73 bioactive components
from licorice and 91 potential targets for this herb. The
mechanism of this herbal medicine by mapping drug-
target and drug-target-disease networks was further
elucidated. Luo used a network-based multi-target
computational approach to screen potential anticancer
drugs from natural products and predict the interactions
between anticancer drugs and cancer-related targets [112].
Archimedes model is a human physiology-based statis-
tical disease progression model to simulate the effect of
treatments for cardiometabolic diseases [113,114]. These
works all make it easier and cheaper to find new effective
drugs.

Medical guidance

QSP models are utilized to inform different questions in
pharmacology, such as MoA exploration, efficacy
evaluation, translational medicine and drug discovery.
The QSP modeling of drug metabolizing process usually
uses a time dependent equation. QSP models can be built
on a time scale while the time of reaction can be as short
as action process of quick-acting drugs and as long as the
generation and deterioration of chronic diseases. QSP
modeling approaches can address challenges in the
translation of preclinical findings to the clinical applica-
tions [115–117]. Instead of analyzing the instantaneous
outputs of models, researchers usually use frequency-
domain response analysis in mathematics to explore the
process of change under perturbation (treatment of
disease) at the systems level [118]. Taylor et al. analyzed
14 distinct PD models of four class (indirect response,

auto regulation, precursor-pool and moderator-mediated
feedback) to evaluate the practicability of frequency-
domain response analysis method [118].
There are also many other kinds of medical guidance

provided by QSP models. Visser et al. simulated and
optimized in vivo dosing regimens by informing both
preclinical and translational evaluation of single drug and
combination therapy [119]. Geerts et al. contributed a lot
in development of schizophrenia treatment such as
predicting the effect of existing drugs and developed a
mechanism-based QSP model of a relevant key cortical
brain network with schizophrenia pathology to gain
insights of cognitive deficits in schizophrenia [97,120–
122]. Vega-Villa et al. developed a QSP model to
characterize metabolome of nitric oxide after a long-
term infusion of sodium nitrite that would be valuable for
nitrite dosing selection in clinic [123]. John et al.
investigated the mechanisms of anxiolytic drugs on
hippocampal electric patterns and interpreted the
stimulus-frequency relationship of hippocampal theta
[124]. Rostami-Hodjegan developed a physiologically
based pharmacokinetic model to guide administration of
oseltamivir in pediatric patients [69,125]. Recently, Kaddi
et al. presented a multiscale and mechanistic QSP
modeling of acid sphingomyelinase deficiency and the
enzyme replacement therapy that quantitatively assessed
systemic pharmacological effects in adult and pediatric
patients at molecular-level, cellular-level, and organ-level
effects [126]. Other works contributed to expand knowl-
edge of disease processes by phenotypic screening and
developing personalized medicine [47,127–129].

QSP in TCM

Systems pharmacology methods are frequently used in
exploration of pharmacodynamic material basis and MoA
of traditional Chinese medicine (TCM) [130–139]. The
recent applications of these QSP methods in TCM are
summarized in Table 2. For example, Li et al. dissected
the mechanism of the addition and subtraction theory of
traditional Chinese medicine by building a SP platform to
contrast and analyze the variation of kinetic parameters
and targets of active compounds in Xiao-Chaihu-Decoc-
tion and Da-Chaihu-Decoction [180]. Yao et al. investi-
gated the different pharmacological effects of herbs in
Ma-huang decoction to elucidate the combination princi-
ples of TCM [158]. Zhou et al. investigated the under-
lying mechanisms of efficacy of herbs for eliminating
blood stasis and tonifying Qi by linking the drugs, targets
and diseases to obtain compound-target-disease associa-
tions for reconstructing the biologically-meaningful net-
works based on systems pharmacology methods [181].
Zhao et al. built a pharmacological system model of Bufei
Jianpi formula by absorption filtering, network targeting,
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Table 2 Selected applications of QSP methods in TCM
TCM Computational method Refs.

Acori Tatarinowii Rhizoma and

Curcumae Radix

Data mining, pathway enrichment, network analysis [140]

Erigeron breviscapus ADME pharmacokinetic screening, target fishing, protein-protein interaction

network analysis and in vitro experiments verification

[141]

Eucommia ulmoides Oliv. Drug-likeness evaluation, oral bioavailability prediction, multiple drug targets

prediction and network pharmacology techniques

[142]

Hedyotis diffusa Willd. Active component gathering, target prediction, related gene collection, gene

enrichment analysis and network analysis

[143]

Licorice Oral bioavailability screening, drug-likeness evaluation, blood-brain barrier

permeation, target identification and network analysis

[111]

Semen strychni and Tripterygium

wilfordii Hook F.

Data mining, target prediction, network analysis [144]

Sinomenium acutum Pathway, network and function analyses, data mining [145]

Anti-Thrombosis Drug from TCMs Data mining, molecular docking, in silico screening [146]

Qi-enriching herbs and blood-tonifying

herbs

ADME prediction, target fishing and network analysis [147]

Baihe Dihuang Tang ADME/T calculation, target prediction, network analysis [148]

Bufei Jianpi formula Systems pharmacology modeling based on absorption filtering, network targeting

and systems analyses

[132,149]

Bushenhuoxue formula Target screening, molecular docking, network analysis, literature mining [150]

Bushen-Yizhi prescription ADME/T filter analysis, target prediction, network analysis [151]

Danlu Capsules Oral bioavailability and drug-likeness evaluation, gene enrichment analysis [152]

Danggui-shaoyao-san Oral bioavailability screening, drug-likeness assessment, target identification and

network analysis

[153]

Diesun Miaofang Cluster ligands, human intestinal absorption and aqueous solution prediction,

chemical space mapping, molecular docking and network pharmacology techniques

[154]

Dragon’s blood tablets Chemical analysis, prediction of ADME, and network analysis [155]

Ge-Gen-Qin-Lian decoction Target profile clustering, network target analysis [156]

Liu-Wei-Di-Huang pill Chemical and therapeutic properties, network analysis [157]

Ma-huang decoction Pharmacokinetic analysis, drug targeting, and drug-target-disease network analysis [158]

Mahuang Fuzi Xixin decoction Drug-likeness evaluation, oral bioavailability prediction, multiple drug target

prediction, and network analysis

[159]

MaZiRenWan UPLC-QTOF-MS/MS identification, hierarchical clustering analysis, in vitro

experiment verification, network analysis

[160]

NiaoDuQing granules ADME modelling and target prediction, topology analysis, pathway enrichment

analysis, rat test

[161]

Qigui Tongfeng tablet Molecular similarity analysis, network analysis [162]

Radix Curcumae formula Chemical predictors based on chemical structure and chemogenomics data

linking compounds, pharmacological information, a system biology functional

data analysis and network reconstruction method

[163]

Reduning injection ADME filtering, network targeting, pathways integrating, target selection, reverse

drug targeting and network analysis

[164–166]

Shenmai injection Network construction, network recovery index evaluation [167]

SiNiSan formula ADME screening, targets prediction, and DAVID enrichment analysis, [168,169]

Taohong Siwu decoction Chemical space analysis, virtual screening, chemical distribution and potential

compound prediction

[170]

Tian-Ma-Gou-Teng-Yin fomula Network link prediction and statistical analysis [171]

Tianshu formula Pharmacokinetic filtering, target fishing and network analysis [172]

Xiaoyaosan Reversed pharmacophore matching method, network analysis [173]

Xijiao Dihuang decoction ADME screening, drug targeting, network and pathway analysis [174]

8 © Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Fuda Xie and Jiangyong Gu



and systems analysis and identified 145 bioactive
ingredients and 175 potential targets [149]. The model
also provides insights of potential synergistic effects
between herbs which links with similar targets. Wang et
al. used a systems pharmacology method to provide new
insights into the pharmacological interactions of Ophio-
cordyceps sinensis so as to find new adjuvant for hepatitis
B vaccine [182]. Yang et al. built an in silico model to
predict potential P-Glycoprotein inhibitors and select out
875 potential P-Glycoprotein inhibitors and 15 inhibitor-
rich herbs from TCMSP [75]. These results make TCM
more reasonable and promote the modernization of TCM.

FUTURE PROSPECT

QSP integrates various types of in vivo and in vitro results
from different research areas. QSP methods can simulate
a series of biological processes and diseases for multiple-
scale and systematic exploration of MoA of drugs. The
biological responses and changes in disease treatments
from the molecular and genetic level to systems level
provide a deep insight into these processes. It can also
make up quantitative and credible predictions for
complex disease while the pathogenesis is not yet fully
understood. There are still many challenges in both
developing QSP methods and applications. The lack of
biological and pharmacological details for complex
disease leads to deviations in simulations. Analytical
and comprehensive multi-level evaluation methods are
urgently needed to construct the appropriate models.
Complex associations between factors involved in MoA
of drugs further increase the difficulty to obtain mean-
ingful results by analyzing the predictions of modeling.
With the development of omics technologies and
mathematical techniques such as network dynamics,
ordinary differential equations, logic-based approaches,
statistical regression and finite element methods, QSP will

help to understand the MoA of drugs and TCM, and to
improve the efficiency of drug discovery.
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