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Background: The OxfordMinION nanopore sequencer is the recently appealing third-generation genome sequencing
device that is portable and no larger than a cellphone. Despite the benefits of MinION to sequence ultra-long reads in
real-time, the high error rate of the existing base-calling methods, especially indels (insertions and deletions), prevents
its use in a variety of applications.
Methods: In this paper, we show that such indel errors are largely due to the segmentation process on the input
electrical current signal from MinION. All existing methods conduct segmentation and nucleotide label prediction in
a sequential manner, in which the errors accumulated in the first step will irreversibly influence the final base-calling.
We further show that the indel issue can be significantly reduced via accurate labeling of nucleotide and move labels
directly from the raw signal, which can then be efficiently learned by a bi-directional WaveNet model simultaneously
through feature sharing. Our bi-directional WaveNet model with residual blocks and skip connections is able to
capture the extremely long dependency in the raw signal. Taking the predicted move as the segmentation guidance, we
employ the Viterbi decoding to obtain the final base-calling results from the smoothed nucleotide probability matrix.
Results: Our proposed base-caller, WaveNano, achieves good performance on real MinION sequencing data from
Lambda phage.
Conclusions: The signal-level nanopore base-caller WaveNano can obtain higher base-calling accuracy, and generate
fewer insertions/deletions in the base-called sequences.

Keywords: nanopore sequencing; bi-directional WaveNets; base-calling; third generation sequencing; deep learning

Author summary: Oxford nanopore sequencing is a rapidly developed sequencing technology in recent years. Despite
the benefits of this technique to sequence ultra-long reads in real-time, the high error rate of the existing base-calling
methods, especially indels (insertions and deletions), prevents its use in many applications. Here we show that such indel
errors are largely due to the segmentation process on the input electrical current signals, and propose a new deep learning
model bi-directional WaveNet to perform the base-calling directly on the signal level. The experimental result suggests that
our method achieves good performance on real nanopore sequencing data from Lambda phage.

† These authors contributed equally to this work.

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018 359

Quantitative Biology 2018, 6(4): 359–368
https://doi.org/10.1007/s40484-018-0155-4



INTRODUCTION

Over the last decade, high-throughput second-generation
sequencing technology has revolutionized genomic
research with the ability to sequence the whole genome
of a variety of organisms on earth [1]. In 2014, Oxford
Nanopore Technologies (ONT) released a third-genera-
tion sequencing platform, MinION, which is a portable,
single-molecule genomic sequencing device no larger
than an iPhone [2] (see Figure 1A). There are two key
features of this device, long-reads and point-of-care [3].
MinION directly senses native, individual DNA single-

strand without the need for polymerase chain reaction
(PCR) amplification, which enables the device to
sequence extremely long reads (typically from 12k to
120k bp, or even longer) of DNA without a reduction in
the sequence quality [4]. This allows users to generate
reads spanning most repetitive sequences, which most
second-generation sequencing technologies based on
short reads (typically from 75 to 150 bp) cannot
unambiguously resolve [1].
MinION can be used for sequencing immediately at

anywhere in real-time, as it is portable and does not
require any special setup or calibration procedures [5]. It
was reported that MinION has been used for diagnostic
investigation during the Ebola outbreak in Guinea, west
Africa [6]. Another report indicated that MinION has
been tested on the International Space Station (ISS) for
real-time sequencing of a Lambda phage and the results
showed no difference in performance on the ISS and on
earth [7].
The key innovation of the MinION sequencer is the

direct measurement of the changes in the electrical current

signal (denoted as raw signal) when a single-strand DNA
passes through the nanopore [8]. In MinION, a few
hundred of nanopores are implanted in a voltage-biased
membrane. Single-strand DNA sequences pass through
these pores. At each time point, there are five consecutive
nucleotides in a pore (denoted as a 5-mer). The electrical
current signal is measured for each time point of the pore.
The underlying assumption is that with different 5-mers in
the pore, the electrical current will be different. The goal
is to decode the time-course electrical current signals into
the sequence of nucleotides. This procedure is referred to
as base-calling (Figure 1B). However, the frequency of
the electrical current measurements and the speed of the
DNA sequence passing through the pore are not
coordinated, which causes the main technical difficulty
for base-calling. In general, the frequency of the electrical
current measurements is 7–9 times higher than the passing
speed of the DNA sequence. That is, each 5-mer is on
average measured by 8–10 times, yet the variance of
measured times per 5-mer is very high as the passing
speed is inconsistent. Here, a pore model is defined as the
correspondence between the expected current signal and
the 5-mer inside the pore at the same time point. Thus,
given a pore model, we may annotate 5-mer label and
move label upon the raw signal. Specifically, a 5-mer
label indicates that a certain time point of the raw signal
belongs to which 5-mer, whereas a move label indicates
whether the 5-mer stays or moves for the next time point
of the signal (Figure 1B).
The most problematic issue in nanopore sequencing is

the high sequencing error rate, especially in indels
(insertions and deletions) [9]. To solve this issue, a
variety of approaches have been proposed and they can be

Figure 1. Mechanism of MinION nanopore sequencer and the two signal-level labels. (A) The MinION nanopore-based

sequencing device. Sequencing is performed by adding the DNA sample to the flowcell. (B) When DNA molecules pass through the
nanopore, each five-tuple DNA (denoted as 5-mer, e.g., “ATTTC”) inside the pore will cause a change in the magnitude of the current.
Such correspondence between 5-mers and the expected current signal is denoted as the pore model. For consecutive time points, the 5-

mer either stays in the pore (shown in red) or moves by one nucleotide (shown in green). Such stay/move label can serve as the
segmentation guidance to convert the current signal to a 5-mer event sequence.
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roughly categorized into two groups: (i) machine learning
based and (ii) consensus based. The former group relies
on a machine learning model that learns the mapping
between the input nanopore current signals (with length
L1) and the corresponding DNA sequence (with length
L3), i.e., base-calling. The latter group not only relies on
the base-called reads (here, a read is a decoded DNA
sequence), but also requires additional resources, such as
read mapping on a given reference genome [4], error
correction using short reads from second-generation
sequencing [10], or the overlapping base-called reads
from the same nanopore experiments (such as Nanopolish
[2,11] and PoreSeq [12]). In either case, a more accurate
base-calling method is needed to facilitate the power and
advantages of the nanopore sequencing. Here we focus on
solving two key issues of the existing machine learning-
based base-calling approaches: (i) serial base-calling, and
(ii) model architecture.
Serial base-calling. In almost all existing methods

[13,14], the base-calling process is divided into two serial
steps: segmentation and decoding (see Figure 2A). The
segmentation step takes the discrete time-course electrical
current signals as input and outputs a segmented stepwise
curve. This step can be considered as a clustering step,
which tries to group current signals for the same 5-mers
together. The decoding step then takes the segmented
curve as input and decodes it to the nucleotide sequence.
However, since the segmentation step is based on local
signal information only and does not take global context
into account, insertion (i.e., one 5-mer is divided into
multiple segments) and deletion (multiple 5-mers are
merged to the same segment) issues commonly exist due
to the noisy nature of the current signal measurement [13].
Such indel issues not only affect the event-level features,
but also irreversibly harm the final base-calling perfor-
mance.
Model architecture. Another key issue is that the

machine learning model architectures in existing methods
are not suitable for the ultra-long sequence of the
nanopore current signals [15]. In brief, the first generation
of base-calling methods is based on hidden Markov
models (HMMs) [13]. The limitation of HMMs lies in the
short-range dependency. To overcome this issue, the
second generation of base-callers is established on
recurrent neural network (RNN) architectures, such as
long short-term memory (LSTM) [16] or gated recurrent
unit (GRU) [17]. Thanks to a large hidden state space, the
RNN base-callers can potentially capture long-distance
dependencies in the input signal [14]. However, since the
length of the nanopore signal is extremely long (about
100k bp on average), traditional RNN-based architectures
still cannot handle these long sequences properly [15].
To further improve supervised learning methods for

base-calling, it is possible for us to borrow ideas from

very recent technology breakthrough in speech recogni-
tion via deep learning [15]. Deep learning [18] is a
powerful machine learning technique that has revolutio-
nized image classification [19], natural language proces-
sing [20], and bioinformatics [21]. Recently, a deep
learning architecture WaveNets [15] demonstrated super-
ior performance in speech generation. If we consider the
nanopore signal as a speech signal, then base-calling is
kind of similar to speech recognition. Thus, the recent
developed WaveNet architecture might also work for
base-calling.
In this paper, we propose a novel method, WaveNano,

which jumps over the segmentation step and directly
conducts 5-mer label and move label prediction simulta-
neously from the electrical current signals. The main
contributions of this paper are as follows:
� We develop a method to accurately label the ground-

truth 5-mer label and move label for each time point of the
raw electrical current signal using dynamic time warping
[8], which provides supervised training data for our base-
calling method.
� We propose a novel model to simultaneously predict

the 5-mer label and the move label for each time point via
bi-directional WaveNets [15] with stacked residual blocks
of convolutional neural network (shown in Figure 3).
� We show that using predicted move labels as the

segmentation guidance can help solve the indel issue
substantially. Experimental results on the Lambda phage
demonstrate that our proposed method outperforms the
existing methods and achieves good accuracy.

RESULTS

Lambda phage data preparation

We sequenced the genome of a Lambda phage, which is
provided by ONT for calibration of the nanopore
sequencers, based on the one-dimensional (1D) protocol.
The reference DNA sequence of the Lambda phage is
made available by ONT. Before sequencing, the Lambda
phage DNA library preparation was performed using the
genomic DNA sequencing kit (Oxford Nanopore).
According to the manufacturers’ instructions, we used
the SQK-MAP-003 sequencing kit for R9.4 MinION flow
cells. A new MinION flow cell was used for each
sequencing run. The library was loaded onto the MinION
flow cell and the genomic DNA 48-hour sequencing
protocol was initiated using the MinKNOW software. We
obtained around 24,000 reads, with an average length of
63,000 bp for electrical current signals.

Evaluation metrics

To evaluate the performance of our base-caller Wave-
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Nano, we adopted a measurement similar to the one used
in BLAST [22] to compare the similarity between the
reference DNA sequence Sref with length Lref and the
base-called sequence Scall with length Lcall. The scoring
function is 1 for the same nucleotide, – 2 for mismatched
nucleotides, – 2 for gap open, and – 1 for gap extension.
Based on such a scoring function, the optimal alignment
path could be obtained by dynamic programming [23].
Along the path, we can count the number of exact matches
(denoted as M ), the number of gaps (denoted as G), and
the length of alignment (denoted as Lali).
We used four evaluation metrics below to assess the

quality of the base-called sequence: (i) sequence identity
with respect to Sref (defined as SeqID1=M=Lref ),
(ii) sequence identity with respect to Scall (defined as
SeqID2=M=Lcall), (iii) sequence identity (defined as
SeqID=M=Lali), and (iv) the gap ratio (defined as
Grate=G=Lali). Generally speaking, a higher value of
the sequence identity and a lower value of the gap ratio
indicate the high similarity between the base-called
sequence and the reference sequence.
In addition, as shown in Equation (4), besides the

optimization for the loss function of move label, we also
try to optimize the AUC score of move label directly in
the training process. Although we acknowledge that area
under the precision-recall curve (AUPRC) is a better score
to evaluate classification performance for imbalanced
problem, currently it is very challenging to develop a
simple approach to directly optimize AUPRC for a linear-
structured data, such as sequence labeling problem here
[24]. In this work, we will compare the AUC and AUPRC
for move label prediction.

Compared methods

We compared WaveNano with the state-of-the-art and
official base-calling tool Metrichor (https://metrichor.
com/). Metrichor was initially trained on a hiddenMarkov
model and the average base-calling accuracy in terms of
SeqID is around 70% [13]. With the latest release of ONT
R9, it was reported that Metrichor has evolved the base-
calling algorithm to a bi-directional LSTM model [25]
and the base-calling accuracy is boosted to close to 90%

[9]. However, it should be noted that Metrichor is a cloud-
based platform and the source code is not open to public.
Recently, ONT released Albacore, which is a binary-only
tool for offline base-calling. It was reported that these
official tools have similar base-calling accuracy [14].

Comparison results

We trained WaveNano and conducted the evaluation on
Lambda phage. The performance was obtained through
five-fold cross validation on about 24,000 reads of
Lambda phage. Experimental results show that Wave-
Nano achieves better performance than Metrichor and
Albacore, under all four measurements, SeqID1, SeqID2,
SeqID, Grate (Table 1). Specifically, WaveNano achieves
0.632 and 0.947 accuracy for the 5-mer label and move
label prediction, respectively. Through Viterbi decoding
with the segmentation guidance, the final base-calling
obtains 0.956, 0.932, and 0.923 sequence identity, and
0.056 gap ratio, which implies base-calling from
WaveNano not only predicts more accurate DNA
sequences, but also solves the indel issue significantly
better than the official base-callers, Metrichor and
Albacore.
Table 1 also shows that the accuracy of Metrichor is

similar to that of Albacore, especially in terms of SeqID
and Grate. In addition, Albabore has a higher SeqID1 and a
lower SeqID2 than Metrichor, indicating that the DNA
sequence predicted by Albacore has more matches to the
ground-truth sequence than that predicted by Metrichor,
but the sequence length predicted by Metrichor is shorter
than that predicted by Albacore.
We further studied the importance of the move label

prediction as the segmentation guidance and the bi-
directional WaveNets, by removing each of them from
WaveNano and evaluated the performance. Experimental
results show that both the move guidance and the bi-
directional WaveNets are important components in the
success of WaveNano as removing each of them results in
a significantly dropped 5-mer label accuracy to 0.564 and
0.597, respectively. Furthermore, for the final base-calling
results, the gap ratio increases to 12.8% and 7.1%,
respectively. Among the two components, the move label

Table 1 Base-calling performance on the Lambda phage genome (48.5 Kb)
5-mer prediction Move prediction SeqID1 SeqID2 SeqID Grate

Metrichor / / 86.1 91.6 85.2 8.8

Albacore / / 87.8 88.4 85.9 8.2

WaveNano 63.2 94.7 95.6 93.2 92.3 5.6

w/o bi-WaveNet 59.7 92.2 93.7 91.3 89.4 7.1

w/o move guidance 56.4 / 91.1 84.6 83.3 12.8

“5-mer prediction” refers to the 5-mer label prediction accuracy, which is a 1024-class classification problem. “Move prediction” refers to the move

label prediction accuracy, which is a binary classification problem. SeqID1, SeqID2, SeqID, Grate are defined in the Section of Evaluation Metrics and

shown in percentage.
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as the segmentation guidance is more important than the
bi-directional WaveNets.
The AUC (AUPRC) of move label prediction for

WaveNano and WaveNano without bi-WaveNet is 0.872
(0.595) and 0.863 (0.581), respectively. If we remove the
AUC loss term in Equation (4), these prediction results
would become 0.867 (0.586) and 0.856 (0.569), respec-
tively.

Runtime

It is difficult to directly compare the running time of
Metrichor to that of WaveNano because Metrichor is a
cloud-based tool and we did not know the exact parameter
setting of Metrichor. However, we could compare the
running time of WaveNano with the official offline base-
caller, Albacore. It took WaveNano 0.0000416 s to base-
call one time point of the signal or 0.5 s for a signal
sequence with 12,000 time points, whereas it costs
Albacore 2 s for base-calling the same signal sequence.

DISCUSSION AND CONCLUSIONS

In this paper we proposed a novel base-caller, WaveNano,
for the third-generation nanopore sequencing. We showed
that our method is better than the state-of-the-arts on
processing the nanopore current signal data, obtaining
higher base-calling accuracy, and generating fewer
insertions/deletions on the Lamba page dataset. Conse-
quently, base-called DNA sequences by WaveNano are
more accurate and contain fewer gaps than those by
Metrichor and Albacore, the current cutting-edge official
base-callers.
The superiority of our method is rooted largely in the

machine learning model bi-direction WaveNets (Bi-
WaveNets), which is a deep learning model based on
the dilated residual CNN. Such architecture could be
regarded as an alternative model of RNN with gates (e.g.,
LSTM, GRU). According to our knowledge, the official
base-calling algorithm from ONT (i.e., Metrichor and
Albacore) is based on bi-directional LSTM (Bi-LSTM). It
is worth mentioning that WaveNet is more suitable for
capturing ultra-long dependency due to the following two
reasons: (i) WaveNets are auto-regressive and consist of
stacked causal filters with dilated convolutions to allow
their receptive fields to grow exponentially with respect to
the depth, which is essential to capture the ultra-long
range temporal dependencies in the input data; (ii) the
layers of the dilated convolutions make WaveNets a much
faster model than using RNN with gate units. Conse-
quently, comparing to RNN, WaveNets can exploit ultra
long-range temporal dependencies in the signal sequence
in an efficient and effective way. Moreover, our proposed
model Bi-WaveNets can capture both upstream and

downstream information, whereas the traditional Wave-
Nets can only capture the upstream information.
Finally, it should be noted that a bunch of new base-

callers recently appeared could directly work on the raw
electrical current signals. Base-calling from raw signal
(without segmenting the signal into events) first appears
in Albacore v2.0 at September 2017. Albacore is the
official off-line basecaller whose source code is not
opened to public. Users can download Albacore from the
Nanopore community website, but they need an account
to log in. Later on, Scrappie, also from ONT research
group and the source code is open to public, supports the
base-calling from raw signal. Chiron [26] is the first-
appeared third-party base-caller to perform raw signal
base-calling, which is also based on deep learning. From
this trend, we may foresee that the nanopore signal-level
processing aided by deep learning should be the future.

METHODS

Here we propose WaveNano, a novel offline base-caller
for third-generation nanopore sequencing. WaveNano
simultaneously infers the 5-mer label and the move label
of each time point of the input electrical current signal
(see Figure 2B), by using bi-directional WaveNets with
residual blocks and gated activation units. Exploiting the
predicted move labels as the segmentation guidance, we
employ Viterbi decoding with the predicted 5-mer label
probability matrix to obtain the final DNA sequence.

Problem formulation

The base-calling process can be formulated as follows.
Given an input electrical current signal sequence X=x1,
x2, :::, xL1 with L1 time points, we need to decode the final
DNA sequence B=b1, b2, :::, bL3

with L3 nucleotides,
where xi is the electrical current measurement of a 5-mer
(e.g., “ACGTT”) at time point i, and bj is a nucleotide that
can take one of the four values from fA,T,C,Gg. Note that
the frequency of the electrical current measurements is
about 7–9 times faster than the speed in which the single-
strand DNA passes through the nanopore. For consecu-
tive time measurements xi and xiþ1, the 5-mer either stays
in the pore or moves by one nucleotide. We denote this
annotation as the move label sequence Xm with length L1.
Such stay/move labels can later serve as the segmentation
guidance to convert the electrical current signals to a 5-
mer event sequence.
Previous methods, such as [13,14], divide the base-

calling process into two serial steps: segmentation and
decoding (see Figure 2A). In particular, the current signal

sequence is firstly fragmented to an event sequence X
0
=

x
0
1, x

0
2, :::, x

0
L2 with length L2ðL3< L2 < L1Þ through seg-
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mentation on X . Due to the noisy nature of the
segmentation process, the indel issues in these methods
irreversibly harm the final base-calling performance.
Thus, we propose a novel approach, WaveNano, to
simultaneously predict the 5-mer label y1 (i.e., which 5-
mer among all possible 45=1024 5-mers is in the pore)
and the move label y2 (i.e., whether the 5-mer moves by a
nucleotide at the next time point) for each time point of
the input current signal sequence X .

Signal-level ground-truth labeling

In order to train our deep learning model, we need to
prepare the supervised training data first. For our method,
training data refer to the ground-truth 5-mer label and
move label annotation for each time point of the training
electrical current signals, which are not directly available
given the raw signals. We thus need to do signal-level
labeling to assign the 5-mer label y1 and move label y2 to
each time point of the signal, where the size of the label
space for y1 and y2 is 1024 and 2, respectively.
Our original training data set contains the raw time-

course electrical current signals X of length L1 and their
corresponding DNA sequence B of length L3. However, it
does not contain the corresponding 5-mer label and move
label sequences, each of which should be of length L1 as
well. We first try to find an alignment between X and B.
Although it seems intractable to perform this alignment

directly, we could use the ONT official pore model
describing the electrical current signal that are expected to
be observed for each 5-mer [13]. Given the DNA
sequence B with length L3, we can use 5-mer sliding

window to generate all the L3 5-mers (the last 4 5-mers
contain less than 5 nucleotides, but are still in the pore).
Each 5-mer is then converted to its expected electrical
current signal value according to the ONT official pore
parameters. After transforming B into the expected signal
sequence S of length L3, an optimal alignment path
between the two signal sequences, X and S, could be
obtained using dynamic time warping (DTW) [8].
To determine the optimal path via DTW, we recursively

compute an L1 � L3 matrix D, where the matrix
entry Dðn,mÞ is the total cost of an optimal path
between X ðx1, :::, xnÞ and Sðs1, :::, smÞ. Here Dðn,mÞ=
minfDðn – 1,m – 1Þ, Dðn,m – 1Þ, Dðn – 1,mÞg þ cðn,mÞ
where c is a L1 � L3 matrix containing distances between
elements xn in the sequence X and sm in the sequence S.
Here we use the Z-score difference to calculate cðn,mÞ.
Note that recently there is a speed up approach for
calculating DTW in OðNÞ time complexity [27].
After aligning the reference DNA sequence B to the

electrical current signal sequence X , it is straightforward
to assign the 5-mer label y1ðtÞ for each time point t. To
assign the move label y2ðtÞ at time point t, we just need to
check whether the consecutive 5-mers at time points t and
t þ 1 are the same or not. If same, then we assign stay at
time point t, otherwise move.

Overall pipeline of WaveNano

The overall base-calling pipeline of WaveNano is
presented in Figure 3, which takes the current signal
with length L1 as the input. Considering the large variance
of the electrical current values at each time point, it is

Figure 2. Comparison of the conventional base-calling methods and the WaveNano model. (A) Conventional base-calling
methods conduct segmentation and decoding in a sequential manner. (B) WaveNano predicts 5-mer labels and move labels
simultaneously, and then performs segmentation guided decoding.
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necessary to calculate the Z-score normalization of the
current signal [8]. In contrast to the existing machine
learning models [13,14] which depend on the segmenta-
tion step by MinKNOW [13], WaveNano conducts
training on the Z-score normalization of the original
current signal with the ground-truth 5-mer label and move
label obtained as described in the Section of Signal-level
Ground-truth Labeling. Thus, WaveNano can essentially
overcome the indel (insertions/deletions) issues that
commonly exist in existing methods which are due to
the segmentation errors. Besides, as WaveNano can
conduct base-calling on the entire signal sequence, it
leverages bi-directional WaveNets consisting of residual
blocks with skip connections. Then the feature maps of
the bi-directional WaveNets are concatenated together to
capture the ultra long-dependency within the signal
sequence. On top of the concatenated feature maps, we
predict move labels (binary classification) and 5-mer
labels (1024-class classification) simultaneously through
one-dimensional convolutional neural network (1D CNN)
with a 1� 1 kernel. Using the predicted move labels as
the segmentation guidance, the predicted 5-mer prob-
ability matrix (of size L1 � 1024) is segmented accord-

ingly and then fed into the Viterbi decoding block to
obtain the final base-calling with length L3. It is worth
mentioning that WaveNano does not rely on any other
segmentation/decoding tools, and thus is a self-contained
offline framework.

Bi-directional WaveNets for joint learning of 5-mer
labels and move labels

Our proposed WaveNano method directly operates on the
waveform of the normalized Z-score of the input electrical
current signal. Given a waveform x=x1, :::, xT , different
from the generative model WaveNet [15] (shown in
Figure 4), the joint probability of the 5-mer label p1ðxÞ
and the move label p2ðxÞ are factorized as follows:

p1ðxÞ=ΠT
t=1p1ðxtjx1, :::, xt – 1, xtþ1, :::, xT Þ, (1)

p2ðxÞ=ΠT
t=1p2ðxtjx1, :::, xt – 1, xtþ1, :::, xT Þ: (2)

That is, the 5-mer label and the move label at each time
point are conditioned on all other time points.
Since the stacked dilated causal convolutions can have

Figure 3. The overall pipeline of WaveNano. WaveNano takes the current signal X with length L1 as the input. The calculated Z-
score of the current signal feeds into the causal one-dimensional (1D) convolutional neural network (CNN) and stacked residual blocks

with skip connections. Different from the original WaveNet which was proposed as a generative model, WavaNano employs bi-directional
residual blocks as we can conduct base-calling with the dependency of the entire current signal. On top of the concatenated feature maps
from the bi-directional blocks, 1D CNN with a 1� 1 kernel is used for the 5-mer label (1024-class classification) and move label (binary

classification) prediction. Using the move label prediction as the segmentation guidance, Viterbi decoding is leveraged with the smoothed
5-mer label probability matrix to obtain the final base-calling with length L3. “C” donates concatenation.
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a very large receptive field [15], we exploit two parallel
WaveNets with stacked dilated 1D CNNs by taking the
forward current signal and the reversed current signal as
inputs respectively. Similar to the configuration in
which dilation is doubled for each layer up to a limit
[15], we also use two repeat blocks in WaveNano, i.e.,
1, 2, 4, :::, 4096. Furthermore, the gated activation units
z=tanhðWf ,k � xÞ � �ðWg,k � xÞ [28], residual and para-
meterized skip connections [19] are also used in
WaveNano to speed up convergence and enable a deeper
model [15]. Specifically, residual connections are pre-
sented in the dotted box and all residual blocks are
summed up through skip connections (Figure 3). In order
to capture the long-range temporal dependency of all
other time points, feature maps of bi-directional Wave-
Nets are combined through the concatenation operation.
On top of the concatenated feature maps, WaveNano

conducts the 5-mer label and move label prediction
simultaneously though 1D CNN that is activated by
softamx with a 1� 1 kernel by minimizing the combined
loss. It is worth mentioning that the move prediction is a
class imbalanced problem (about 8 times more stay than
move). Thus, we add the approximated AUC loss [29] for
solving the class imbalanced problem of move prediction.
Specifically, we denote f as the move prediction layer

with softmax activation illustrated in Figure 3.
According to Ref. [30], the AUC of a predictor f is
defined as AUCðf Þ=Pðf ðt0Þ < f ðt1Þjt0∈D0, t1∈D1Þ,
where D0, D1 are the samples with ground-truth labels
stay and move, respectively. Its unbiased estimator, i.e.,

Wilcoxon-Man-Whitney statistics, is AUCðf Þ= 1

n0n1
Σt0∈D0,t1∈D1 Iðf ðt0Þ < f ðt1ÞÞ, where n0=jD0j, n1=jD1j,
and Ið Þ is the indicator function. In order to add the
noncontinuous AUC loss to the continuous cross-entropy

loss and optimize the combined loss through gradient
decent, we consider an approximation of the AUC loss by
a polynomial approximation of indicator function Ið Þ
with degree d [30], i.e.,

AUCmove=
1

n0n1

X

t0∈D
0

Xd

k=0

Xk

l=0

αklf ðt1Þl f ðt0Þk – l, (3)

where αkl=ckC
l
kð – 1Þk – l is a constant.

Thus, the combined cross-entropy loss is:

loss=loss5-mer þ l1lossmove þ l2AUCmove, (4)

where loss5-mer=–
1

T
Σim

�
i logðmiÞ, lossmove=–

1

T
Σis

�
i

logðsiÞ, and T is the length of the input signal. Besides,
mi, si are the predicted probabilities of the 5-mer label and
the move label, m�

i , s
�
i are ground-truth 5-mer label and

move label respectively, and l1, l2 are the trade-off
parameters.

Viterbi decoding with 5-mer labels and move labels
as segmentation guidance

Given the predicted probabilities of the 5-mer labels p1
and move labels p2 for the electrical current signal
sequence X , WaveNano first segments the 5-mer label
sequence with the guidance of the predicted move labels.
Specifically, for a certain time range t1 to t2 from the
original signal sequence, if all their predicted stay labels
are above a given threshold �, then the predicted 5-mer
label (e.g., for a certain label l) for each time point t0 in

this segment is calculated by p01ðt0,lÞ=
1

t2 – t1
Σt2
i=t1p1ði,lÞ.

This produces a segmented event sequence X
0
with the

Figure 4. Basic architecture of WaveNets model. WaveNets [15] are autoregressive and consist of stacked causal filters with
dilated convolutions for the purpose of growing their receptive fields exponentially with depth, which is critical to capture the ultra-
long range temporal dependencies in the input nanopore electrical signals.

t1∈D1
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probabilities of the 5-mer labels p01, which can be
interpreted as a smoothed predicted 5-mer label prob-
ability matrix. Finally, WaveNano runs the Viterbi
decoding algorithm [22] on this smoothed probability
matrix to compute the most likely 5-mer sequence S0,
which can then be transformed to the DNA sequence B
directly.
It should be noted that the segmentation process in

WaveNano is completely different from that in previous
methods, such as Metrichor and Albacore, in the
following two aspects: (i) our procedure employs a
supervised learning model, WaveNet, which can capture
ultra long-range temporal dependencies, whereas existing
methods only exploit local information for segmentation;
(ii) our procedure is more flexible than previous methods
with the help of a tunable parameter �. A larger � will
produce a longer base-called sequence, whereas a smaller
� will produce a shorter sequence. We found that setting �
to 0.9 as the default value leads to an appropriate base-
called sequence with a comparable length to the reference
DNA sequence.

Neural network architecture

In WaveNano, we exploit bi-directional Wavenets each
with two repeat residual blocks, which consists of causal
1D CNN layers with kernel size 3 and dilated 1D CNN
with dilation 1, 2, :::, 212. The obtained 12 feature maps,
each with 128 channels, are summed through skip
connections. And the feature maps of bi-directional
Wavenets are concatenated together as the contextual
feature vector. The output from the contextual feature
vector is regularized with dropout (=0:5) to avoid
overfitting and fed to two 1D CNN layers with a 1� 1
kernel. The output units for the 5-mer label and move
label prediction are 1024 and 2 respectively with a
softmax activation function. We set l1=0:1 and l2=0:15
for balancing the two jointly learned tasks.
Our code is implemented in Tensorflow, a publicly

available deep learning software. Weights in our neural
networks are initialized using the default setting in
Tensorflow. We train all the layers in our deep network
simultaneously using the Adam optimizer. The batch size
is set to 10 and length is fixed to 12K through padding.
The entire deep network is trained on a single NVIDIA
GeForce GTX TITAN X GPU with 12GB memory. It
takes about one to two weeks to train our deep network. In
the testing stage, the 5-mer label and move label
prediction of a read with length 12,000 takes 0:5 s on
average.

ACKNOWLEDGEMENTS

We thankMinh Duc Cao and Lachlan J. M. Coin for providing the nanopore

sequencing data for the Lambda phage sample. We thank Haotian Teng for

providing helpful discussions. This work was supported by the Kind

Abdullah Unviersity of Science and Technology (KAUST) Office of

Sponsored Research (OSR) under Awards Nos. FCC/1/1976-04, URF/1/

2601-01, URF/1/3007-01, URF/1/3412-01 and URF/1/3450-01.

COMPLIANCE WITH ETHICS GUIDELINES

The authors ShengWang, Zhen Li, Yizhou Yu and Xin Gao declare that they

have no conflict of interests.

This article does not contain any studies with human or animal subjects

performed by any of the authors.

REFERENCES

1. Cao, M. D., Nguyen, S. H., Ganesamoorthy, D., Elliott, A. G.,

Cooper, M. A. and Coin, L. J. (2017) Scaffolding and completing

genome assemblies in real-time with nanopore sequencing. Nat.

Commun., 8, 14515

2. Loman, N. J., Quick, J. and Simpson, J. T. (2015) A complete

bacterial genome assembled de novo using only nanopore

sequencing data. Nat. Methods, 12, 733–735

3. Li, Y., Han, R., Bi, C., Li, M., Wang, S. and Gao, X. (2018)

DeepSimulator: a deep simulator for nanopore sequencing.

Bioinformatics, 34, 2899–2908

4. Jain, M., Fiddes, I. T., Miga, K. H., Olsen, H. E., Paten, B. and

Akeson, M. (2015) Improved data analysis for the MinION

nanopore sequencer. Nat. Methods, 12, 351–356

5. Lu, H., Giordano, F. and Ning, Z. (2016) Oxford Nanopore

MinION sequencing and genome assembly. Genom. Proteom.

Bioinf., 14, 265–279

6. Quick, J., Loman, N. J., Duraffour, S., Simpson, J. T., Severi, E.,

Cowley, L., Bore, J. A., Koundouno, R., Dudas, G., Mikhail, A., et

al. (2016) Real-time, portable genome sequencing for Ebola

surveillance. Nature, 530, 228–232

7. Castro-Wallace, S. L., Chiu, C. Y., John, K. K., Stahl, S. E.,

Rubins, K. H., McIntyre, A. B. R., Dworkin, J. P., Lupisella, M. L.,

Smith, D. J., Botkin, D. J., et al. (2017) Nanopore DNA

sequencing and genome assembly on the International Space

Station. Sci. Rep., 7, 18022

8. Loose, M., Malla, S. and Stout, M. (2016) Real-time selective

sequencing using nanopore technology. Nat. Methods, 13, 751–

754

9. Jain, M., Olsen, H. E., Paten, B. and Akeson, M. (2016) The

Oxford Nanopore MinION: delivery of nanopore sequencing to the

genomics community. Genome Biol., 17, 239

10. Goodwin, S.,Gurtowski, J., Ethe-Sayers, S., Deshpande, P., Schatz,

M. C. and McCombie, W. R. (2015) Oxford Nanopore sequencing,

hybrid error correction, and de novo assembly of a eukaryotic

genome. Genome Res., 25, 1750–1756

11. Sovic, I., Šikić, M., Wilm, A., Fenlon, S. N., Chen, S. and

Nagarajan, N. (2016) Fast and sensitive mapping of error-prone

nanopore sequencing reads with GraphMap. Nat Commun., 7,

11307

12. Szalay, T. and Golovchenko, J. A. (2015) De novo sequencing and

variant calling with nanopores using PoreSeq. Nat. Biotechnol., 33,

1087–1091

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018 367

WaveNano: a signal-level nanopore base-caller using WaveNets



13. David, M., Dursi, L. J., Yao, D., Boutros, P. C. and Simpson, J. T.

(2017) Nanocall: an open source basecaller for Oxford Nanopore

sequencing data. Bioinformatics, 33, 49–55

14. Boža, V., Brejová, B. and Vinař, T. (2017) DeepNano: deep

recurrent neural networks for base calling in MinION nanopore

reads. PLoS One, 12, e0178751

15. Van Den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals,

O., Graves, A., Kalchbrenner, N., Senior, A., and Kavukcuoglu K.

(2016) Wavenet: A generative model for raw audio. ArXiv,

1609.03499

16. Hochreiter, S. and Schmidhuber, J. (1997) Long short-term

memory. Neural Comput., 9, 1735–1780

17. Chung, J., Gulcehre, C., Cho, K. H. and Bengio, Y. (2014)

Empirical evaluation of gated recurrent neural networks on

sequence modeling. ArXiv, 1412.3555

18. LeCun, Y., Bengio, Y. and Hinton, G. (2015) Deep learning.

Nature, 521, 436–444

19. He, K., Zhang, X., Ren, S., and Sun, J. (2016) Deep residual

learning for image recognition. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition. Las

Vegas

20. Hirschberg, J. and Manning, C. D. (2015) Advances in natural

language processing. Science, 349, 261–266

21. Wang, S., Sun, S., Li, Z., Zhang, R. and Xu, J. (2017) Accurate de

novo prediction of protein contact map by ultra-deep learning

model. PLoS Comput. Biol., 13, e1005324

22. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D.

J. (1990) Basic local alignment search tool. J. Mol. Biol., 215,

403–410

23. Pearson, W. R. and Miller, W. (1992) Dynamic programming

algorithms for biological sequence comparison. In Methods in

Enzymology. pp. 575–601, Elsevier

24. Wang, S., Ma, J. and Xu, J. (2016) AUCpreD: proteome-level

protein disorder prediction by AUC-maximized deep convolu-

tional neural fields. Bioinformatics, 32, i672–i679

25. McIntyre, A. B., Rizzardi, L., Yu, A. M., Alexander, N., Rosen, G.

L., Botkin, D. J., Stahl, S. E., John, K. K., Castro-Wallace, S. L.,

McGrath, K., et al. (2016) Nanopore sequencing in microgravity.

npj Microgravity, 2, 16035

26. Teng, H., Cao, M. D., Hall, M. B., Duarte, T., Wang, S. and Coin,

L. J. M. (2018) Chiron: translating nanopore raw signal directly

into nucleotide sequence using deep learning. Gigascience, 7,

giy037

27. Han, R., Li, Y., Wang, S. and Gao, X. (2017) An accurate and

rapid continuous wavelet dynamic time warping algorithm for

unbalanced global mapping in nanopore sequencing. bioRxiv,

238857

28. van den Oord, A., Kalchbrenner, N., Vinyals, O., Espeholt, L.,

Graves, A., and Kavukcuoglu, K. (2016) Conditional image

generation with pixelcnn decoders. In Advances in Neural

Information Processing Systems

29. Wang S., Sun S., and Xu J. (2016) AUC-maximized deep

convolutional neural fields for protein sequence labeling. In

Machine Learning and Knowledge Discovery in Databases.

ECML PKDD 2016. Lecture Notes in Computer Science, Frasconi

P., Landwehr N., Manco G., Vreeken J. (eds) vol 9852. Springer,

Cham

30. Calders T., and Jaroszewicz S. (2007) Efficient AUC optimization

for classification. In Knowledge Discovery in Databases: PKDD

2007. Lecture Notes in Computer Science, Kok J. N., Koronacki J.,

Lopez de Mantaras R., Matwin S., Mladenič D., Skowron A. (eds),
vol 4702. Springer, Berlin, Heidelberg

368 © Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Sheng Wang et al.


	Outline placeholder
	bmkcit1
	bmkcit2
	bmkcit3
	bmkcit4
	bmkcit5
	bmkcit6
	bmkcit7
	bmkcit8
	bmkcit9
	bmkcit10
	bmkcit11
	bmkcit12
	bmkcit13
	bmkcit14
	bmkcit15
	bmkcit16
	bmkcit17
	bmkcit18
	bmkcit19
	bmkcit20
	bmkcit21
	bmkcit22
	bmkcit23
	bmkcit24
	bmkcit25
	bmkcit26
	bmkcit27
	bmkcit28
	bmkcit29
	bmkcit30


