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Background: For understanding biological cellular systems, it is important to analyze interactions between protein
residues and RNA bases. A method based on conditional random fields (CRFs) was developed for predicting contacts
between residues and bases, which receives multiple sequence alignments for given protein and RNA sequences,
respectively, and learns the model with many parameters involved in relationships between neighboring residue-base
pairs by maximizing the pseudo likelihood function.
Methods: In this paper, we proposed a novel CRF-based model with more complicated dependency relationships
between random variables than the previous model, but which takes less parameters for the sake of avoidance of
overfitting to training data.
Results: We performed cross-validation experiments for evaluating the proposed model, and took the average of AUC
(area under receiver operating characteristic curve) scores. The result suggests that the proposed CRF-based model
without using L1-norm regularization (lasso) outperforms the existing model with and without the lasso under several
input observations to CRFs.
Conclusions: We proposed a novel stochastic model for predicting protein-RNA residue-base contacts, and improved
the prediction accuracy in terms of the AUC score. It implies that more dependency relationships in a CRF could be
controlled by less parameters.
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Author summary: A life system is realized by many interactions between various biomolecules including proteins and
RNAs. The proposed stochastic model can be a clue to reveal the mechanism of interactions between protein and RNA
molecules, which is based on a conditional random field (CRF) with dependency relationships between neighboring residue-
base pairs on the sequences. In this study, we made the CRF-based model more realistic by introducing several dependencies
and reducing parameters to be trained, as shown in higher prediction accuracies for several actual protein-RNA complexes of
which tertiary structures were experimentally determined.

INTRODUCTION

It is important to uncover biological cellular systems from
a molecular point of view. Interactions between proteins
and RNAs play essential roles in the regulation of gene
expression, the stabilization of protein complexes,

maturation of mRNA to the trafficking [1]. Therefore,
some disruption to RNA-binding proteins can lead
various diseases. In many interactions between proteins
and RNAs, its protein and RNA recognize specific sites of
each other. It was reported that DNA-protein interactions
are different from RNA-protein interactions, and RNA

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018 155

Quantitative Biology 2018, 6(2): 155–162
https://doi.org/10.1007/s40484-018-0136-7



bases make more direct contacts with proteins than do
DNA bases [2]. As RNA-binding regions of proteins, the
K-homology (KH) domains [3], double-stranded RNA-
binding domains (dsRBD) [4,5], DEAD-box domains [6],
Pumilio repeat domain [7], zinc fingers [8] and so on, are
known. In contrast, binding regions of RNAs have not
been well investigated. Gupta and Gribskov reported that
different bases are preferred in base-specific and base-
nonspecific interactions, and RNA structures in protein-
binding regions can be sufficiently distinguished from
non-binding regions [9].
Several computational methods for detecting RNA-

binding sites and protein-RNA interactions have been
developed. Peled et al. proposed a de-novo function
prediction approach based on identifying biophysical
features [10]. In their method, random forest (RF) [11]
was employed because it yielded better results than neural
networks and support vector machines (SVMs). Kumar et
al. made use of evolutionary information and position-
specific scoring matrix (PSSM) profiles, and employed
support vector machine (SVM) [12,13]. Perez-Cano and
Fernandez-Recio developed an ad hoc algorithm using
protein-RNA interface propensities calculated from non-
redundant X-ray structures of protein-RNA complexes
[14]. Liu et al. combined a new interaction propensity
with features based on sequences and structures, and
achieved an accuracy of 84.5% [15].
Zhang et al. proposed a hidden Markov model (HMM)-

based algorithm to predict clustered functional RNA-
binding sites of proteins by integrating the number and
spacing of individual motif sites, the accessibility in RNA
secondary structures, and cross-species conservation [16].
Zhao et al. developed a method based on structural
alignment to known protein-RNA complex structures
[17]. Ren and Shen proposed new structural features
based on accumulated distances from template patches
extracted from RNA-binding interfaces [18]. Wang et al.
proposed an extended naive Bayes classifier for de novo
prediction of protein-RNA interactions [19]. Sun et al.
proposed structural features of residue electrostatic sur-
face potential and triplet interface propensity according to
the statistical and structural analysis of protein-RNA
complexes [20]. These methods predict RNA-binding
sites of proteins and interactions of proteins and RNAs. In
this paper, we focus on interactions between both sites of
amino acid residues and bases in protein-RNA interac-
tions.
Lafferty et al. developed conditional random fields

(CRFs) to segment and label sequence data [21]. CRFs
have been applied to many problems in the fields of image
recognition, natural language processing, and bioinfor-
matics [22–24]. Statistical models based on CRFs have
been developed for predicting protein-protein interactions
[25], protein residue-residue contacts [26], and protein-

RNA residue-base contacts [27,28]. CRFs require
evidences that another event has occurred, and mutual
information (MI) between residues and bases was
introduced, which is calculated from multiple sequence
alignments. In general, it is considered that an amino acid
residue at an interacting site has coevolved together with
its partner RNA base to keep the interaction. MIp was
developed to improve residue-residue contact prediction,
and is calculated by subtracting a bias value fromMI [29].
A prediction method for residue-base contacts in protein-
RNA complexes was developed using a CRF-based
model [27]. In the model, relationships between neigh-
boring residue-base pairs were considered. Since the
model has many parameters, L1-norm regularization
(lasso) [30] was applied to improve the prediction
accuracy [28]. In this study, we proposed a novel CRF-
based model with more complicated dependency relation-
ships and less parameters than the existing one. As well as
MIp, we examined the pseudolikelihood maximization
direct-coupling analysis (plmDCA) [31], which was
developed to infer a protein tertiary structure from its
protein sequence, and try to separate direct interactions
from indirect ones between residues. For evaluating the
proposed CRF-based model, we performed cross-valida-
tion computational experiments, and showed that the
proposed model without using the lasso regularization
outperforms the existing model with and without the lasso
under both input observations of MIp and plmDCA to
CRFs.

RESULTS

To evaluate the proposed CRF-based model, we used the
same dataset as that in the previous paper, which was
extracted from tertiary structures of protein-RNA com-
plexes in PDB [32], and consists of the residue-base pairs
included in thirteen protein-RNA pairs as shown in
Table 1.
Here, the sequences stored in PDB for these proteins

and RNAs were the same as those included in multiple
sequence alignments of the corresponding Pfam [33] and
Rfam [34] entries, respectively, and the sequence in a
PDB entry was the same as that in UniProt [35]. Table 1
shows the followings: the identifier of UniProt of a
protein sequence, its length, the identifier of GenBank
[36] of an RNA sequence, its length, the identifiers of
Pfam and Rfam of alignments, the identifier of PDB, and
the number of contacts. It was assumed that a residue and
a base interact with each other if the Euclidean distance
between an atom of the residue and one of the base is less
than or equal to 3 Å because the distances of hydrogen
bonds between oxygen and nitrogen atoms, OH-O, OH-
N, NH-O, and NH-N, are about 2.7 to 2.9 Å.
To calculate MIp and plmDCA, we used the file

156 © Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Morihiro Hayashida et al.



“Pfam-A.full” of Pfam database (release 26.0) and “Rfam.
full” of Rfam database (release 10.1) for getting multiple
sequence alignment data of proteins and RNAs, respec-
tively. We used an implementation of plmDCA available
from https://github.com/pagnani/PlmDCA. In counting
the frequencies of amino acids and bases, we also
examined several classifications of amino acids with 8,
10, and 15 groups proposed by Murphy et al. [37] as
shown in Table 2.
To estimate the parameters of the CRF-based models,

we employed the limited memory Broyden-Fletcher-
Goldfarb-Shanno (BFGS) method [38,39] implemented
by libLBFGS (version 1.10), available from http://www.
chokkan.org/software/liblbfgs/, with default options,
which is a quasi-Newton method approximating the
Hessian matrix to maximize the likelihood function. For
the contact inference, an implementation of the sequential
tree-reweighted message passing (TRW-S) algorithm
[40], MRF energy minimization software (version 2.1),

available from http://vision.middlebury.edu/MRF/code/,
was modified for use, which iteratively update messages
from a node to another in the graph, and replace edge
weights to minimize the upper bound of the objective
function for a maximization problem.
We performed cross-validation procedures, and took

the average of AUC (area under ROC curve) scores as in
the previous work, where each procedure used all residue-
base pairs contained in one protein-RNA pair of the
dataset for test, and those in the other protein-RNA pairs
for training. For the previous model, the lasso with
coefficient C=2 of the regularization term was applied to
the parameter estimation of � also in this study because it
output the best result among C=0,1,2 in the previous
study.
Table 3 shows the result on the average AUC scores for

test data by the proposed and previous CRF-based models
using MIp and plmDCA as input observations in 8, 10,
15, and 20 groups of amino acids. In both input

Table 2 Classification of amino acids proposed by Murphy et al. [37]
#groups Classification of amino acids

8 {MLVIC} {GA} {TS} {P} {FYW} {DENQ} {RK} {H}

10 {MLVI} {C} {G} {A} {TS} {P} {FYW} {DENQ} {RK} {H}

15 {MLVI} {C} {G} {A} {T} {S} {P} {FY} {W} {D} {E} {N} {Q} {RK} {H}

Table 1 Dataset of the residue-base pairs of protein-RNA pairs [28]
Protein sequence RNA sequence Alignment

PDB #contacts
UniProt length GenBank length Pfam Rfam

RL18_THETH 110 X01554 1543 PF00861 RF00001 2 hgu 28

RL27_THET8 81 X12612 1356 PF01016 RF01118 2 hgu 20

RL27_ECOLI 77 J01695 1356 PF01016 RF01118 3 kcr 18

RL33_THET8 48 X12612 1445 PF00471 RF01118 2 hgu 18

RL35_ECOLI 61 J01695 1337 PF01632 RF01118 3 kcr 12

RS5_ECOLI 67 J01695 1701 PF00333 RF00177 3 kc4 13

RS7_ECOLI 147 J01695 1941 PF00177 RF00177 3 kc4 25

RS8_THET8 135 M26923 1889 PF00410 RF00177 1 yl4 29

RS10_THET8 97 M26923 1711 PF00338 RF00177 1 yl4 20

RS12_THET8 122 M26923 1972 PF00164 RF00177 1 yl4 45

RS15_ECO57 83 J01695 1821 PF00312 RF00177 3 kc4 21

RS17_ECOLI 69 J01695 1690 PF00366 RF00177 3 kc4 18

RS17_THET8 69 M26923 1690 PF00366 RF00177 1 yl4 29

Table 3 Result on average AUC scores by proposed and previous CRF-based models using MIp and plmDCA as input
observations in 8, 10, 15, and 20 groups of amino acids

#groups
MIp plmDCA

previous [28] proposed previous [28] proposed

8 0.618 0.651 0.609 0.692

10 0.633 0.663 0.623 0.699

15 0.645 0.660 0.647 0.699

20 0.642 0.661 0.632 0.693
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observations of MIp and plmDCA, the average AUC
score by the proposed model was larger than that by the
previous model. The average AUC score by the proposed
model with plmDCA in 10 and 15 groups of amino acids
was larger than those by the others.
Figure 1 shows the result on the average ROC (receiver

operating characteristic) curves by the proposed and
previous CRF-based models in 15 groups of amino acids.
The curve of the proposed model with plmDCA was
above the other curves, and the prediction accuracy,
which is the ratio of the number of truely predicted
residue-base pairs to the total number of residue-base
pairs, was 0.997. These results suggest that the proposed
CRF-based model outperforms the existing model even if
the lasso regularization is not applied to the proposed
model.

CONCLUSION

We improved the existing model for predicting residue-
base contacts between proteins and RNAs, and developed
a novel model with more complicated dependency
relationships and less parameters based on conditional
random fields. For evaluation of our proposed model, we
performed cross-validation computational experiments,
and took the average of AUC scores. The results suggest
that the proposed CRF-based model without using L1-
norm regularization (lasso) outperforms the existing
model with and without the lasso under both input
observations of MIp and plmDCA to CRFs. The number
of parameters of the proposed model is 86 without using
any classification of amino acids, whereas that of the
existing model is 960. It can be considered that the lasso
regularization increased the average AUC score for the
existing model by automatically selecting effective
parameters. In contrast, the proposed model did not

need the lasso and obtained the better result because it has
a sufficiently small number of parameters and rich
dependency relationships between a target residue-base
pair and its neighboring pairs. As future work, we would
like to further improve the prediction accuracy for
understanding detailed mechanisms of protein-RNA
interactions. For instance, we can take other features in
our model than evolutionary relationships calculated from
multiple sequence alignments such as structural and
biophysical features.

METHODS

In this section, we briefly reviewed the existing CRF-
based model, coevolution measures, MIp and plmDCA,
which are input observations to CRFs, calculated from
multiple sequence alignments of given protein amino acid
and RNA base sequences. In addition, we described the
proposed CRF-based model with more complicated
dependency relationships and less parameters.

Conditional random field (CRF)-based models

Conditional random fields were developed by extending
Markov random fields (MRFs) [21]. Suppose that GðV, EÞ
is a graph with a set V of nodes and a set E of edges, and
for a subgraph GxðVx, ExÞ of G, xυ and yυ0 are random
variables corresponded to nodes υð∈VxÞ and υ#ð∈V
–VxÞ, respectively. Let N υ be a set of neighboring nodes
to υ, that is, N υ=fυ#jðυ, υ#Þ∈Exg. Then, ðx=fxυg, y
=fyυ0 gÞ is a conditional random field if all xυ s follow the
Markov property under observations y according to the
graph Gx. It means that the probability of xυ given xυ for
all υ#∈Vx – fυg and y is equal to the probability of xυ
given xυ# for only neighboring nodes υ#∈Nυ and y, that
is, Prðxυjxυ#ðυ#∈Vx – fυgÞ, yÞ=Prðxυjxυ#ðυ#∈NυÞ, yÞ. A
conditional random field with a strictly positive density
can be written by

Prðxυjxυ#ðυ#∈N υÞ, yÞ=
1

Zυ
expf –U υðx, yÞg, (1)

where Zυ denotes the normalization constant as
Σxυexpf –U υðx, yÞg, and U υðx, yÞ denotes a potential
function concerning the node υ.
For our purpose, given a protein sequence a=a1, :::,

anp
and an RNA sequence b=b1, :::, bnr

, a node υ inGx is
corresponding to a residue-base position pair ði, jÞ
ði=1, :::, np, j=1, :::, nrÞ. Figure 2 illustrates residue-
base pairs around ði, jÞ. A set of neighboring nodes of
ði, jÞ is defined as N ij=fði� 1, jÞ, ði, j� 1Þg. rij is a
random variable, and rij=1 if residue ai and base bj at
positions i and j interact with each other, rij=0 otherwise.
Suppose that r=frijg, rN ij

=frkljðk, lÞ∈N ijg, and

Figure 1. Result on average ROC curves by proposed and
previous CRF-based models in 15 groups of amino acids.
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δðai, bjÞ is a 0 – 1 constant vector with size 20� 4=80 that

the element of the amino acid-base pair corresponding to
ðai, bjÞ is 1 and the others are 0.
Then, the conditional probability of rij given rN ij

and y,
and sequences in the previous work [28] was defined
using parameter vectors wf and wg by

PrðrijjrN ij
, y, a, bÞ= 1

Zij
exp �wT

f f ijðr, y, a, bÞ

þwT
g

X
ðk,lÞ∈N ij

gijklðr, y, a, bÞ �, (2)

f ijðr, y, a, bÞ=
rij
rij

� �
� δðai, bjÞ �

1
yij

� �
, (3)

gijklðr, y, a, bÞ=
rij
rij

� �
� rkl

rkl

� �
� δðak , blÞ �

1
ykl

� �
,

(4)

where Zij denotes the normalization constant, wT denotes

the transpose of w, 0=1, 1=0, and � denotes the

Kronecker product, for example, a

b

� �
� c

d

� �
=

ac

ad

bc

bd

0
BB@

1
CCA.

The number of parameters is equal to the sum of
dimensions of f ij and gijklðr, y, a, bÞ, that is, 2� 80�
2þ 2� 2� 80� 2=960. Mutual information (MI) and
the improved MI calculated from multiple sequence
alignments were used as input observations y.
Figure 3 illustrates the dependency relationship

between random variables by an element of f ij and
gijklðr, y, a, bÞ. In this model, the number of parameters
wf , wg to be estimated is large, and the L1-norm
regularization (lasso) was utilized by improving the
prediction accuracy. In addition, rij depends on only yij,
ai, and bj in f ij. Hence, we propose the potential function
with more complicated dependency relationships and less

parameters having the following local features f ij, gijklðr,
y, a, bÞ by adding other association with rij.

f ijðr, y, a, bÞ=rij

1
yij

max
ðk, lÞ∈N ij

ykl
min

ðk, lÞ∈N ij

ykl

0
BBB@

1
CCCA� δðai, bjÞ

0
BBB@

1
CCCA, (5)

gijklðr, y, a, bÞ=rijrkl
jyij – yklj
yijykl

� �
, (6)

where rij=1 if residue ai and base bj at positions i and j
interact with each other, rij=– 1 otherwise, the condi-
tional probability is written by Equation (2), and �
denotes the direct sum, for example, a

b

� �
� c

d

� �
=

a

b
c

d

0
B@

1
CA. The number of parameters wf and wg to be

estimated in the training phase is 4þ 80þ 2=86.
Figure 4 illustrates the dependency relationship

between random variables by an element of f ij and
gijklðr, y, a, bÞ. rij depends on input observations of all the
neighboring nodes according to the maximum and

Figure 2. Illustration of residue-base pairs around ði, jÞ.
Figure 3. Dependency relationship between random vari-
ables in the previous CRF-based model. (A) By an element of
f ij. (B) By an element of gijklðr, y, a, bÞ, where the case of k=iþ 1

and i=j is shown.

Figure 4. Dependency relationship between random vari-
ables in the proposed CRF-based model. (A) By an element of
f ij. (B) By an element of gijklðr, y, a, bÞ, where the case of k=iþ 1

and l=j is shown.
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minimum of ykl for all ðk,lÞ∈N ij in f ij.
For both CRF-based models, parameters �=fwf ,wgg

can be estimated from training data of N protein-RNA
sequence pairs aðnÞ, bðnÞ, and contacts rðnÞðn=1, :::, NÞ by
maximizing the following pseudo-likelihood function.

Lð�Þ= Π
N

n=1
Π
nðnÞ
p

i=1
Π
nðnÞ
r

j=1
PrðrðnÞij jrðnÞN ij

, yðnÞ, aðnÞ, bðnÞ, �Þ (7)

For the sake of reducing redundant parameters of wf

and wg, in the previous model, we used the lasso, and
maximized Lð�Þ –Cðjjwf jj1 þ jjwgjj1Þ, where C is a
positive constant, and jjwjj1 denotes the L1 norm of w.
In the prediction phase, rij is determined for test data

using the estimated parameters � and input observations.
Then, the problem of finding rij∈f1, – 1g maximizing
Lð�Þ for all i, j under trained parameters wf and wg is NP-
hard as generally discussed in [40].

Coevolution measure

We examine the improved mutual information MIp [29]
and the pseudolikelihood maximization direct-coupling
analysis (plmDCA) [31] as input observations y to CRFs.
We have two multiple sequence alignments for protein
and RNA sequences a, b (see Figure 5).
Let PiðaÞ and PjðbÞ be the observed frequencies of

amino acid a at position i, and that of base b at position j,
respectively. Let Pijða,bÞ be the joint frequency of amino
acid a and base b at positions i and j, where the sequence
that ai appears must belong to the same species as the
sequence that bj appears. These frequencies are divided
by the total number of sequences in a multiple alignment.
Then, mutual information mij between positions i and j is

defined by ΣaΣbPijða,bÞlog
Pijða,bÞ

PiðaÞPjðbÞ
. For removing

background noise of MI, MIp was proposed to be mij –

1

np – 1
Σk≠imik

� �
1

np – 1
Σk≠jmjk

� �

2

npðnp – 1Þ
Σi<jmij

for protein residue-

residue contacts. For our purpose of predicting residue-
base contacts, MIp is modified to

mij –
Σ
np

i=1mijΣ
nr
j=1mij

Σ
np

i=1Σ
nr
j=1mij

: (8)

Ekeberg et al. developed plmDCA for predicting the
tertiary structure of a protein by solving the inverse Potts
problem. A generalized Potts model can reproduce the
empirically observed amino acid frequencies PiðaÞ and
Pijða, bÞ, and is defined as

PrðaÞ=1

z
expð Σ

np

i=1
hiðaiÞ þ Σ

1£i<j£np
J ijðai,ajÞÞ, (9)

where hiðaiÞ and J ijðai, ajÞ are parameters to be
determined by the constraints, Prðai=aÞ=PiðaÞ and
Prðai=a, aj=bÞ=Pijða, bÞ. From a multiple sequence
alignment of a given protein sequence, J ij is determined.
Then, the score of plmDCA between amino acid residues
is defined by

Sij –
Σ
np

i=1SijΣ
np

j=1Sij

Σ
np

i=1Σ
np

j=1Sij
, (10)

where Sij denotes the Frobenius norm of Jíij , which is the
zero-sum gauge of J ij. For our purpose, we concatenate
two multiple sequence alignments of protein and RNA
sequences into one alignment such that the species of a
protein sequence is the same as that of an RNA sequence.
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Figure 5. Illustration of multiple sequence alignments for protein sequence a and RNA sequence b. Arrows denote that two
sequences belong to the same species.
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