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Background: Developmental patterning is highly reproducible and accurate at the single-cell level during fly
embryogenesis despite the gene expression noise and external perturbations such as the variation of the embryo
length, temperature and genes. To reveal the underlying mechanism, it is very important to characterize the noise
transmission during the dynamic pattern formation. Two hypotheses have been proposed. The “channel” scenario
requires a highly reproducible input and an accurate interpretation by downstream genes. In contrast, the “filter”
scenario proposes a noisy input and a noise filter via the cross-regulation of the downstream network. It has been
under great debates which scenario the fly embryogenesis follows.
Results: The first 3-h developmental patterning of fly embryos is orchestrated by a hierarchical segmentation gene
network, which rewires upon the maternal to zygotic transition. Starting from the highly reproducible maternal
gradients, the positional information is refined to the single-cell precision through the highly dynamical evolved
zygotic gene expression profiles. Thus the fly embryo development might strictly fit into neither the originally
proposed “filter” nor “channel” scenario. The controversy that which scenario the fly embryogenesis follows could be
further clarified by combining quantitative measurements and modeling.
Conclusions: Fly embryos have become one of the perfect model systems for quantitative systems biology studies. The
underlying mechanism discovered from fly embryogenesis will deepen our understanding of the noise control of the
gene network, facilitate searching for more efficient and safer methods for cell programming and reprogramming,
and have the great potential for tissue engineering and regenerative medicine.
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Author summary: It is intriguing how the development of organisms is highly reproducible and accurate despite the
external and internal noise. The key to solve this mystery is to explore the noise transmission during development and
discover the underlying mechanism. The developmental system could generate precise inputs and outputs in each step, or
gradually generate a final precise output by filtering a noisy input according to the “channel” or “filter” scenario, respectively.
The quantitative studies on the early development of the fruit fly’s embryos show that the developmental process is highly
dynamic and its noise transmission may employ a hybridized strategy.

INTRODUCTION

The development of complex multicellular organisms
from a single zygotic cell is highly dynamical yet
amazingly accurate and reproducible [1,2]. For instance,
cephalic furrow (CF) is transiently formed during early

morphogenesis in fly (Drosophila) embryos [3,4]. The
location of CF is highly reproducible from embryo to
embryo (Figure 1A). Its relative position with the respect
to the anterior pole of the embryo is 33.8�1.4% embryo
length (L) (Figure 1B), indicating that the cell fate
determination for CF formation achieves nearly single-
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cell precision [5], as the fly embryo consists of about 100
columns of cells along the anterior–posterior (AP) axis,
and the standard deviation of the CF location is about 1%
L, corresponding to the width of a single cell. However,
quantitative imaging at the single–cell level reveals that
gene expression noise is profound and ubiquitous (Figure
1C) [6], and can be divided into intrinsic noise and
extrinsic noise (Figure 1D) [7]. Intrinsic noise stems from
the stochasticity of diffusional reaction processes. Extrin-
sic noise originates from the environmental fluctuation
such as cellular component changes, and temperature
variation. It is intriguing how the gene regulation network
orchestrates the highly accurate and reproducible devel-
opmental processes at the single-cell level in multicellular
organisms despite the intrinsic and extrinsic noise.

In this review, we focus on the noise transmission
during the dynamic AP patterning of the fly embryos
regulated by the segmentation gene network. Many other
reviews provide detailed information on the other related
aspects of the system [8–13]. The review is organized as
the following: we first demonstrate that developmental
patterning is highly dynamic. Then we discuss how this
dynamics system transmits gene expression noise, and
achieves the robustness against extrinsic noise such as
variation of embryo length, temperature and genes. In
order to reveal the underlying mechanism of noise
transmission, we review the challenges in quantitative
measurements and modeling on the gene network
regulating AP patterning. Finally, we give a perspective
of the future directions.

Figure 1. The contradiction between the precision and accuracy of the developmental pattern and gene expression noise

at the single cell level. (A) Images of the cephalic furrow (CF) formed in the middle-coronal plane (dorsal view) of 48 fruit fly
(Drosophila) embryos at 185�2 min after fertilization at room temperature (scalar bar, 100 μm). Images were acquired on fruit flies
expressing fusion protein Bcd-GFP using two-photon fluorescencemicroscopy. The anterior poles of all the embryos in each column

are aligned on the left. The CF positions, i.e., the two intrusion bands, of the embryos in one column all align in one line (yellow line),
i.e., reaching the single cell precision. (B) The histogram shows the distribution of the CF location among 364 embryos from the
same fly line showing in (A). The CF position is 34.3�1.2% (mean�standard deviation) from a Gaussian fitting (red line). It is
consistent with the CF position of the wild-type embryos (33.7�1.7%, black error bar) and Bcd-GFP embryos (33.8�1.4%, dashed

black error bar) (adapted with permission from Ref. [5]). (C) An image of bacterial (E. coli) cells expressing CFP (shown in green) and
YFP (shown in red) regulated by the same promoter (scalar bar, 2 μm). The color varied among different bacterial cells, indicating
there exists gene expression noise (reprinted with permission from Ref. [6]). (D) The scatter plot of the normalized mean YFP

intensity versus the normalizedmean CFP intensity shows intrinsic noise and extrinsic noise of gene expression in two E. coli strains
(M22 and D22) (reprinted with permission from Ref. [7]).
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DYNAMIC PATTERN FORMATION
DURING THE EARLY DEVELOPMENT
OF FLY EMBRYOS

The achievement of the high reproducibility and accuracy
of the developmental patterns becomes an even more
daunting task for a fly embryo, as it is believed to
establish its blueprint of the whole body at the single-cell
level in the first 3-h development after the embryo is
deposited (AED). In such a short time, the developmental
patterns are highly dynamic and the temporal averaging is
rather limited, hence it is even more challenging to cope
with gene expression noise at the single-cell level.
During the 3-h development, the fly embryo starts from

one single nucleus in the center of the embryo to about
6,000 nuclei on the outer-layer of the embryo after 13
rapid nuclear divisions. To accelerate the proliferation, no
cell membrane forms, and only the synthesis (S) phase
and mitosis (M) phase alternates without gap (G) phases.
TheM phase is synchronized between different nuclei and
lasts only about 3.4 min, whereas the S phase remains 5
min from nuclear cycle 1 (nc1) to nc8, gradually elongates
from 9 min to 13 min during nc9 to nc13, and reaches 50
min in nc14. At the S phase of nc10, ~2/3 of the nuclei
migrate from the yolk to the cortical layer of the embryo
[14].
Along with the rapid nuclear division and migration

process, the cell fate is determined under the regulation of
the gene network. The segmentation gene network
regulating the AP patterning during early fly embryogen-
esis has a hierarchical structure. It consists of maternal
genes, gap genes, pair rule genes and segment-polarity
genes from upstream to downstream. The upstream genes
can regulate the expression of downstream genes, and the
genes in the same class can cross-regulate with each other,
but the downstream genes have no feedback to upstream
genes [12]. As the gene expression feeds forward, more
and more refined developmental pattern forms. At the
beginning, maternal factors such as Bicoid (Bcd) [15,16]
and Nanos (Nos) [17] form gradients along the AP axis
across the whole embryo (Figure 2B left). Subsequently,
the expression domains of gap proteins such as Krupple
(Kr) and Knirps (Kni) usually span the width of 10–20
nuclei (Figure 2B middle) [12,18]. Each pair rule gene
forms 7 three-nuclear wide stripes (Figure 2B right) [19].
Finally, each segment-polarity gene forms 14 stripes with
a single-cell width, which determines the boundaries of
the body segments [12].
These gene expression patterns are highly dynamic.

Figure 2C illustrates the protein profiles of Bcd [20], Hb
[18] and Eve [19] at different stages. The dynamics arises
from a delicate spatial-temporal control of the production,
degradation, and diffusion of the segmentation proteins.
As a maternal factor, bcd mRNAs are deposited at the

anterior pole of the embryo during egg formation
(oogenesis) and are locally translated with a production
rate k0 AED. The newly synthesized Bcd proteins diffuse
away from the source with a diffusion constant D, and are
uniformly degraded with the protein lifetime t. This
formation process of Bcd gradients is usually described
with the synthesis-diffusion-degradation (SDD) model,
which has been discussed extensively in recent reviews
[8,21]. According to this model, the steady state of the
concentration gradient of Bcd is CðxÞ=C0 � e – x=l, where
the amplitude C0=k0=

ffiffiffiffiffiffiffiffi

D=τ
p

and the length constant
l=

ffiffiffiffiffiffi

Dτ
p

. The Bcd gradient at location x approaches its

steady state with a local relaxation time τx=
τ
2

1þ x

l

� �

[22]. However, it is still under debate whether the Bcd
gradient agrees with the SDD model [21]. One of the big
reasons is the inconsistence in the measurement of t and
D. Utilizing Dronpa, a photon-activated fluorescence
protein, to tag with Bcd, t was measured to be ~50 min
and ~15 min before and after nc14, respectively [23]. On
the other hand, with quantitative immunoblotting of Bcd
from embryonic extraction, t was estimated to be ~25
min and 55 min before and after nc14, respectively [24].
D was measured to be 0.3 μm2/s with fluorescence
recovering after photon bleaching (FRAP) [2], or 7 μm2/s
with fluorescence correlation spectroscopy (FCS) [25].
Moreover, with quantitative Western blots, the total Bcd
protein is found to peak at around nc12–14 [23].
Fluorescence imaging shows that the nuclear Bcd
gradient starts to accumulate from 45 min AED and
reaches the peak intensity at about nc12 (~100 min AED)
[20]. Although the nuclear Bcd intensity is the most
relevant to the transcription activity of Bcd, the steady
state of the nuclear Bcd gradient is further complicated
given that the nuclear number and size keeps changing in
different cycles and the Bcd proteins are imported into the
nuclei at the beginning of each cycle and released during
the mitosis [2]. Furthermore, both real-time polymerase
chain reaction [23] and fluorescence in situ hybridization
(FISH) [20] experiments reveal that the bcd mRNA starts
degradation at early nc14, and it is also suggested that the
translation efficiency of bcd mRNAs increases due to the
modification on the 3′ poly-A tail before nc14 [20], hence
the production rate of Bcd proteins also varies as
development progresses [20,23,24]. All these factors
complicate the dynamic formation of Bcd gradients,
making it difficult to judge whether the Bcd gradient
reaches a steady state.
Besides the dynamic inputs, the rewiring of the

regulation network at different development stages also
contributes to the highly dynamic expression profile of
the zygotic segmentation genes. Before the middle of
nc13, most of the newly synthesized proteins are maternal
factors and they are the main inputs to regulate the
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Figure 2. Dynamics of development patterns during early Drosophila embryogenesis (A) The dynamics of the nuclear position, nuclear cycle
and zygotic transcription activity of fly embryos before nuclear cycle 14 (nc14). After fertilization, the nuclei divide for nine times in the yolk of the

embryo. Then two-thirds of the nuclei migrate to the surface of the embryo and divide for another four times. At nc 9, pole cells start to form in the
posterior pole. The nuclear cycle only has the S and M phase before nc14. The duration of the M phase remains at 3.4 min, whereas the S phase
elongates from 5 min in nc1 – 8 to 9 min and 13 min in nc9 and nc13, respectively. It is further lengthened to be 50 min in nc14. The zygotic gene

expression level is low before nc13 and increases significantly during maternal zygotic transition (MZT) in nc13 –14. (B) The segmentation gene
network regulating the anterior–posterior (AP) patterning during earlyDrosophila embryogenesis starts from the formation of the protein gradients
of the maternal factors including Bcd (green), Nos (light blue), and Tor (dark blue) (left), to the expression of gap genes including hb (purple), gt
(scarlet), kni (yellow) and Kr (orange) (middle), pair rule genes including eve (red) and pr (light cyan) and finally the segment-polarity genes (not

shown). The sketch of these gene expression patterns is drawn to reflect the spatial distribution of the normalized concentrations at their highest
expression level. (C) The dynamics of the protein profiles of Bcd (left), Hb (middle) and Eve (right). (T# represents the # time period equally
dividing nc14 for 8 times). (D –E) The AP patterning segmentation gene network switches from the maternal driven before maternal zygotic

transition (MZT) (D) to the strong cross-regulation between gap genes after MZT (E) during early fly embryogenesis. The width of the line
indicates regulation strength. Dashed lines indicate the regulation relationship remains to be confirmed.
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downstream zygotic gene expression (Figure 2D) [12].
After nc13, the zygotic gene expression level increases
significantly (Figure 2A) [14] and the cross regulation
between the zygotic genes becomes dominate, meantime
the maternal inputs shut down timely (Figure 2E) [12,26].
This process is called maternal zygotic transition (MZT).
For instance, Hb has both maternal and zygotic
components. At early developmental stages, the transla-
tion of the evenly distributed maternal hb mRNA is
repressed by the Nos gradient [17], resulting a step-
function like Hb profile with a gradual boundary in the
middle of the embryo. During nc12–13 and early nc14, as
Bcd and Hb activate the zygotic expression of hb, the Hb
boundary sharpens and the expression level at the anterior
half increases [18]. Later, while the zygotic expression of
hb becomes much higher than the maternal Hb, the
enhancer regulating the zygotic expression gradually
switches from Bcd-dependence to Bcd-independence
[26,27], the self-regulation by Hb itself changes from
activation [28–30] to repression [31], and the repression
by the other gap genes kni and Kr becomes more
significant [31,32], consequently the transcription profile
changes from a step function to two stripes [27,33]. One
forms at the boundary in the middle of the embryo,
resulting in further boundary sharpening [31], accord-
ingly the concentration of the anterior profile arises to the
highest level at nc14-T7 (~42 min AED) then gradually
drops down [18]. The other one is the rising posterior
stripe of Hb [27,34]. As a result, the hb expression profile
constantly evolves and shows no steady state (Figure 2C
middle).
As the downstream genes in the hierarchical segmenta-

tion gene network, the pair rule genes and segment-
polarity genes also show dynamic evolved expression
profiles. For instance, starting from a broad single peak in
nc13, eve transiently reaches the highest expression level
and shows 7 strips with even spacing and equal height at
nc14-T7 (Figure 2C right), then gradually disappears
[19].

NOISE TRANSMISSION DURING THE
DYNAMIC DEVELOPMENT PROCESS

It is generally believed that the cascades of the dynamical
gene expression of segmentation genes lead the cell fate
determination at the single-cell level, i.e., each cell has its
unique gene expression when the fly embryo starts
gastrulation at about 4 h AED. In other words, the gene
expression profiles provide sufficiently precise positional
information for each cell to “know” its position in the
embryo, so it can differentiate and migrate to form the
tissue and organ accordingly [35]. However, gene
expression noise usually deteriorates the positional
information carried by the gene expression profile. It is

intriguing how the fly embryo overcomes gene expression
noise to achieve single-cell precision in developmental
patterning. Two scenarios have been proposed regarding
noise transmission during the dynamic developmental
process [36]. Hypothesis I suggests a “channel”-like
transmission, i.e., the system starts with a highly precise
input, and accurately transmits the positional information
from upper class to lower class (Figure 3A) [36]. This
scenario is based on the “French flag model”, i.e., the cell
fate is determined by a global morphogen concentration
gradient, which activates a series of genes at different
thresholds [10,37]. It assumes an accurate and precise
morphogen gradient is established and subsequently
accurately interpreted by the downstream genes
[1,36,38]. Hypothesis II suggests a “filter”-like transmis-
sion, i.e., the system starts with a noisy input but the
positional noise gradually decreases via a “filter”
mechanism during its transmission [39]. Such a “filter”
mechanism can emerge through the cross-regulation
between the genes of a “self-organized” network
[40,41]. A famous example is Turing pattern formation.
A nonlinear dynamic process (autocatalysis and reactant
inhibition) coupling with a special diffusion process (a
slow diffusing activator and a fast diffusing inhibitor) can
generate periodic oscillation patterns (Figure 3A) [42,43].
It has been under great debates in previous studies which
scenario the fly embryo follows. One of the main reasons
is the controversy in measuring the noise of Bcd
gradients.
Some studies seem to support the “filter” hypothesis.

Houchmandzadeh et al. compared the positional error of
the morphogen Bcd and its downstream Hb in nc14 using
the immunofluorescent staining method [39]. The bound-
ary position of the anterior profile of Hb, xHb, was defined
as the location where the normalized intensity is 0.5. The
measured standard deviation of xHb from about 100 wild
type (WT) embryos was 1% L. In contrast, the position of
the normalized Bcd profile at a fixed threshold of 0.23,
which is corresponding to xHb, showed a variability range
of 30% L and a standard deviation of 7% L (Figure 3C).
These results suggest that the noise of Bcd gradients must
be filtered out to achieve the high positional precision of
Hb boundary. Subsequently, the cross-regulation between
gap genes were reported to “canalize” the patterning,
improving the precision and driving the dynamical shifts
of patterns [40,41].
However, other studies challenge the “filter” hypothesis

and favor the “channel” hypothesis. With live imaging of
the Bcd gradient and carefully designed control experi-
ments, Gregor et al. demonstrated that the Bcd gradient
was highly reproducible [1]. In the anterior region, the
gradient noise, i.e., the relative standard deviation of the
Bcd expression level at the same position in different
embryos, is ~10%, which corresponds to a positional error
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Figure 3. Noise transmission during the dynamic developmental processes. (A) Two noise transmission hypotheses. On the left, the cell fate

pattern is determined by the French flag model, i,e., a morphogen gradient, e.g., Bcd, activates different genes at different thresholds. Ideally, the
noise level shows a channel-like transmission curve if the downstream gene can accurately read the position information from the upstream
genes. On the right, the gene network has a certain noise filtration mechanism similar to self-organization process in Turing pattern formation. (B)
Temporal evolution of the reproducibility of the segment gene expression profiles during nc14. The positional error of the markers of the gap

genes (blue circle) gradually decreases to reaches the minimum at around 40 min into nc14. It is consistent with the minimum of the positional
error of its upstream Bcd gradient (violent square) at 15 min into nc14 (adapted with permission from Ref. [18]). It also matches with the positional
error of its downstream pair-rule gene (pink square) at 45 min into nc14 Ref. [18]. The error of the CF position is comparable with the minimum

value of the gap genes [5]. (C) The normalized immunostained Bcd expression profile from different embryos (represented by different colors)
show huge variation corresponding to 30% positional error in the middle of the embryo (adapted with permission from Ref. [39]). (D) The raw
fluorescence intensity of the Bcd-GFP gradient along the AP axis using two-photon fluorescence microscopy shows much less gradient noise in

the anterior half of the embryo. Each color represents different embryos. Each dot represents the average fluorescence intensity of the nucleus.
Error bars represent the mean and standard deviation of fluorescence intensity in each bin with the bin width of 2% embryo length (L). Inset shows
the relative standard deviation (standard deviation/mean) as a function of embryo length for each bin (upper) and the imaging noise and image
processing noise (lower) (adapted with permission from Ref. [5]). (E) The mean (violet square) and the standard deviation (yellow square) of the

position of the Hb boundary as a function of time in nc14. 89 embryos are divided into 8 equal-samplesized bins according to their ages. Error bars
of the mean position show standard deviation in each bin. Error bars of the standard deviation are calculated via bootstrap sampling. (F) The
average slope (blue square) of the Hb boundary and the corresponding intensity at the Hb boundary positions (green square) as a function of time

in nc14. Raw Hb intensity is normalized by the maximum intensity among all the embryos. Error bars represent standard deviation of the slope or
intensity in each bin.
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of 1%–2% L based on the error propagation calculation.
Furthermore, by improving the signal to noise ratio of
imaging, the gradient noise of Bcd was actually 10%–
20% in almost the whole embryo (Figure 3F) [5]. And
similar results were observed in the measurement using
immunofluorescence staining [38]. The discrepancy
between these results and previous results arises from
the different measurement errors (for more detailed
analysis see the section after next). In particular, the
greater measurement errors in Houchmandzadeh’s mea-
surement are mainly attributed to the improper normal-
ization as the gradient noise was shown to approach the
level of 10% L after a better renormalization [11]. Hence
the positional error derived from the gradient noise of Bcd
based on error propagation is about 1%–2% L, which is
almost the same level as that of the Hb boundary.
Furthermore, the input/output relation between Bcd and
Hb was measured in the same embryo with immuno-
fluorescent staining. It could be fitted with the Hill
function where the Hill coefficient n = 5. Assuming the
Hb level is a direct readout of the Bcd gradient, the input
noise in Bcd concentrations can be converted from the
measured output noise in Hb levels based on the measured
input/output function of Bcd/Hb. And the gradient noise
of Bcd approaches its minimum value of ~10% at the Hb
boundary xHb. Hence the Hb noise was suggested to
directly transmitted from the Bcd gradient without any
“filtering” mechanism [1].
However, it is still debatable that the Bcd gradient alone

is able to convey sufficient positional information to Hb.
Both Bcd gradients and Hb profiles are highly dynamic.
In fact, as the overall intensity, the average position and
slope of the boundary of the Hb profile reach the
maximum values, the standard deviation of the Hb
boundary reaches the minimum value at around 40 min
into nc14 (Figure 3E–F) [18]. If one calculated the
standard deviation of all the gap gene markers such as the
signature boundaries or peak positions, it actually follows
a similar trend: the positional error gradually decreases
from about 2% L at the beginning of nc14 to the minimum
value of 0.75% L at ~45 min into nc14. Interestingly, the
combined positional error of gap genes at the beginning of
nc14 is comparable with the one converted from the
gradient noise of Bcd measured at about 15 min into nc14
(Figure 3D) [1,5,38]. And the minimum positional error
of gap genes is consistent with the one of the pair rule
genes (Figure 3B) [18].
Taking together, the positional information is carefully

controlled at each level of the hierarchical segmentation
gene network. Starting with the highly reproducible Bcd
gradient, the positional information is slightly refined by a
factor of 2 to the single-cell precision in gap gene profiles,
subsequently is relayed by the pair rule genes and etc.

Thus the fly embryo development might strictly fit into
neither the originally proposed “filter” nor “channel”
scenario. More rigorous experiments are still in quest to
test whether it has the capability to utilize both
mechanisms to achieve the positional precision at the
single-cell level.

PATTERNING ROBUSTNESS AGAINST
THE EXTRINSIC NOISE: VARIATION OF
THE EMBRYO LENGTH, TEMPERATURE
AND GENES

The dynamic development patterning not only copes with
the gene expression noise, but also achieves the
robustness in response to the extrinsic noise such as
environmental fluctuations and genetic variation.
AP patterning of fly embryos is spatially scaled with

embryo length [39,44]. The natural embryo length
variation is ~4% [1]. The variability of embryo lengths
in a population can increase further through temperature
changes. For example, the embryo length of Ore-R flies
decreases from 524�25 μm at 18°C to 480�14 μm at
29°C. Hence, to achieve AP patterning with 1% L
precision, scaling is a necessary property to maintain the
robustness against the variation of embryo length. Indeed,
the signature boundaries or peaks of AP patterning, e.g.,
the posterior boundary of the anterior Hb profile, are
positively proportional to the embryo length (Figure 4A)
[39]. However, it is still very controversial whether the
Bcd gradient is scaled with the embryo length. Based on
the SDD model, the diffusion-driven Bcd gradient is
hypothetically unscaled with embryo length. This leaves
the origin of spatial scaling of developmental patterns an
enigmatic question. Several hypotheses have been
proposed to solve this mystery. For instance, the nuclear
trapping model [2] predicts that Bcd gradients have a
scaled length constant, but several lines of experimental
evidence contradict such a prediction [45]. It has also
been hypothesized that scaled Bcd gradients are generated
by volume-dependent modulation of the amplitude of the
Bcd gradient [46], which is originated from oogenesis as
proposed in the TEM3S (Tissue Expansion-Modulated
Maternal Morphogen Scaling) model [47], but further
experimental evidence needs to show that this is sufficient
to generate the scaling of downstream genes. One study
reported that the positional precision of Bcd-target genes
mirrors that of Bcd [48], suggesting that the precision and
scaling of Bcd-targeted genes were generated by pre-
steady-state decoding of Bcd gradients [49]. However, it
has been questioned whether such decoding exists in the
AP patterning system [50]. The bi-gradient model
assumes a posterior gradient interacts with the Bcd
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gradient to generate scaled center developmental patterns
[51,52], however, the molecular basis for the posterior
gradient is still unclear. Future quantitative measurements
are still in quest to understand the underlying mechanism
for the spatial scaling of segmentation patterns during
early embryogenesis, in particular, whether the Bcd
gradient is able to precisely provide scaling information
for embryos of varying sizes.
AP patterning is robust in response to temperature

fluctuations. The temperature has profound effect on a
reaction-diffusion system such as embryonic patterning,
since the diffusion, degradation, and interactions of the
biological molecules in the embryos are all temperature
dependent. In fact, the developmental rate increases as the
temperature augments [54]. For example, the hatching
time decreases from 18 days in 19°C to 7 days in 29°C. In

addition, the embryo length increases at lower tempera-
tures. However, the average position of boundaries of the
Hb protein and hb mRNA profiles are observed to be
constant for embryos developed at different temperatures
in the range of 9°C to 29°C (Figure 4C) [39]. Even more
surprisingly, fly embryos can counteract the effects of a
time-dependent temperature step, i.e., the anterior and the
posterior halves develop in different temperatures, in a
microfluidic device [55]. Both Hb and Eve profiles were
normal even if the temperature step was switched in a
period except that the switching period was between 65–
100 min AED [55]. These results suggest that a
temperature compensation mechanism accounts for the
robustness against the temperature fluctuations and it
might act in a critical developmental window. But the
molecular basis for such a temperature compensation

Figure 4. The robustness of Hb boundary positions. (A) The absolute position of the Hb boundary measured from the anterior pole
is scaled with the embryo length. Data was collected from fixed embryos of the WT fly line (adapted with permission from Ref. [39]).
(B) As temperature varies, the shape [39] and the amplitude (inset, adapted with permission from Ref. [53]) of Bcd gradients

changes. (C) As temperature varies, the mean positions of the boundaries of Hb protein (green circle) and hb mRNA (blue square)
profiles remain constantly. Error bars represent the standard deviations of the mean. (D) Average dorsal Hb profiles of embryos fixed
at 10–24 mins into nc14 from fly lines with Bcd dosages of D = 0.5 (blue), 1.0 (cyan), and 2.0 (orange). For each line, profiles were
binned into 33 equispaced bins along the AP axis. Lines are the mean profile intensity in each bin. Error bars represent the standard

deviation of the profile intensity in each bin (reprinted with permission from Ref. [5]) (E) The mean position of the Hb boundary, xHb,
as a function of time in nc14 for embryos with Bcd dosages of D = 0.5 (dark blue), 0.8 (light blue), 1.0 (cyan), 1.4 (light orange), and
2.0 (orange). Error bars represent the standard error of the mean. Time is measured from the beginning of nc14, with each value on

the time axis representing the average time in each time class (reprinted with permission from Ref. [5]). (F) The normalized Hb
protein profiles detected by immunofluorescence staining in nc14 from stauHL embryos (reprinted with permission from Ref. [39]).
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mechanism is still under hot debate. Several studies show
that the average Bcd gradients show greater [39] or
slightly smaller [53] length constants, and greater
amplitudes [53] at temperatures other than 25°C (Figure
4B), and the Bcd gradient is severely distorted during
nc11–13 in the microfluidic device [56]. Hence the
precise input from the Bcd gradient was suggested to be
nonessential for the temperature-independent precise AP
patterning such as Hb profiles. One study proposed that a
bi-gradient consists of the Bcd gradient and the other
unknown posterior gradient could generate invariable Hb
boundaries in the middle of the embryo [51]. The
compensation mechanism was also suggested to be
attributed to some endo-siRNAs which might regulate
the temperature-induced change of the nuclear cycle
based on the measurement of mutant flies in the
temperature-step experiment [57]. On the other hand, a
more recent study argued that the Bcd concentration
threshold at the Hb boundary was relatively robust as the
temperature varied in a certain range [53]. To clarify the
confusion, more quantitative measurements on the
temperature effect on the precision of the AP patterning
are still needed in future studies.
AP patterning is also robust in response to genetic

variation. One excellent example is the Hb boundary.
Nearly each gene related with Hb regulation was mutated
such as knocking out nos and Kr or removing self-
activation of hb, even one by one a half arm of the
chromosome comprising nearly 5/6 of the whole genome
was removed, the mean or variability of the Hb boundary
position show no significant change [39]. The Hb
boundary does shift if we manipulate the Bcd dosages
(Figure 4D). However, during nc14 the shift amount
dynamically decreases from ~100% to ~60% of the
predicted shift based on the threshold-dependent model
assuming Bcd is the only input (Figure 4E). Note the
variability of the Hb boundary remains nearly unchanged
upon the alteration of the Bcd dosage [5]. So far only
staufen (stau) knockout has been discovered to dramati-
cally increase the variability of the boundary of hb
mRNAs [58] and Hb proteins [39] (Figure 4F). Strangely,
Stau has not been discovered to directly regulate gene
expression. It is best known as a localization factor for
bcd mRNAs and nos mRNAs [59]. Several models were
proposed to explain the function of Stau in patterning Hb
boundaries without any supporting experimental evidence
[60]. One experiment showed that the gradient noise of
Bcd increases in the stau mutant fly line and suggested
this could account for the increased variability of the Hb
boundary [38].
To summarize, the precision of the Hb boundary is

observed to be robust under the perturbation of the
embryo length, temperature or genes. But it is still unclear
whether this robustness against the extrinsic noise stems

from the adaptive upstream maternal morphogen gradi-
ents according to the “channel” hypothesis or the
interaction between the downstream segmentation genes
according to the “filter” hypothesis.

CHALLENGES IN QUANTITATIVE
MEASUREMENTS AND MODELING ON
DYNAMIC DEVELOPMENTAL PATTERNS

To test which hypothesis agrees on the noise transmission
during the dynamic development of the fly embryo, it is
crucial to carry out quantitative measurements on AP
patterning. However, it has been very challenging to
quantify the noise of the gene expression profiles during
early embryogenesis. Since the gene expression patterns
constantly evolve dynamically (Figure 2C) in a 3D
asymmetrical embryo, accurate extraction of the average
and noise of the gene expression at the single-nucleus
level requires carefully identifying and controlling the
temporal and spatial measurement errors. Two types of
quantitative imaging methods have been developed. One
is live imaging proteins tagged with fluorescence proteins
[2,5] or mRNAs with the MS2-MCP system [61,62] on
living embryos from transgenic fly lines; the other is
imaging on fixed embryos with specifically marked
proteins with the immunofluorescence staining technique
[19] or mRNAs with the FISH techniques [20,63,64].
From the dynamic point of view, live imaging seems to

have a great advantage in controlling the temporal
measurement errors. We can choose a desired time point
for measurements by clocking down from a reference
time point, e.g., the beginning or end of a mitosis between
two nuclear cycles (Figure 2A), with at least 1-min time
resolution. However, one needs to check whether the
observed fluorescence dynamics faithfully recapitulates
the actual biological dynamics [2,65], as it is well known
that genetic modification (e.g., random insertion) in
generating the transgenic fly lines or phototoxicity during
imaging might disturb the physiology of the biological
system, and the diffusion and/or degradation of the
proteins tagged with fluorescence proteins may differ
from that of the endogenous species [66–68]. Further-
more, the maturation of the fluorescent protein often
causes the distortion of the observed protein expression
profile. For instance, the Bcd-GFP gradient was measured
in a living embryo, subsequently in the same embryo after
it was immediately fixed and hand-peeled (which reserves
the fluorophore of eGFP) with the same imaging
condition. Besides about 3 times increase of the overall
fluorescence intensity, the intensity discrepancy of the
Bcd-GFP gradient before and after fixation is greater as
the position is closer to the anterior pole (Figure 5A) [20].
This distortion can be well explained if we add the
maturation of eGFP into the SDD model [5] (Figure 5B).
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Since it takes tens of minutes for eGFP to mature inside
the embryo, only a small fraction of the newly translated
Bcd-GFP proteins show fluorescence close to their
source, the anterior pole, and as they diffuse away more
and more convert from the dark state to the fluorescent
state [20] (Figure 5B). Thus in live imaging, the apparent
length constant of the observed Bcd-GFP gradient is
greater than the real one, and the measured noise could be
more than the true biological noise because of the
stochastic maturation process. Based on the modified
SDD model, the calculated correction factors for Bcd-
GFP gradients are as great as 3 at the anterior pole by
comparing the measured Bcd-GFP gradients from the
imaging with the living embryos and fixed embryos
(Figure 5B inset). However, a universal method to correct
the maturation effect for other genes is still in demand.
Theoretically, one could build a mathematical correction
model given the maturation time of the fluorophore and
the degradation time of the protein. However, the two
parameters vary in different living systems and are
difficult to measure directly. Moreover, the fluorescence
signal could be even below the detection limit of live
imaging if the protein degradation rate is much greater
than the maturation rate.
To control the temporal measurement errors for

imaging on fixed embryos, several methods have been
developed to estimate the developmental time based on
the signature of the gene expression profile or embryo
morphology. For example, eve has been often chosen as
the reference gene for embryo ages [40,69], and their
expression profiles in nc14 can be classified into 8
temporal windows with the width of 6.5 min (Figure 2C,
right). As one of the best-characterized morphological
signatures, the depth of the membrane furrow canal can be
utilized to determine the developmental time with about 2
min precision during the early 30 min of nc14 and less
than 1 min during the next 30 min in nc14 before
gastrulation (Figure 5C). To further improve the timing
precision in early nc14, it has also been suggested that the
nuclear height or nuclear shape could be utilized to stage
embryos with 1 min precision in the first 10 min into nc14
(Figure 5C) [26]. Nevertheless, these methods are
restricted in estimating developmental time in nc14. In
early nuclear cycles, usually only the cycle number can be
determined based on the nuclear density. Recently, a 3-
min time resolution has been achieved even in early
nuclear cycles by fixing the embryo reaching the target
developmental time from a reference time point deter-
mined by live imaging, e.g., the metaphase of the
preceding nuclear cycle [70].
To control the spatial measurement error, it is important

to mount the embryos in a specific orientation, e.g., the
symmetric dorsal view or the asymmetric lateral view.
From the lateral view, the embryos were often imaged on

the midsagittal plane. For the segmentation genes such as
bcd, hb and eve, the protein expression profiles on the
dorsal side are significantly different from those on the
ventral side (Figure 5D–F). In fact, azimuthal orientations
of embryos can cause spatial errors 2%–13% of the total
variance [18]. In principle, 3D imaging based on precise
nuclear registration may overcome this error. For
example, 3D gene expression profiles of RNAs have
been extracted with two-photon microscopy imaging on
fixed embryos [71]. However, the 3D imaging on living
embryos is still limited unless the imaging speed is
improved.
Several other sources such as the uncertainty of the

imaging plane selection, imaging noise, cross-talks
between neighboring optical channels and imaging
processing noise, also contribute to the measurement
errors in quantitative imaging on embryos. Carefully
designed control experiments show that they can account
for 1% or less to the total variance [18]. As for
immunofluorescence staining, nonspecific binding of
primary and secondary antibodies is another source of
errors, contributing 4%–10% to the total variance [18].
Antibodies with more specificity can help to reduce this
error [72].
Taking the above factors into consideration, different

imaging methods could be preferred for quantifying
different gene expression noise in fly embryos based on
our previous experimental experience. For example, two-
photon imaging with living embryos is so far the best
choice for the Bcd gradient measurements [1,5], as it often
yields much higher signal to noise ratio compared with
other imaging experiments [38,39], whereas the fixed
embryos often show a higher level of auto-fluorescence
background, and higher imaging noise due to the
stochastic binding of antibodies in immunofluorescence
staining. On the other hand, if we want to measure the gap
gene or pair rule gene profiles, immunofluorescence
staining with fixed embryos will still be a better choice.
Because it has been difficult to prepare a transgenic fly
line to show the normal dynamics of the gene expression
of gap gens or pair rule genes with live imaging. This
might not only due to the maturation effect, but the
positional effect, i.e., the random insertion of the tagged
genes does not faithful capture the complicated regulation
of the endogenous gene. In fact, unlike the Bcd-GFP fly
lines, no viable transgenic fly lines have been reported
with the knockout of the corresponding endogenous gap
or pair rule gene. This problem might be solved with the
application of the CRISPR-Cas9 technique [73,74].
Ideally, it is always recommended to quantify the gene
expression in fly embryos with more applicable methods
to avoid the potential artifacts.
Quantitative mathematical models describing the

dynamic gene expression profiles during early fly
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embryogenesis also play an important role in unravel the
underlying mechanism of noise transmission. One of the
most widely applied models is the ingenious gene circuit
model proposed by Reinitz group [40]. It consists of a set
of ordinary differential equations modeling the protein
concentration vai over time t for the product of gap gene a
in nucleus i, governed by the protein production (with a
production rate Ra), diffusion (with a diffusion rate Da)
and decay (with a decay rate ka):

dvai
dt

=RagðΣNg

b=1T
abvbi þ ΣNm

β=1E
aβvβi ðtÞ þ haÞ

þDa[v
a
i – 1 þ vaiþ1 – 2v

a
i ] – kav

a
i : (1)

The production is driven by the linear inputs of the

interactions of gap genes (represented by matrix T), the
maternal factors (represented by matrix E) and a baseline
constant ha. All of the inputs are summed up and fed into
a sigmoid regulation expression function g. All 56
parameters are obtained by fitting to dynamic protein
expression profiles of gap genes in nc14 measured with
fluorescence immunofluorescence staining. It success-
fully captures the dynamic shifts of gap gene boundaries
during the middle nc14, and reveals that this dynamics is
attributed to the asymmetric cross-regulations between
the gap genes. Nonlinear analysis based on this model
suggests two different types of attractors account for
anterior and posterior profiles of Hb [41].
Different from the data-driven reverse approach in the

Reinitz’s model, more simplified models are also

Figure 5. Origin of the temporal and spatial measurement errors in quantitative measurement of the dynamic
developmental patterns in fly embryos. (A) The delayed eGFP maturation distorts the shape of the Bcd gradient in live

imaging: comparison of the average nuclear fluorescence intensities in an embryo expressing Bcd-GFP in live imaging (red dots),
and fixed embryos detected by immunostaining (blue dots). (B) Model correction on the eGFP maturation effect on the steady-state
Bcd-GFP concentration C versus x/L. The total concentrationCtot (green line) is composed of Cm (blue line, contributed by Bcd-GFP
molecules with matured eGFP, which are visible with live imaging) and Cim (cyan line, contributed by Bcd-GFP molecules with

immature eGFP, which are invisible for live imaging), assuming the degradation time of Bcd-GFP is the same as the maturation time
of eGFP. Inset shows a log-linear plot of these gradients. (C) Age determination through nuclear height and depth of furrow canal
(FC): nuclear height changes in the early 10 min into nc14 with time precision better than 1 min (red line), while the depth of the

furrow canal changes during the whole nc14 with precision of 1–2 min (blue line). (D–F) Expression profiles vary at different embryo
orientations: expression profiles of Bcd (D), Hb (E), Eve (F) at the dorsal side (solid line) and the ventral side (dashed line).
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established by assuming a “minimal” set of interactions
between genes. For instance, the “two parallel toggle
switch” model is based on the strong inhibition between
Hb and Kni, as well as Gt and Kr [75]. This model shares
the similar ODE equation except that the production term
is described with a product of generalized Hill functions:

dvai
dt

=RaΠ
NA
A=1p

AΠNR
R=1ð1 – pRÞ

þDa[v
a
i – 1 þ vaiþ1 – 2v

a
i ] – kav

a
i (2)

pA and 1 – pR represents the probability of activation or
repression of the other genes to gene a. This model only
requires 5–7 parameters, and can simulate major dynamic
features of the pattern formation of gap genes in wild type
as well as in some mutants. However, none of the current
models can capture the dynamics of the gap gene profiles
in the whole nc14.

CONCLUSIONS AND OUTLOOK

Fly embryos have become one of the perfect model
systems for quantitative systems biology studies. Com-
pared with the single-cell system, the fly embryo provides
a highly reproducible and synchronized multi-cellular
system [9]. More importantly, the developmental patterns
show single-cell precision and accuracy, and robustness
against the environmental fluctuations and genetic varia-
tions, yet their formation is highly dynamic and rapid.
Hence one of the most interesting and intriguing
questions to be addressed in this system is how the
regulatory network copes with the gene expression noise
during the dynamic development.
The highly dynamic developing fly embryos also

impose a great challenge on quantitative measurements
of the gene expression patterning. Besides the improve-
ment of the conventional imaging on protein or mRNA
profiles, the application of several new imaging methods
opens new avenues. The introduction of the MS2-MCP
imaging system [76] into fly embryos showed the
dynamic transcription activity of several segmentation
genes such as hb and eve in live imaging without the
maturation effect [61,77]. Single molecule FISH
(smFISH) allowed counting the mRNA of segmentation
genes and revealing the stochastic transcription activity
[64]. The combination of immuofluorescence and
smFISH allows quantifying the absolute concentration
of the transcription factor and the transcription activity in
the same embryo, hence it provides an excellent way to
measure the transcriptional regulation functions [63]. A
digital embryo generated with the 3D imaging registration
method showed the average quantitative spatial-temporal
altas of the mRNA distribution in early fly embryos [71].
Furthermore, one would expect that the fast 3D imaging

could also be applied to capture the dynamic gene
expression in the whole fly embryo with the improvement
of the light-sheet microscope [78,79] and adaptive optics
[80]. Finally, the optogenetics tools could help perturb the
network with an arbitrary spatial-temporal pattern to
reveal the elusive interactions between the segmentation
genes [81].
Along with the development of the novel quantitative

measurement methods, biochemistry and genetics studies
will help us to discover new regulation functions of
molecules and even identify new regulatory factors in AP
pattering gene network. Here are some of the recent
examples. Multiple shadow enhancers of the gap genes
were found to play a crucial role in generating robust and
precise patterning via mediating the dynamic shift and
refinement of the gap gene expression [82,83]. And
paused pol II was reported to be essential for coordinating
pattering via synchronizing the gene expression [84]. A
novel F-box protein named fates-shifted (ftd) was reported
to play a role in degrading Bcd, which is important in
shaping the Bcd gradient [85]. Gene dmpd and sumo were
discovered to advance and delay the shutdown of the Bcd
dependent transcription of hb at early nc14, respectively
[86,87]. The endo-siRNA pathway was found to be
essential to maintain the robustness of the patterning
against the temperature fluctuations. These new discov-
eries will provide a more comprehensive regulation gene
network and may identify the missing key factor, e.g., the
posterior gradient predicted in the bi-gradient model [51],
which is essential in controlling the noise transmission.
The accumulating quantitative data and new factors in

the gene regulation network open new windows for
mathematical modeling. The more accurate protein [18]
or mRNA profiles [64] measured in the WT and mutant
fly lines [35] provide solid training and testing data for
searching the parameters describing the gap gene network
with a reverse-engineering approach. More importantly,
to fully capture the dynamics of the development system,
the model needs to emphasize time-dependent transient
behaviors, instead of the steady state or a random
snapshot. Since the dynamics is associated with tem-
poral-variable inputs (e.g., the dynamics of Bcd gradients
[2,20]) and the temporal coordinated regulatory switches
(e.g., the switch-off of Bcd-dependent hb expression at
the beginning of nc14 [86]), it could be better to be
accounted by the non-autonomous models with explicit
time-dependent parameter changes [86]. On the other
hand, mathematical models grounded in physics starts to
serve as the “Figure 1 theory” instead of the “Figure 7
theory” in studying biological systems [88], i.e., provid-
ing new concepts to direct new testable experiments
instead of solely supporting the existing experimental
results. For instance, the theoretical prediction that the
sharpness of the Hb boundary is attributed to the non-
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equilibrium transcription opens new experimental fron-
tiers [89].
With the synergy of the quantitative measurements and

modeling, we hope we may reveal the underlying
mechanism for the embryo developmental system to
overcome the ubiquitous gene expression noise and
generate highly precise and accurate developmental
patterns. This will deepen our understanding of the
noise control of the gene network, facilitate searching for
more efficient and safer methods for cell programming
and reprogramming, and have the great potential for
tissue engineering and regenerative medicine.
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