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Background: Properly adjusting for unmeasured confounders is critical for health studies in order to achieve valid
testing and estimation of the exposure’s causal effect on outcomes. The instrumental variable (IV) method has long
been used in econometrics to estimate causal effects while accommodating the effect of unmeasured confounders.
Mendelian randomization (MR), which uses genetic variants as the instrumental variables, is an application of the
instrumental variable method to biomedical research fields, and has become popular in recent years. One often-used
estimator of causal effects for instrumental variables and Mendelian randomization is the two-stage least square
estimator (TSLS). The validity of TSLS relies on the accurate prediction of exposure based on IVs in its first stage.
Results: In this note, we propose to model the link between exposure and genetic IVs using the least-squares kernel
machine (LSKM). Some simulation studies are used to evaluate the feasibility of LSKM in TSLS setting.
Conclusions: Our results show that LSKM based on genotype score or genotype can be used effectively in TSLS. It
may provide higher power when the association between exposure and genetic IVs is nonlinear.
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INTRODUCTION

In many epidemiological studies, investigators are often
interested in understanding the relationship between
environmental exposures or treatments and disease-
related outcome variables in order to develop insights
about disease etiology as well as to provide guidance for
disease prevention. In such studies, a crucial factor to deal
with is confounding, defined as the presence of variables
that “confounds” the association between the exposure of
interest with the outcome. One way to eliminate
confounding is through a randomized controlled trial, in
which the exposure of interest can be randomized.
However, in the majority of epidemiological studies,
this type of randomization is practically infeasible, due
either to logistical or ethical reasons. Thus, the validity of
the results from these studies rely on both a careful design
to measure all potential confounders as well as statistical
methods to properly control for the collected confounders
in analyses. There are statistical methods for dealing with
measured confounders, such as the propensity score [1–3]

and the E-estimation [4] among others. However, it is
difficult in general to control for unmeasured confoun-
ders.
The method of instrumental variables (IV) was

developed by Wright [5] for simultaneous equations
estimation. It has long been used in econometrics to
estimate the causal effect of treatment while accommo-
dating the effect of unmeasured confounders. The basic
idea of IV is to extract unconfounded variation from the
treatment variable using the association between IV and
treatment, and to then use this extracted information to
estimate and test the causal effect of treatment on
outcomes.
Mendelian randomization (MR) is an application of IV

methods using genetic data. The concept was first
described by Dutch scientist Martjin Katan, although he
did not use the term Mendelian randomization [6]. He
pointed out that the different alleles of gene apolipopro-
tein E (apo E) were major determinants of plasma
cholesterol levels in several populations, and the alleles
were not affected by confounders and reverse causation
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from cancer since they were inherited from parents and
had not changed since birth. Therefore, these genes could
potentially be used to investigate the relationship between
low-serum cholesterol and cancer. This example demon-
strates the advantage of genetic variants as IVs. Genetic
variants generally are not associated with potential social,
economic, behavioral and environmental confounders. If
they are associated with the exposures, but not directly
associated with the outcomes, they will be valid
instrumental variables for studying the link between
exposures and the outcomes. However, instrumental
variables have their weaknesses as well. A genetic variant
can be correlated with an outcome through a causal
variant due to linkage disequilibrium. A genetic variant
also could have effect on multiple biological pathways,
one of which may be causal to outcomes. These will
invalidate variants as IV and complicate MR design and
analyses.
There has been a greater use of MR methods in current

biomedical research. One reason has been due to the
accumulation of a large amount of genetic data from
GWAS studies. Another is the advancement in new
biotechnology leading to the emerging of the new types of
data that benefits fromMR design. For example, scientists
have recently started to interrogate DNAmethylation sites
to see if DNA methylation works as a mediator to link
between certain exposures and the outcomes. Unlike a
person’s genetic makeup, the DNA methylation in a
person is determined by the complex interaction of
genetic and environmental factors during the person’s
life. Factors such as smoking [7,8] and diet [9] have been
shown to affect both global methylation and gene-specific
methylation. Health conditions such as obesity can also
change the DNA methylation [10], which raise the
question of reverse causation when those health condi-
tions are outcomes. New study designs have been
proposed [11] to incorporate MR into study and analysis
in order to hurdle the confounders and reverse causation
problem.
One important step in MR studies is to accurately

estimate the effect of genetic variants on the trait or
exposure. Many new statistical methods have been
proposed in the last decade for genetic association study
to model the relationship between trait and genetic
variants, which are usually single nucleotide polymorph-
ism (SNP). Research on IV approaches has been more
limited. We highlight two recent proposals. Lin et al. [12]
developed two-stage regularization methods for high-
dimensional IV regression. In its first stage, the exposures
are regressed on potential IVs, and effects of optimal IVs
are identified and estimated through a sparsity-inducing
penalty function. In the second stage, the outcome is
regressed on the first-stage prediction while variable
selection is again performed through a sparsity-inducing

penalty function. Kang et al. [13] proposed using
regularization methods to handle the problem of invalid
IVs. Their method, sisVIVE, applies the penalty proce-
dure only in the first stage and estimates the causal effect
of exposure on outcome when the proportion of invalid
IVs is no higher than 50% while without knowing which
IVs are invalid. The goal of the current paper is to
evaluate the feasibility of least-squares kernel machines
(LSKM) in MR studies. The LSKM is a semi-parametric
kernel based method; we summarize the details of the
approach in the Section of Least-Squares Kernel
Machine. There have been non-parametric and kernel-
based procedures for IV methods [14,15]. They estimated
the non-parametric relationship between outcome and
exposure in the presence of IVs. In this article, we focused
on LSKM to model the link between exposure and IVs in
order to achieve better estimate of exposure. The paper
proceeds as follows. In the section of Background and
Two-Stage Least Squares Estimation, we review the two-
stage least squares approach to instrumental variables
estimation. Least-squares kernel machines are reviewed
in the Section of Least-Squares Kernel Machine; simula-
tion studies evaluating the proposed approaches are
given in Section of Simulation Studies. Section of
Discussion concludes with some discussion.

BACKGROUND AND TWO-STAGE LEAST
SQUARES ESTIMATION

We denote Y as a continuous outcome variable, X as a
continuous exposure variable, U as the unmeasured
variable that correlates with both Y and X, and Z as the
instrumental variable. Assuming our data are on indivi-
duals indexed by i=1, ::: , n, we usually regress Y on X to
estimate the association between X and Y as in Equation
(1).

yi=β0 þ βxxi þ εyi
: (1)

Because of the presence of the unmeasured confounderU,
the estimated effect βx is biased in this simple regression.
Another way to see is that the effect U is embodied in εyi

so that the error term in [11] is statistically correlated with
xi. In order to estimate the true effect of X on Y in a
manner that is not confounded by U, the IV method uses
the instrumental variable Z to extract the variation from X
that is not affected by U. Then the confounder-free
variation of X is used to estimate the effect of X on Y. This
approach has three critical assumptions:
(i). The instrumental variable Z is associated with the

exposure X.
(ii). The instrumental variable Z is independent of the

unmeasured confounder U.
(iii). The instrumental variable affects outcome Y only

through X, i.e., given X and U, Z is independent of Y. This
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is also called the no direct effect assumption.
Intuitively, the first assumption says that we can extract

information about the variability of X using the instru-
mental variable Z, while the second assumption ensures
that the extracted variability of X is free of U. The last
assumption ensures that the estimated effects using the
extracted information of X only comes from X.
The two-stage least squares is one of the most

commonly used methods to estimate βx using instru-
mental variables when the outcome is continuous. At the
first stage we conduct a regression with model:

xi=α0 þ αzzi þ εxi , (2)

where zi is a vector of IVs. We obtain the fitted values
x̂i=α̂0 þ α̂zzi. At the second stage, we fit the model [1]
using the fitted value of xi:

yi=β0 þ βxx̂i þ εyi
: (3)

In order to obtain the correct estimate of βx, the
following assumptions should hold at both stages: (i)
independent and normally distributed error with homo-
scedastic variance; (ii) a linear relationship between X and
Z; (iii) a linear relationship between Y and X. The first-
stage regression essentially extracts the unmeasured-
confounder-free information of exposure using instru-
mental variables. The second stage regression then uses
this information to identify and estimate the association
between outcome and exposure.
The least squares estimate of the first-stage linear

regression coefficients is

α̂=ðZ#ZÞ – 1Z#X :
The fitted values are

X̂=ZðZ#ZÞ – 1Z#X :
The least squares estimate of the second-stage linear
regression coefficients is given by

β̂= X̂ #X̂
� � – 1

X̂ #Y :

Substituting X̂ with the first-stage results, we have the
TSLS estimates of β:

β̂=ðX #ZðZ#ZÞ – 1Z#X Þ – 1X #ZðZ#ZÞ – 1Z#Y :
Both Z and X may include the constant term if the
intercept terms are in the models. The TSLS estimator has
been shown to be consistent and asymptotically normal
distributed even in the presence of heteroscedasticity [16].
The direct estimate of the variance-covariance of β̂ from
model [33] is incorrect because it does not take the
variability of x̂i into account. The correct estimator when
the errors are homoscedastic is

�̂2ðX #ZðZ#ZÞ – 1Z#X Þ – 1,
where �̂2 is the residual variance and estimated using the

observed value of exposure X, i.e., �̂2= Y –X β̂
� �

#

Y –X β̂
� �

=ðn – pÞ, where n is the sample size and p is

the number of estimated parameters in the second stage
regression. Let Pz=ZðZ#ZÞ – 1Z#, we can see Píz Pz=Pz.
Therefore, X #ZðZ#ZÞ – 1Z#X =X #PzX =X #Píz PzX =

ðPzX Þ#PzX=ðZðZ#ZÞ – 1Z#X Þ# ZðZ#ZÞ – 1Z#X=X̂ #X̂ :
�

Hence, the correct estimator when the errors are

homoscedastic can also be written as �̂2 X̂ #X̂
� � – 1

=

Y –X β̂
� �

# Y –X β̂
� �

=ðn – pÞ
h i

X̂ #X̂
� � – 1

:

If we do the two-stage least squares regressions
manually without using any built-in special TSLS
packages, the usual residual variance after the second
stage regression from a statistical software is

Y – X̂ β̂
� �

# Y – X̂ β̂  �=ðn – pÞ� ih
X̂ #X̂
� � – 1

since X̂ is used

as the predictors in the second regression. In order to
correct the variance estimates, we can multiply a factor

Y –X β̂
� �

# Y –X β̂
� �

=ðn – pÞ
Y – X̂ β̂
� �

# Y – X̂ β̂
� �

=ðn – pÞ

to the output variance Y – X̂ β̂
� �

# Y – X̂ β̂  �=ðn – pÞ� ih
X̂ #X̂
� � – 1

which yields valid inference.

LEAST-SQUARES KERNEL MACHINES

In order to apply the two-stage least squares method
successfully, we need to accurately estimate the exposure
X in the first-stage regression. Just as with any regression
problem, it may not be straightforward to model the
relationship between exposure and the instrumental
variables. For example, their relationship may be non-
linear, and it may be difficult to identify the correct
function form for their connections. Therefore, more
flexible modeling methods are needed for the first-stage
regression. Kernel machines are non-parametric methods
that model non-linear or linear relations without specify-
ing a rigid function form. We propose to use a semi-
parametric kernel based method, least-squares kernel
machine, in the first stage to obtain accurate fitted values
when linear regressions cannot.
Kernel machines represent a class of methods that have

been used in machine learning and have been recently
studied in the biostatistical literature. They are based on
the concept of a kernel function, defined as a symmetric
positive definite function that provides a measure of
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similarity between pairs of observations. For example, the
dot product of two vectors is a kernel function. The kernel
function introduces non-linearity at the original space
without specifying a functional form by implicitly
transforming data to a new high-dimensional feature
space. Although the kernel function is defined as the inner
product in the new space, it works with the original data
and avoids having to find the mapping to the complicated
new feature space. Thus the kernel function provides both
computational efficiency and flexibility in modeling.
The least-squares kernel machines (LSKM) was

proposed by [17] to fit a semi-parametric model for
genetic pathway data. It fits the model:

yi=wíi β þ hðviÞ þ εi, (4)

where wi is a vector of covariates including the constant
term, and is a vector of gene expression measurements.
hð$Þ is a centered smooth function. Under some regularity
conditions, a kernel function Kð$,$Þ implicitly generate a
unique function space spanned by a particular set of
orthogonal basis functions for h such that h can be
represented by the linear combination of the orthogonal
basis functions. Equivalently, h can be represented using
the kernel as

hð$Þ=
Xn
i=1

αiKð$, viÞ

where α is a vector of unknown parameters and K the
kernel function measuring the similarity between the a
pair of subjects evaluated at their observed gene
expression values. Liu et al. demonstrated the equiv-
alency of LSKM with a certain linear mixed effects
model, making parameter estimation accessible from
commonly used statistical software such as R and SAS.
LSKM provides a framework for a variance component-
based score test for testing joint association between a set
of explanatory variables and the outcome. The LSKM
method was quickly adopted for genetic association study.
The widely used sequence kernel association test (SKAT)
for rare variant testing [17–19] and its extension including
an optimal combination of SKAT tests [20,21], combining
SKAT with common variant tests [22,23] and application
of SKAT to meta-analysis of GWAS data [23] are all
based on LSKM. It has been shown that LSKM variance
component-based score test is related to the U statistics
and some other proposed genetic association test statistics
[24].
So far the typical applications of LSKM in genetics

have all involved the variance component score test that
tests the null hypothesis of no association between
variants and traits such that without the need for
estimating function hð$Þ in the Equation (4). However,
in the MR setting, we will need to estimate the fitted

values of the exposure using genetic IVs when doing
TSLS. We propose replacing Equation (2) by the LSKM
model

xi=α0 þ hðziÞ þ εxi : (5)

Then using the predicted value from the linear mixed

model x̂i=α̂0 þ ^hðziÞ in fitting model 3 for estimating and
testing the effect of exposure. This mixed model can be
fitted using standard statistical software such as R. Since
there are no statistical packages that incorporate the
LSKM in the two-sage least squares method, we need to
manually perform the two regressions. We propose to use
the method described at the end of the Section of
Background and Two-Stage Least Squares Estimation to
correct estimates for variance and covariance, i.e.,
multiplying the factor

Y –X β̂
� �

# Y –X β̂
� �

=ðn – pÞ
Y – X̂ β̂
� �

# Y – X̂ β̂
� �

=ðn – pÞ

to the output variance from the second regression. We
provide a sample code in the appendix of this paper.

SIMULATION STUDIES

We conducted several simulation studies to evaluate the
properties of testing and estimating the exposure causal
effect when using LSKM in the first stage of TSLS. We
organized our study designs based on the sample size,
validity of the simulated instrumental variables, the
instruments’ effect size on the exposure and the form of
their relationship with the exposure. The relationships
between the outcome and the exposure were always
simulated as linear.

Simulation methods

We simulated 1,000 datasets for each study. In all our
studies described in this paper, we used 0.05 as the
nominal type I error rate. Across all simulation studies, we
simulated a set of either 5 or 6 independent SNPs that had
the same minor allele frequency (MAF = 0.1) as the IVs.
We chose to simulate multiple IVs because researchers
often find more than one SNP to be associated with the
exposure, and a previous study has shown that including
multiple IVs in MR could reduce the variance of TSLS
estimator [25]. However, the same study also showed the
finite-sample bias of TSLS estimator with multiple IVs.
Therefore, we did the first simulation study to evaluate the
effect of small sample size on kernel based methods. The
instruments were all valid and had the same effect on the
exposure in this study.
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1) Small sample, valid instruments with equal-sized
linear effects

We simulated 500 independent subjects in the first
simulation study. We simulated each subject’s exposure
using equation:

xi=
X6
j=1

αjgij

 !
þ αuui þ εxi

, (6)

where gi1 – gi6 are the genetic variables coded using the
person’s genotype in 6 SNPs. We used the dominant
model for each SNP. We defined ui to be the unmeasured
confounder, drawn from a Normal (0, 1) distribution. The
independent error term εxi in Equation (6) was also drawn
from a Normal (0,1) distribution. The α1 – 6 and αu are
predetermined coefficients with α1 – 6 set as 0.4 and αu set
as 1. Then we simulate the outcome as

yi=βxxi þ βuui þ εy, (7)

where xi and ui were from the previous step, and the
independent error εy was drawn from Normal(0,1). The
causal effect βx was 0 for type I error study and 0.5 for
power study; the effect of the confounder βu was 1. We
analyzed simulated data with 6 different methods. For the
traditional TSLS, we used either all 6 genetic variables or
a summary genotype score as the IV in the model 2. The
genotype score is defined as the unweighted sum of all
genetic variables. For kernel based methods, we used
Gaussian kernel with either genotype or genotype score,
linear kernel with genotype and quadratic kernel with
genotype. The Gaussian kernel is defined as Kði, jÞ=
e – dij=�

2

, where dij is the Euclidian distance between ith
and jth subjects calculated from either all 6 genotypes or
the single genotype score, and � is a parameter that needs
to be estimated using the data. The orthogonal basis
functions for the Gaussian kernel-generated function
space is the class of radial basis functions. The Gaussian
kernel incorporates nonlinear relationships into the
model. The linear kernel with genotype between ith and
jth subjects is defined as Kði, jÞ=gíi gj, where g is a vector
of six genetic variables. The linear kernel assumes the
association between genetic variants and trait/exposure
has a linear form. The quadratic kernel with genotype
between ith and jth subjects is defined as Kði, jÞ=
ðgíi gj þ �Þ2, where � is a tuning parameter. We set � to be
one in our studies. The orthogonal basis functions of
quadratic kernel generated function space include main
effects, the quadratic main effects and all two way
interactions between SNPs.

2) Small sample, valid instruments with unequal-sized
effects and small interaction between IVs

In order to investigate further the small samples with more

complicated instruments’ effect on exposure, we intro-
duced unequal-sized effects of instruments and small
interactions between the instruments in our second
simulation study. We again simulated 500 subjects and
used the dominant model for each SNP, but varied the
effect of the different IVs on the exposure and included
interactions between IVs. Our simulation equation for
exposure is

xi=
X6
j=1

αjgij

 !
þ α12gi1gi2 þ α34gi3gi4

þα56gi5gi6 þ αuui þ εxi
: (8)

The coefficients were set as following: α1=0:2, α2=0:4,
α3=0:25, α4=0:3, α5=0:4, α6=0:1, α12=0:05, α34=
– 0:2, α56=0:2, αu=1. The simulation equation for
outcome and its parameters remained the same as
Equation (7) and its parameter settings in the first study.
We analyzed the data using TSLS with genotype or
genotype score. For kernel based methods, we focused on
TSLS with genotype score Gaussian kernel.

3) Small sample, valid instruments with unequal-sized
effects and larger interaction between IVs

Next, we increased the size of interactions between IVs in
our third study. We used the dominant model and kept the
Equation (8) but increased the size of interaction relative
to the main effect to look at how a more extreme situation
can affect each methods. The parameters were α1=0, α2
=0:2, α3=0:05, α4=0:1, α5=0, α6=0, α12=0:5, α34
=– 0:5, α56=0:6, αu=1:We analyzed the data using the
genotype score linear kernel and genotype score quadratic
kernel in addition to the three methods used in the last
section, i.e., TSLS genotype, TSLS genotype score and
the genotype score Gaussian kernel.

4) Larger sample, equal-sized linear effects without
interaction, and possible irrelevant IVs

In this study, we increased the sample size to 2,500
subject per dataset and used an additive model for each
SNP. We varied the number of IVs in different simulations
and divided IVs as true IVs and irrelevant IVs. The effect
of true IVs were all 0.4. The effect of irrelevant IVs were
set at 0 although they were still independent of
unmeasured confounder and independent of outcome
given the exposure status, i.e., they satisfied the (ii) and
(iii) assumptions of IVs described in the Section of
Background and Two-Stage Least Squares Estimation,
but had no correlation with exposure. We compared TSLS
genotype, TSLS genotype score, genotype linear kernel
and genotype score linear kernel in our analyses.
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Simulation results

In the scenario of small sample, valid instruments with
equal-sized linear effects (first simulation study), Table 1
shows that the type I error was correct for genotype scores
at the nominal level of 5%, but inflated for the genotype.
This is consistent with previous published results. The
multiple SNPs divide the sample into multiple cells. For
example, we were using 6 SNPs coded with a dominant
model. The sample can be divided into 26=64 cells based
on the 6-loci genotype. When the sample size is not large,
the small subsample size in each cell leads to a higher

chance of imbalance in the unmeasured confounder
leading to invalidation of IVs. This may be the reason
for the finite-sample bias in MR [26]. The genotype score
collapses the data into fewer cells. For 6 SNPs with a
dominant model, the possible value of genotype score are
0 to 6, i.e., only 7 subgroups compares to the 64
subgroups from using genotypes directly. The Figure 1
shows the cell means of the simulated unmeasured
confounder in small samples and large samples. We can
see that the cell means of the unmeasured confounder in
the sub-genetic groups of small sample have wider spread
and more extreme values comparing to the large sample

Figure 1. Cell mean of confounder. Mean of unmeasured confounder in each sub genotype group that was created by 6 SNPs whose

MAF were all 0.1.

Table 1. Type I error rate and power of small sample, valid instruments with equal-sized linear effects.

Methods Hypothesis
Type I error rate

or powera
Mean of causal effect estimates

and its 95% confidence interval

Standard deviation of

causal effect estimates

TSLS genotype Null 8.9% 0.0598 (0.0504, 0.0692) 0.1517

TSLS genotype score Null 4.8% – 0.0101 ( – 0.0210, 0.0008) 0.1761

Gaussian kernel TSLS genotype Null 18.4% 0.1386 (0.1272, 0.1500) 0.1844

Gaussian kernel TSLS genotype score Null 5.6% 0.0051 ( – 0.0062, 0.0164) 0.1817

Linear kernel TSLS genotype Null 9.1% 0.0657 (0.0541, 0.0773) 0.1871

Quadratic kernel TSLS

genotype

Null 17.8% 0.1382 (0.1266, 0.1498) 0.1871

TSLS genotype score Alternative 76.4% 0.4815 (0.4709, 0.4921) 0.1703

Gaussian kernel TSLS genotype score Alternative 80.4% 0.5197 (0.5091, 0.5303) 0.1703

a: type I error rate for null hypothesis and power for alternative hypothesis.
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due to the sparsity of the cells that carry the minor alleles,
thereby creating a spurious association between genetic
IVs and the unmeasured confounder. The minor allele
frequency also contributes to this bias (Table 2). When the
sample size is fixed, the lower MAF of IVs causes a
higher inflated type I error rate.
Table 1 indicates that the LSKM with genotype score

also has the correct type I error rate and slightly higher
power than using genotype score in linear regression
while the genotype-based kernel methods have inflated
type I error and the biased estimate of causal effect. The
causal estimates from using genotype score was slightly
biased downward.
For the small sample, valid instruments with unequal-

sized linear effects and small interactions between IVs
(simulation study 2), the Gaussian kernel had the best

type I error and causal estimates under null hypothesis
due to its non-linearity handling the interaction effects.
The genotype-based approach again had inflated type I
error rate and biased estimates (Table 3). By contrast,
approaches using genotype score was conservative. The
Gaussian kernel with genotype score had higher power
than the genotype score (Table 3).
The quadratic kernel based on genotype score was the

clear winner under the null hypothesis when there were
larger interactions between IVs in small sample, valid
instruments with unequal-sized effects (simulation study
3, Table 4). It also had better power than just using
genotype score in the model. The genotype score was
defined as

genotype score=SNP1þ SNP2þ SNP3þ SNP4

Table 2. The effects of minor allele frequency and sample size (N) on the finite sample bias of MR.

MAF
Type I error rate

N = 500 N = 1000 N = 1500 N = 2000 N = 2500

0.5 0.066 0.073 0.061 0.069 0.051

0.4 0.068 0.066 0.045 0.059 0.047

0.3 0.062 0.064 0.053 0.056 0.054

0.2 0.076 0.069 0.06 0.062 0.06

0.1 0.089 0.077 0.066 0.066 0.053

0.05 0.108 0.078 0.081 0.069 0.053

0.01 0.188 0.145 0.134 0.113 0.098

Table 3. Type I error and power of small sample, valid instruments with unequal-sized effects and small interaction between IVs.

Methods Hypothesis
Type I error rate

or powera
Mean of causal effect estimates

and its 95% confidence interval

Standard deviation of

causal effect estimates

TSLS genotype Null 9.1% 0.0892 (0.0774, 0.1010) 0.1897

TSLS genotype score Null 3.4% – 0.0384 ( – 0.0549, – 0.0219) 0.2665

Gaussian kernel TSLS genotype score Null 4.8% – 0.0040 ( – 0.0237, 0.0157) 0.3178

TSLS genotype score Alternative 52.9% 0.4616 (0.4451, 0.4781) 0.2665

Gaussian kernel TSLS genotype score Alternative 62.4% 0.5484 (0.5298, 0.5670) 0.3000

a: type I error rate for null hypothesis and power for alternative hypothesis.

Table 4. Type I error and power of small sample, valid instruments with unequal-sized effects and larger interaction between IVs.

Methods Hypothesis
Type I error rate

or powera
Mean of causal effect estimates

and its 95% confidence interval

Standard deviation of

causal effect estimates

TSLS genotype Null 19.2% 0.2502 (0.2317, 0.2687) 0.2983

TSLS genotype score Null 4.3% 0.1594 ( – 0.1223, 0.4411) 4.5453

Gaussian kernel TSLS genotype score Null 7.1% 0.4693 (0.4105, 0.5281) 0.9487

Linear kernel TSLS genotype score Null 4.1% 0.3134 ( – 0.0823, 0.7091) 6.3844

Quadratic kernel TSLS genotype score Null 5.0% 0.0940 ( – 0.1600, 0.3480) 4.0976

TSLS genotype score Alternative 32.6% 0.6594 (0.3777, 0.9411) 4.5453

Linear kernel TSLS genotype score Alternative 33.9% 1.2500 (0.7509, 1.7491) 8.0529

Quadratic kernel TSLS genotype score Alternative 37.1% 1.2700 (0.8841, 1.6559) 6.2266

a: type I error rate for null hypothesis and power for alternative hypothesis.
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þSNP5þ SNP6,

and the basis functions of the space generated by the
quadratic kernel include genotype score and its quadratic.
Thus, the quadratic kernel models main effect of each
SNP, its quadratic and all interactions between two SNPs.
It models the association between exposure and the
variants closest to the simulated scenario.
Our results in Table 5 show that the genotype and

genotype linear kernel have reduced finite-sample bias
when all IVs are valid and the sample size is large. Liu
et al. demonstrated that the kernel methods generally
performed well when the majority of covariates input to
the kernel functions were relevant with only a small

number of irrelevant covariates, although some parameter
estimates and the estimates of the function h exhibited
slightly worse performance [17]. The irrelevant covariates
in the LSKM paper corresponds to the situation of
irrelevant IVs in our studies, which are the extreme
example of weak IVs. Bound et al. [27] pointed out that
weak IVs could lead to inconsistency of the IV causal
estimator and the bias of the IV estimator could reach the
level of the ordinary least squares estimator when the IVs
are not correlated with exposure at all. They demonstrated
that the relative inconsistency of IV relative to ordinary
least squares (OLS) is ð�z, ε=�x, εÞ=�x, z , where X is the
variable of interest, Z is the IVand ε is the residual error in
the regression of outcome on variable X, which may

Table 5. Type I error rate of larger sample, equal-sized linear effects without interaction and possible irrelevant IVs

Methods
Number of

(true IVs, irrelevant IVs)

Type I

error rate

Mean of causal effect estimates

and its 95% confidence interval

Standard deviation

of causal effect estimates

Linear kernel from genotype

(5, 0)

4.7% 0.0076 (0.0029, 0.0123) 0.0762

Genotype 4.7% 0.0075 (0.0029, 0.0121) 0.0735

Genotype score 4.6% – 0.0037 ( – 0.0084, 0.001) 0.0755

Linear kernel from genotype score 4.6% – 0.0038 ( – 0.0085, 0.001) 0.0768

Linear kernel from genotype

(1, 9)

13.7% 0.1198 (0.1067, 0.1329) 0.2119

Genotype 13.6% 0.0974 (0.0884, 0.1064) 0.1456

Genotype score 3.2% – 0.4478 ( – 0.7589, – 0.1367) 5.0195

Linear kernel from genotype score 3.1% – 0.1809 ( – 0.4248, 0.063) 3.9353

Linear kernel from genotype

(5, 5)

6.8% 0.0209 (0.0162, 0.0256) 0.0762

Genotype 6.7% 0.0201 (0.0156, 0.0246) 0.0721

Genotype score 4.5% – 0.0103 ( – 0.0171, – 0.0035) 0.1095

Linear kernel from genotype score 4.4% – 0.0106 ( – 0.0177, – 0.0035) 0.1140

Linear kernel from genotype

(10, 0)

6.0% 0.0091 (0.0058, 0.0124) 0.0539

Genotype 5.9% 0.0089 (0.0056, 0.0122) 0.0529

Genotype score 5.6% – 0.0036 ( – 0.007, – 2e-04) 0.0548

Linear kernel from genotype score 5.6% – 0.0036 ( – 0.007, – 2e-04) 0.0548

Linear kernel from genotype

(10, 5)

5.0% 0.017 (0.0137, 0.0203) 0.0529

Genotype 5.0% 0.016 (0.0128, 0.0192) 0.0510

Genotype score 5.2% – 0.0043 ( – 0.0083, – 3e-04) 0.0640

Linear kernel from genotype score 5.2% – 0.0044 ( – 0.0084, – 4e-04) 0.0640

Linear kernel from genotype

(15, 0)

5.7% 0.0106 (0.008, 0.0132) 0.0424

Genotype 5.7% 0.0104 (0.0078, 0.013) 0.0374

Genotype score 5.2% – 0.0024 ( – 0.005, 2e-04) 0.0424

Linear kernel from genotype score 5.2% – 0.0024 ( – 0.005, 2e-04) 0.0424

Linear kernel from genotype

(1, 19)

32.5% 0.3117 (0.2787, 0.3447) 0.5326

Genotype 31.0% 0.1780 (0.1702, 0.1858) 0.1253

Genotype score 2.8% 0.1486 ( – 1.0843, 1.3815) 19.8890

Linear kernel from genotype score 2.9% 0.2965 ( – 0.5759, 1.1689) 13.5082

Linear kernel from genotype

(5, 15)

12.2% 0.0529 (0.0482, 0.0576) 0.0755

Genotype 11.8% 0.0480 (0.0438, 0.0522) 0.0678

Genotype score 3.6% – 0.0068 ( – 0.016, 0.0024) 0.1483

Linear kernel from genotype score 3.6% – 0.0076 ( – 0.017, 0.0018) 0.1517
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include unmeasured confounder, �ij is the correlation
between i, j. When the correlation between X and Z is
very small, any correlation between Z and ε will be
magnified. So when the IVs are weak or even irrelevant,
any chance correlation between IVs and the unmeasured
confounder can yield unstable estimates. Consistent with
their findings, our results in Table 5 indicate that the
genotype-based methods suffer the most when the
majority of IVs were irrelevant. They had high inflated
type I error and biased IVestimates, especially when both
the number of IVs and the proportion or irrelevant IVs
were large. However, in the MR setting, the genotype
score only requires the SNP components to meet the
criteria (ii) and (iii) describe in the section of Background
and Two-Stage Least Squares Estimation as long as some
SNP components are associated with exposure [26]. The
genotype score-based methods had more deflated type I
error when the proportion of irrelevant IVs increased. Its
95% confidence intervals were wider due to the increased
variance of the parameter estimates, and the deviation
between point estimates of the causal parameter and the
true value increased with an increasing proportion of
irrelevant IVs.

DISCUSSION

Mendelian randomization has been adopted as an
important tool to combat unmeasured confounding in
health-related studies. In this paper, we studied the
application of the semi-parametric LSKM method in
two-stage least squares (TSLS) procedures for Mendelian
Randomization studies. We found that LSKM can be used
effectively in the first stage of TSLS to estimate the
exposure using genetic IVs. The flexibility of the kernel-
based method in modeling the link between exposure and

genetic variants was seen in our results. LSKM does not
require a rigid functional form for modeling. It can model
non-linear relationships between variants and exposure
using different kernels, such as the identity by state (IBS)
kernel, the Gaussian kernel and the polynomial kernel,
among others. When there were complex interactions
from genetic variants determining the exposure, kernel-
based methods demonstrated the best power while
keeping the nominal type I error rate.
Using multiple SNPs as IVs could potentially increase

the power of MR studies. However, this practice also
creates some problems for researchers. First, it can cause
the finite-sample bias of the TSLS estimator through
extensive subdivision of subjects into multi-loci geno-
typic subgroups. Our results indicate that kernels that
directly use genotypes suffers from this pitfall as much as
using genotypes directly in the model [2]. However, when
the sample size increases, the bias subsides. In our case,
when the sample size became 2500, even when the
number of IVs was 20, the type I error rate of kernel-based
method was still near the nominal levels as well as having
very small bias in causal effect estimates. Also, kernels
using genotype score were as robust as genotype score
with respect to finite-sample bias while LSKM still have
the advantage of modeling flexibility. Therefore, we
suggest that genotype score should be preferred when
using kernel methods with small samples. Second, using
multiple genetic IVs can increase the chance for including
irrelevant IVs. Our results shows that irrelevant IVs affect
both genotype and genotype score based methods
although using genotypes from multiple SNPs directly
is worse, also both traditional methods and LSKM are
affected similarly. A reviewer kindly pointed out the
recent development by Wang et al. [28], in which
haplotypes are used as instrumental variables as a way

(Continued)

Methods
Number of

(true IVs, irrelevant IVs)

Type I

error rate

Mean of causal effect estimates

and its 95% confidence interval

Standard deviation

of causal effect estimates

Linear kernel from genotype

(10, 10)

8.5% 0.0276 (0.0244, 0.0308) 0.0510

Genotype 8.4% 0.0262 (0.0232, 0.0292) 0.0480

Genotype score 4.0% – 0.00068 ( – 0.0051, 0.0038) 0.0721

Linear kernel from genotype score 4.0% – 0.00072 ( – 0.0052, 0.0037) 0.0721

Linear kernel from genotype

(15, 5)

6.4% 0.0192 (0.0166, 0.0218) 0.0412

Genotype 6.4% 0.0186 (0.0161, 0.0211) 0.0400

Genotype score 3.8% 0.0001 ( – 0.0028, 0.0031) 0.0480

Linear kernel from genotype score 3.8% 0.0001 ( – 0.0029, 0.0031) 0.0480

Linear kernel from genotype

(20, 0)

5.7% 0.0138 (0.0116, 0.0160) 0.0361

Genotype 5.6% 0.0134 (0.0113, 0.0155) 0.0346

Genotype score 3.8% 0.0003 ( – 0.0019, 0.0025) 0.0361

Linear kernel from genotype score 3.8% 0.0003 ( – 0.0019, 0.0025) 0.0361
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to combine multiple SNPs. Haplotypes carry the linkage
disequilibrium information such that it may potentially
increase the power of analyses, but it requires all the SNPs
in the same region. However, the LSKM does not have
such limitation. Wang et al. also observed an inflated type
I error rate when the irrelevant SNPs were present. When
they adopted a step-wise method to identify an optimal set
of haplotypes by merging the haplotype subgroups, the
type I error rates were close to the nominal level. The
reviewer suggested methods such as training and testing,
cross-validation for selecting valid IVs in LSKM setting.
This idea is beyond the scope of the current paper and will
be investigated in future work.
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APPENDIX

Sample code:
library(EMMREML)
library(sem)

set.seed(2)
n< - 2500 #number of subjects
ng < - 10 #number of SNPs
P < - 0.1 #Minor allele frequency

a1 < - rep(0.4, ng) # effects of IV on X
a2 < - 1 # confounder’s effect on X
b1 < - 0.5 #causal effect
b2 < - 1 # confounder’s effect on outcome

ga < - matrix(rbinom(n*ng, 1, P), nrow = n, ncol = ng)
gb < - matrix(rbinom(n*ng, 1, P), nrow = n, ncol = ng)

gen< - ga + gb #additive model
#ga[1:3,]
#gb[1:3,]
#gen[1:3,]

u < - rnorm(n, 0, 1) #unmeasured confounder
ex < - rnorm(n, 0, 1) #error term in exposure x
ey < - rnorm(n, 0, 1) #error term in outcome y

x < - as.matrix(gen) %*% a1 + a2*u + ex #exposure
y < - b1*x + b2*u + ey #outcome
gscore < - rowSums(gen) #Genetic score
K < - gscore %*% t(gscore) #linear kernel matrix
Z < - diag(1, n, n) #random effect

#first stage, mixed model
emmfit < - emmreml(x, matrix(rep(1, n)), Z, K,varbetahat =
FALSE,varuhat = FALSE, PEVuhat = FALSE, test = FALSE)

fixed < - emmfit$betahat[1,1]

#fitted values from first stage fixed effect + random effect
pred < - emmfit$uhat + fixed

#second stage
fit2 < - lm(y ~ pred)

summary(fit2)

betas < - coefficients(fit2)
df.resid < - df.residual(fit2)

#sum of squre from wrong residuals
mse.wrong< - sum(residuals(fit2)^2)/df.resid

#incorrect residual variance directly from 2nd regression
vcov.wrong = vcov(fit2)

#residual using observed exposure
resid.correct < - y - betas[1] - betas[2] * x

#sum of square from correct residuals
mse.correct < - sum(resid.correct^2) / df.resid

#correctd variance covariance
vcov.correct < - (mse.correct / mse.wrong) * vcov.wrong

betas[2] #causal effect estimates

pval < - 2*(1-pt(abs(betas[2]/sqrt(vcov.correct[2,2])), df.resid))

#####Using genetic score without kernel machine, manually
correcting.

#First stage
fit1 < - lm(x ~ gscore)

#Second stage
fit2 < - lm(y ~ fit1$fitted)
summary(fit2)

betas < - coefficients(fit2)
df.resid < - df.residual(fit2)
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#sum of squre from wrong residuals
mse.wrong< - sum(residuals(fit2)^2)/df.resid

#incorrect residual variance directly from 2nd regression
vcov.wrong = vcov(fit2)

#residual using observed exposure
resid.correct < - y - betas[1] - betas[2] * x

#sum of square from correct residuals
mse.correct < - sum(resid.correct^2) / df.resid

#correctd variance covariance
vcov.correct < - (mse.correct / mse.wrong) * vcov.wrong

betas[2] #causal effect estimates

pval < - 2*(1-pt(abs(betas[2]/sqrt(vcov.correct[2,2])), df.resid))

#######Using genetic score without kernel machine, using tsls
function to crrect.
fit < - tsls(y ~ x, ~ gscore, w = rep(1,length(x)))
summary(fit)
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