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The species accumulation curve, or collector’s curve, of a population gives the expected number of observed species or
distinct classes as a function of sampling effort. Species accumulation curves allow researchers to assess and compare
diversity across populations or to evaluate the benefits of additional sampling. Traditional applications have focused
on ecological populations but emerging large-scale applications, for example in DNA sequencing, are orders of
magnitude larger and present new challenges. We developed a method to estimate accumulation curves for predicting
the complexity of DNA sequencing libraries. This method uses rational function approximations to a classical non-
parametric empirical Bayes estimator due to Good and Toulmin [Biometrika, 1956, 43, 45-63]. Here we demonstrate
how the same approach can be highly effective in other large-scale applications involving biological data sets. These
include estimating microbial species richness, immune repertoire size, and k-mer diversity for genome assembly
applications. We show how the method can be modified to address populations containing an effectively infinite
number of species where saturation cannot practically be attained. We also introduce a flexible suite of tools
implemented as an R package that make these methods broadly accessible.
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INTRODUCTION

In ecology the species richness, the total number of
species or distinct classes, is one of the simplest metrics
for understanding the diversity of a population [1].
However, unbiased estimation of species richness based
on surveys is often extremely difficult or even unattain-
able because no matter how many species have been
observed there may exist an arbitrary number of
undetected rare species in the population [2]. An
alternative is to study the expected number of unique
species as a function of the size of the survey, defined as
the species accumulation curve [3]. Though commonly
applied in ecological studies, accumulation curves have
been applied to many other fields, such as linguistics [4],
genetics [5], metagenomics [6], and immune repertoire
[7].

Consider the following problems as motivation.
Researchers want to compare the diversities of several
populations. In each population, individuals are sampled

and their corresponding species identified but the total
number of individuals sampled can vary across popula-
tions. In these sampling experiments, often called
“capture-recapture” experiments, the raw data are the
sample, or “capture”, counts associated with each species.
Since in general the number of species observed increases
with the number of captured individuals and the size of
the survey, direct comparison between surveys can bias
the result. With species accumulation curves, one can
make fair comparisons of the expected number of species
for a fixed number of individuals captured [8]. Another
problem is to evaluate the effectiveness of a survey and
decide whether or not to continue the project. A typical
question might be: given capture profiles in previous
surveys, if another survey is conducted from the same
population, how many new species can researchers expect
to sample? Accurate predictions can help scientists make
better decisions and allocate resources more appropri-
ately.

Various models have been proposed to address these
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problems and are well discussed by Bunge and Fitzpatrick
[2] and Colwell et al. [9]. We assume a general compound
Poisson mixture model for the sampling process. In
particular, for each species in the underlying population
the number of individuals observed in a survey follows a
Poisson distribution with the Poisson rate A generated
from a latent distribution G(A).

Many approaches rely upon inferring the latent
distribution G(A). These are further divided into para-
metric and non-parametric approaches. The former
assumes (G(A) takes a particular form. For example,
Fisher et al. adopted a Gamma distribution; Bulmer used a
log-normal; and Burrell and Fenton applied a generalized
inverse Gaussian [10—12]. A problem with this approach
is that it is difficult to assess a parametric form given the
data. Several parametric models may fit the data equally
well, but their extrapolation behaviors can be quite
different [13].

On the other hand, most non-parametric approaches
approximate G(A) with a discrete distribution [14—16]. It
can be shown that due to the discrete nature of the
observed data, the likelihood achieves its maximum at a
discrete distribution [17]. However, non-parametric
approaches tend to underestimate the number of unique
species due to inadequate sampling efforts and skewness
of the abundance curve [18].

Good and Toulmin addressed the problem of predicting
accumulation curves under a general multinomial model
[19]. They derived an unbiased non-parametric empirical
Bayes estimator for the gain in new species as a function
of the relative increase in survey size. This estimator,
which we call the Good-Toulmin estimator, takes the form
of an alternating power series and avoids direct inference
of the latent distribution. This method was later extended
by Efron and Thisted to a general compound Poisson
model [4]. The Good-Toulmin estimator can very
accurately predict the number of new species gained
when the survey is increased to up to twice the initial size.
Unfortunately due to its alternating form, the power series
diverges when extrapolating beyond the twice the size of
the initial survey. This short range of extrapolation makes
the estimator useless in most applications. To partially
overcome this difficulty, Good and Toulmin suggested
using Euler’s series transformation. This increases the
practical radius of convergence but the range of
extrapolation is still very limited [4,20].

Rational function approximations were proposed by
Daley and Smith to address the divergence problem
observed in the Good-Toulmin power series [21]. The
constructed rational function approximations have two
critical properties: (i) the local behavior of the rational
function approximation is close to the Good-Toulmin
power series in a sense that they have the same Taylor
expansion centered at the size of the observed experiment

up to a fixed degree; and (ii) global stability by choice of
the degree of the rational function approximation.
Previous applications to DNA sequencing libraries
showed that rational function approximations can accu-
rately extrapolate up to one hundred times the size of the
initial survey [21,22], significantly further than previous
methods.

Our goal here is to present additional applications of
accumulation curves in the analysis of large-scale
biological data sets. These applications will serve to
introduce researchers to the general class of problems that
can be modeled as sampling experiments aiming to make
inferences about heterogeneity within poorly-understood
populations. At the same time, these applications serve to
demonstrate the broad applicability of our approach via
rational function approximation to the Good-Toulmin
estimator. We have developed an R package that
implements all the functionality required to conduct the
analysis presented here; all figures and results we present
have been generated using this package, with all steps
included in Supplementary Materials.

The rest of this paper is organized as follows. First we
review the concepts associated with the Good-Toulmin
estimator and use of rational function approximations for
computing it. We then apply this method to three
biological data analysis problems arising in different
contexts: investigating bacterial species diversity of a
metagenomic sample, estimating the size of immune
repertoire through T cell receptor (TCR) diversity, and
examining k-mer diversity of next generation sequencing
reads for genome assembly problems.

RESULTS

The general compound Poisson model

We assume a general compound Poisson sampling model,
and follow the notation of Wang [23]. In a survey or
sampling experiment, observations are usually recorded
as x;,i=1,2,...,D, indicating x; > 0 individuals observed
from species i for D total observed species. The data can
be further summarized into a vector of frequencies
n=(ny,n,,...), where

D
”,;‘:Z]{xi:j}
i=1

represents the number of species with exactly j indivi-
duals captured for each species. The number n, of
unobserved species is unknown and is non-identifiable in
the general compound Poisson model [24].

One well known application of accumulation curves
under a general compound Poisson model is Shake-
speare’s vocabulary [4]. The word frequencies in
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Shakespeare’s known works, taken from the Ref. [4], are
summarized in Table 1. A total of D=} n;=31534
unique words are observed. Among those words, 14,376
appear once, 4,343 words appear twice, and so on.

Based on the frequency data, we can estimate the
expected number of species (which are the unique words
in the aforementioned application), as a function of the
total number of individuals observed. The Good-Toulmin
power series is an unbiased non-parametric empirical
Bayes estimator for the expected number of new species
that will be observed with further sampling under a
multinomial or compound Poisson model. This power
series is given by

AW =3 (-1t 1Y, )

j=1

where ¢ is the relative size of the survey and the initial
observed experiment corresponds to 7= 1.

The Good-Toulmin power series has a radius of
convergence of 1 centered at r=1. As a consequence,
the estimator performs extremely well up to a doubling of
the size of the experiment, the range 1<¢<2, but
commonly diverges for ¢>2 [19]. The application of
rational function approximations eliminates the diver-
gence problem of the Good-Toulmin power series (1)
while retaining the desirable local properties of the power
series.

In most experiments, the populations under investiga-
tion contain a finite number of classes. To ensure the
asymptotic behavior of the rational function approxima-
tion matches the asymptotic behavior of the population,
we choose the rational function approximation to be
constant in the limit. That is, for some integer M,

A po+p1(t71)-|-...+pM71(t71)M,]
A(t)"‘(t 1) 1+ql([_1)—|—~..+qM(t_l)M .
2)

This ensures the stability of long-range extrapolations of
the species accumulation curve. The coefficients of the
rational function approximation are chosen so that the
power series of the rational function approximation
matches the observed power series and the local behavior
will be similar [25].

We implement the rational function approximations
through continued fractions. Continued fraction approx-
imations can be shown to be equivalent to rational
function approximations as shown in Equation (2) but

have several advantages. These include asymptotically
faster and more stable computation of the coefficients
(quadratic versus cubic), stable evaluation of the
approximation for large ¢ with Euler’s recursion, and the
ability to easily adjust the degree of the rational function.
For example, a continued fraction approximation to A(z)
with four coefficients has the form:

m (1) = m(e= 1) % s (e 1) -y 1)
ag(t—1)
a(1—1)

ay(t—1)
1 +a3(t-1)

3)
1+

1+

To fit a rational function approximation we search the
space of continued fraction approximations for one
lacking apparent instabilities, known as defects, that
arise as a consequence of using stochastic estimates of the
coefficients instead of the true coefficients of the Good-
Toulmin power series [26]. We test the curve for two
critical properties, that it is concave and nondecreasing. If
a defect is found, we test a different order approximation,
up to the maximum degree specified. Further details can
be found in the Ref. [27].

For interpolation of species accumulation curves, we
explicitly calculate the expected number of species in a
subsample of # individuals, denoted D,,. This expectation
is equal to

1 Dx

ED_ )=y (V) o (Vom), @

n P n

where N is the total number of observed individuals in the
original sample [28].

For simplicity and brevity we shall abbreviate our
approach of taking rational function approximations to
the Good-Toulmin power series as RFA-GT. For flexible
use of this approach, we have implemented a set of
functions in an R package, called preseqR and available
through CRAN (http://cran.r-project.org/web/packages/
preseqR/index.html). All results presented here were
obtained using functions in preseqR (which contains
broader functionality than the RFA-GT). For all applica-
tions presented below, we provide code and data in the
Supplementary Materials to allow for exact reproduction
of all results.

Table 1. Frequency of words observed in Shakespeare’s known works [4].
j 1 2 3 4 6 7 8 9
n; 14376 4343 2292 1463 837 638 519 430
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Revisiting Shakespeare’s vocabulary

We revisited a famous application of capture-recapture
models constructed by Efron and Thisted [4]. They
investigated the vocabulary of Shakespeare using a bag of
words sampling model to estimate the number of words
that Shakespeare knew but were not used in his known
works. The “species” in this application are unique words
in Shakespeare’s vocabulary and the accumulation curve
is the number of unique words as a function of total words
in Shakespeare’s works.

To evaluate the performance of our method against
other existing methods, we sampled approximately 5%
and 10% of the total words from Shakespeare’s known
works as initial surveys (44,000 and 88,000 words,
respectively). The rarefaction curve from all of Shake-
speare’s known works is considered as the gold standard
for comparison. The scaled error, defined by the
difference between the estimated value and the true
value divided by the true value, measures the accuracy
of the predictions. We compared the performance of
RFA-GT implemented with preseqR to another state of
the art method, the R package iNEXT [29], whose
extrapolation method is described in the Ref. [9]. All
calculations were made on a 2.6 GHz Intel Core 15 with 8
Gb of RAM. It took about 34 s and 16 s for preseqR to
construct the accumulation curve for the 5% and 10%
samples as initial surveys. More running time was spent
on the 5% sample because over twice as many iterations
was required to generate 100 bootstraps without apparent
defects as the 10% sample (264 versus 121). iINEXT took
around 15s and 32s for the 5% and 10% samples,
respectively.

Using the 5% sample as the initial survey, both methods
accurately estimated the expected number of unique
words when extrapolating to two or three times the size of
the initial survey. However, as the extrapolation went
further, RFA-GT gave much better predictions than
INEXT (Figure 1A). The estimated number of unique
words for each of the methods and the scaled errors are
provided in Table 2. For both methods, the scaled error
increases as the extrapolation increases. However, RFA-
GT had less than 10% scaled error extrapolating to up to
10 times the initial experiment while iNEXT had 36.7%
scaled error. When extrapolating to 20 times, the scaled
error for RFA-GT was 19.7% compared to 53.9% for
INEXT, a difference of over 10,000 words.

Increased sample size gives more information on the
population so that we expect predictions to be better with
increased sample size, even to the same relative
extrapolation. As expected, the predictions from both
methods improved when the size of the initial survey
doubled to 10%. RFA-GT underestimated the vocabulary
by 2,300 words while iNEXT underestimated by over
10,000 when extrapolating to 10 times the initial survey, a
difference of nearly 30% of the total vocabulary
(Figure 1B and Table 3).

To evaluate the consistent performance of the estima-
tors we repeated each of the above experiments for 100
independent samples. For the 5% samples the mean
absolute deviation (MAD) from the true vocabulary size
over the 100 samples were 4,900 and 16,900 words for
RFA-GT and iNEXT, respectively. For the 10% samples
the MAD was 3,400 and 11,600 words. This shows the
consistently better performance of RFA-GT that may be
due to a number of reasons. The Good-Toulmin power
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Figure 1. Predicting the number of unique words as a function of the size of the sample. The observed curve is the
accumulation curve of the total word counts of Shakespeare’s known works compared to the predicted curve (A) when the size of the
initial sample is 5% of the total words from Shakespeare’s known works; (B) when the size of the initial sample is 10%; and (C) when
the size of the initial sample is 100% and comparing the RFA-GT lower bound to the lower bound of Efron and Thisted (E & T).
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Table 2. Predicting the number of unique words as a function of the size of the survey based on 5% sample.

RS 2 4 6 8 10

vV 10017 14470 17759 20452 22771

P, E (%) 9996, —0.2 14064, —2.8 16830, —5.2 18822, —8.0 20614, -9.5
1, E(%) 9830, —1.9 12806, —11.5 13885, —21.8 14277, —30.2 14419, —-36.7
RS 12 14 16 18 20

TV 24827 26688 28395 29978 31458

P, E(%) 22035, —11.2 23224, —13.0 24198, —14.8 24786, —17.3 25276, —19.7
I, E(%) 14470, —41.7 14489, —45.7 14496, —48.9 14498, —51.6 14499, —53.9

RS is the relative sample size to the initial survey. TV is the true expected number of unique words observed. P, E is the estimated number of unique words observed by

RFA-GT and the corresponding scaled error. A negative scaled error indicates the method underestimated the value. I, E is the estimated number of unique words

observed by iNEXT and the corresponding scaled error.

Table 3. Predicting the number of unique words as a function of the size of the survey based on 10% sample.

RS 2 4 6 8 10

TV 14470 20452 24827 28395 31458

P, E (%) 14478, —0.2 20368, —0.6 24191, -3.2 27008, —5.9 29160, —8.7
1, E(%) 14229, - 1.7 18111, —11.4 19424, -21.8 19867, —30.0 20017, —36.4

For notations, please refer to Table 2.

series uses the full amount of information contained in the
observed experiment, without smoothing. Rational func-
tion approximations can be considered to be the optimal
smoothing of the power series that satisfies the constraint
that the estimated accumulation curve is asymptotically
constant [25].

Based on the success of RFA-GT in predicting
Shakespeare’s vocabulary, we used the entirety of
Shakespeare’s known works as an initial survey to
estimate the expected number of total distinct words we
would observe if new works of Shakespeare were to be
discovered. Shakespeare’s known works contain 31,534
unique words. If the size of Shakespeare’s works were to
double, we estimated a total of 43,038 unique words
observed (Figure 1C). Thus if an additional volume of
works by Shakespeare were to be discovered, equal in
size to his currently known works, we can expect an
additional 43038 — 31534 = 11504 new words. The result
is quite close to the reported 11,430 words in the Ref. [4],
from the equation (2.5), since the behavior of rational
function approximation is close to the Good-Toulmin
power series when ¢ is small.

As Figure 1 shows and we have previously observed
[21,27], RFA-GT tends to produce accurate but con-
servative estimates. Thus we can use the extrapolation to
ten times of the totality of Shakespeare’s known works as
a reasonable lower bound for the total vocabulary of
Shakespeare. RFA-GT estimated a total of 75,722 unique
words, 9,188 more unique words than the lower bound
estimated by Efron and Thisted [4].

Species richness in a microbiome

Capture-recapture models are a common statistical model
for estimating microbial species richness [6,30]. We
applied preseqR to the problem of estimating accumula-
tion curves of annotated species in a metagenomic
sequencing experiment. We examined species abundance
data collected and calculated by Yatsunenko et al. [31],
downloaded from MG-RAST with ID 4461119.3 [32].
The data contains 1,712 unique annotated species with a
total sampled abundance of 156,608. Though the
abundance of annotated species underestimates the total
diversity of the sample, due to overwhelming presence of
unannotated species in the microbial universe, it can be
used as a proxy metric or to compare samples.

To test RFA-GT on microbial species diversity we
subsampled a total abundance of 7,830 without replace-
ment as an initial experiment, approximately 5% of the
full experiment. We compare our estimated curve against
the true curve provided by MG-RAST. The true curve is
given in terms of the number of sequences. We scale this
curve assuming that the observed abundance of genomic
material arising from annotated species is proportional to
the number of sequenced reads. Note that if our
assumption is incorrect then we should see higher error
in our estimates.

When we compared the predicted results with the true
species abundance curve, we saw that the RFA-GT
accurately estimated the species accumulation curve
(Figure 2A). RFA-GT predicted 1,631 unique annotated
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original curve provided by MG-RAST uses the number of sequences as its x-axis. We convert it to the sample abundance by

rescaling.

species if a total abundance of 156,608 is sampled
compared to the observed value of 1,712 unique
annotated species. This is a difference of less than 5%
relative to the total number of unique annotated species.
We applied the same methodology for obtaining a
lower bound as we did in estimating the size of
Shakespeare’s vocabulary (Section 3). We used the full
experiment to predict the total number of annotated
species in the experiment. The predicted curve asymp-
totes relatively quickly, indicating that the observed
experiment is nearly saturated. The observed experiment
has 1,712 annotated species. A ten fold increase in the
experiment is expected to only yield an additional 423
species, for a total of 2,135 annotated species. This is
quite close to the estimated saturation point of annotated
species of approximately 2,230 (Figure 2B). This
indicates that the observed experiment is already quite
saturated and significant resources will need to be
expended to observe additional annotated species.

Age-related decrease in TCR repertoire

We applied our method to investigate age-related
decreases in T cell receptor (TCR) diversity. The data
sets are profiles of TCR £ repertoires in 39 healthy donors
aged 690 years (y) from Britanova et al. [33]. For each
donor, the data is summarized as frequencies of TCR S
CDR3 clonotypes. Species in this study are TCR f CDR3
clonotypes and the accumulation curve is the expected
number of unique TCR f CDR3 clonotypes as a function
of TCR S ¢cDNA molecules sequenced.

We constructed TCR f CDR3 clonotype accumulation
curves for each donor. These curves are classified into
four groups based on the ages of donors: group 1 is
composed of the youngest donors from 6-25 y; group 2 is

middle-aged with donors from 3443 y; group 3 contains
donors from 61-66 y; and group 4 are the eldest donors
from 71 to 90 y [33], (Table 1). For each group of donors
we define an accumulation region as the interval formed
by the 30% and 70% quantiles for each age group.

As illustrated in Figure 3A and B, it was clear that the
diversity of TCR f# CDR3 clonotypes decreased with the
age of the group. Groups 1 and 2 are distinguished from
each other and the other two groups through their
accumulation regions. On the other hand, the median
accumulation curves of group 3 and group 4 were almost
identical and the ranges overlap, consistent with the
results of Britanova et al. [33].

Another interesting feature is that the width of the
accumulation region reflects the variation of the diversity
of TCR f CDR3 clonotypes among donors in a group.
The interpolated accumulation regions widths have no
appreciable difference among groups (Figure 3A). How-
ever, using the prediction results from preseqR, the width
of the accumulation region in group 1 is expected to be
much larger than other groups if the experiment were to
be continued (Figure 3B). In the observed experiment
group 1 has a similar variance in diversity to groups 3 and
4 but when extrapolated out to 20 million total TCR /S
c¢DNA molecules, the estimated diversity of group 1 has
nearly five times the variance of either groups 3 or 4 and
over twice the variance of group 2. Most of this variability
is seen to arise from subjects who are 16 years old or
younger. One possible interpretation, in line with the
observations of the Ref. [34], is that this may indicate high
variability in the immune repertoire and presence of a
large population of rare TCR £ clonotypes in youth, prior
to selection due to exposure to pathogens. For conclusive
results, a larger sample size of youth immune repertoire
might be required.
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We tested the performance of RFA-GT by combining
all 39 data sets. One million cDNA molecules were
sampled without replacement from the combined data set
as an initial experiment. Extrapolating out to 20 million
total molecules, we predicted 8.97 million unique clono-
types compared to an expected value of 9.73 million. This
represents a relative error of less than 10% when
predicting out 20 fold of the initial experiment. When
we used RFA-GT to predict the full experiment of
38.7 million sequenced molecules, we estimated
13.72 million distinct clonotypes. This is 17.5% lower
than the observed diversity of 16.7 million. Although the
predictions are less accurate when increasing the range of
extrapolation, they tend to be conservative (Figure 3C). It
is worth noting that conservative prediction is especially
useful when attempting to design an efficient experiment
to cover a minimum proportion of target population.

k-mer diversity in genome assembly applications

Many state of the art genome assembly algorithms
leverage De Bruijn graphs constructed from k-mers that
are extracted from the sequenced reads [35]. In order to
effectively use these graphs, the assembly algorithms
require a sufficient fraction of the k-mers from the
underlying genome [36]. Clearly deeper sequencing will
ensure that more k-mers have been sampled but the rate at
which deeper sequencing reveals more k-mers and the
reliability of such k-mers is unknown. Here we show how
species accumulation curves can provide information
about the diversity of sequenced k-mers as a function of
total bases sequenced.

We selected a data set from the Assemblathon 2 [37],
whole genome sequencing of a male budgerigar (also
known as the common pet parakeet or Melopsittacus
undulatus), Sequenced Read Archive accession number
ERX218679. This experiment contains approximately
161 million read pairs (150 bp in length) for a total of
approximately 48 billion sequenced bases.

We subsampled two experiments from the sequenced
reads, randomly downsampling approximately 1% and
10% of the reads from the full experiment. This resulted in
3.23 million and 32.26 million reads, respectively. We
examined k-mers for £ = 31 since it is the default setting
for the widely used assembly algorithm Velvet [38]. We
counted the k-mer occurrences using Jellyfish[39] and
used the 31-mer counts from the subsampled experiments
to extrapolate the distinct 31-mers as a function of
total sequenced 31-mers (or equivalently, total bases
sequenced).

For the 1% downsampled experiment, the estimated
number of distinct 31-mers for the full experiment is
4.24 billion compared to the 5.66 billion observed. On the
other hand, if the extrapolation is limited to 10% of
the total experiment, the estimated value by RFA-GT is
2.08 billion compared to an expected value of
2.07 billion, a relative difference of less than 1%.

For the 10% downsampled experiment, the estimated
number of distinct 31-mers in the full experiment is
5.3 billion showing a slight decrease in accuracy with the
increase in sample size when extrapolating to the same
relative size. We should expect the accuracy of the
estimates to the same relative extrapolation size to
increase with increasing sample size based upon the
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extra information contained in the larger experiment.
Instead we observed the opposite (Figure 4A). RFA- GT
closely approximated the curve when the number of total
31-mers is relatively small, but we fail to capture the
behavior of the tail of the curve.

We noted that the curve of distinct 31-mers plotted
against the total number of observed 31-mers appears to
be linear in the limit (Figure 4). This can be explained by
the presence of random errors in the sequenced reads. The
number of distinct 31-mers in the budgerigar genome is
bounded by size of the genome, approximately 1.2
gigabases. Indeed k-mers in a genome are far from
uniformly distributed [40], resulting in far fewer k-mers
than is theoretically possible, which is bounded above by
the genome size. On the other hand, random errors in the
sequencing process can theoretically produce any 31-mer
for a total of approximately 4.6 x 10'® possibilities, many
orders of magnitude larger than current sequencing
experiments. This leads us to hypothesize that there is a
large tail in the population of observable 31-mers, mostly
due to sequencing error. We reasoned that using a
different order of rational function approximation may
increase the accuracy.

In the applications we presented in earlier sections, the
population was known to be finite. Consequently we
chose to use a rational function approximations that were
constant in the limit. However, we can also choose a
rational function approximation that is linear in the limit,
for example:

Pt et py (- 1)

AW~ (=1) Lbqu(e=1)+ -+ (-1

In the context of counting k-mers in a sequencing data set,
using a linear limit improved the accuracy of the estimates
dramatically. Figure 4 shows this alteration predicted

A B

5.55 billion 31-mers in the full experiment for the 10%
downsampled experiment and 5.22 billion for the 1%
downsampled experiment when extrapolating to the full
experiment.

The asymptotically linear extrapolation may be of
interest for populations that are infinite or have extremely
long tails, with a vast number of species that have
extremely small abundances. In such cases the asymptotic
linear slope will be related to rate of discovery of the
extremely rare species. In the A-mer counting application,
the eventual linear behavior is driven by sequencing
errors generating a practically limitless supply of A~-mers
that could be sequenced.

DISCUSSION

As high-throughput technologies improve researchers
will be increasingly faced with the difficult problem of
making inferences on unknown and highly variable
populations. When the properties of the population are
unknown, capture-recapture models may be appropriate.
Here we investigated three applications of capture-
recapture models to data arising from next-generation
sequencing experiments along with the classical applica-
tion of estimating the size of Shakespeare’s vocabulary.
These applications demonstrate the breadth of data
analysis contexts in which species accumulation curves,
and capture-recapture perspectives more generally, can
help to understand the underlying populations from which
data have been sampled.

Large-scale applications present new challenges to
traditional capture-recapture statistics, particularly since
the scale of the data is orders of magnitude larger than
classical ecological capture-recapture experiments. Algo-
rithms are required that are both scalable and able to
accommodate arbitrary heterogeneity to ensure accurate

Unique 31-mers/Billions
Unique k-mers/Billions

= True curve
= = 1% subsample
estimated curve
= = 10% subsample
estimated curve

0 20 40 60 0
Total 31-mers/Billions

20 40 60

Total 31-mers/Billions

Figure 4. The number of distinct 31-mers as a function of sequenced 31-mers with extrapolations using 1% and 10%
subsamples. (A) Extrapolations from the subsamples using default preseqR, with the rational function approximations to the Good-
Toulmin power series behaving like a constant asymptotically. (B) Extrapolations from the subsample using rational function
approximations to the Good-Toulmin power series behaving like a linear function asymptotically.
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inference. The non-parametric empirical Bayes estimator,
Equation (1), is ideal to accommodate unknown hetero-
geneity. This estimator has been applied directly to
estimate both microbial species richness and TCR
diversity [41,42]. In both cases the extrapolation region
was limited to a two-fold increase in the size of the
existing data set. We have demonstrated the applicability
of RFA-GT to both of these situations and that this
approach does not suffer from a tightly constrained range
of extrapolation. In large-scale applications, such a tightly
constrained range of extrapolation has the potential to
impact conclusions drawn about the sampled populations,
making approaches like ours extremely valuable.

Among the applications we have surveyed, the
estimation of k-mer diversity has an interesting property:
sequencing errors can, in theory, produce any possible .-
mer. The underlying population is therefore practically
infinite. In finite populations, large extrapolations of the
species accumulation curve can be considered as a
conservative estimate of the “species richness” [43]. But
when the underlying population is infinite, the concept of
species richness becomes meaningless, and different
approaches are required to understand heterogeneity in
the population. By modifying the form of rational
functions used to approximate the Good-Toulmin power
series, we showed how our approach can model
accumulation curves that are linear in the limit.

Despite the flexibility of the RFA-GT approach, and its
accuracy for large-scale extrapolation, the approach
depends on having sufficient initial sampling to fit the
rational function approximation. In the case of finite
populations, RFA-GT requires the first four frequency
counts (1, n,, n3, ny4) to be positive. This is because an
even number of terms is needed to ensure numerical
stability of the estimation algorithm, and two terms is not
sufficient to properly account for heterogeneity in the
population. In the infinite population case, RFA-GT
requires the first five frequency counts to be positive due
to the increased difficulty in predicting the species
accumulation curve in such populations. So although
RFA-GT solves challenges associated with large-scale
applications, it also depends on properties of those data
sets that present difficulties for other methods. Beyond
these requirements on the low-order counts, the proce-
dures we use at present to fit rational functions from
counts histograms are intricate and include many steps
with the potential for introducing error. Despite the high
accuracy we typically observe from our method, several
of the numerical procedures it requires are candidates for
novel algorithm development to further improve stability.

For ease of use we have created an R package, preseqR,
to allow researchers easy and convenient access to the
RFA-GT method. preseqR is available through CRAN at:
http://cran.r-project.org/web/packages/preseqR.The

implementation of preseqR includes several core routines
in the form of R extensions, which were written originally
in C++ for efficiency. All of the analyses performed in
this manuscript with preseqR and we have made all code
available as part of the supplementary materials as a guide
for researchers.

Biological and biomedical science continues to push
towards examining increasingly precise hypotheses using
large-scale data production. Although estimating hetero-
geneity in underlying molecular population is rarely the
goal, some understanding of the underlying population
may be essential to accurate interpretation of analysis
results. Classical capture-recapture statistics has fre-
quently addressed questions analogous to those we now
face concerning heterogeneity in molecular populations,
and represents a robust body of statistical methodology
that warrants broader adoption in large-scale data
analysis.

SUPPLEMENTARY MATERIALS

The supplementary materials can be found online with this article at DOI
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