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With the current fast accumulation of microbial community samples and related metagenomic sequencing data, data
integration and analysis system is urgently needed for in-depth analysis of large number of metagenomic samples
(also referred to as “microbial communities”) of interest. Although several existing databases have collected a large
number of metagenomic samples, they mostly serve as data repositories with crude annotations, and offer limited
functionality for analysis. Moreover, the few available tools for comparative analysis in the literature could only
support the comparison of a few pre-defined set of metagenomic samples. To facilitate comprehensive comparative
analysis on large amount of diverse microbial community samples, we have designed a Meta-Mesh system for a
variety of analyses including quantitative analysis of similarities among microbial communities and computation of
the correlation between the meta-information of these samples. We have used Meta-Mesh for systematically and
efficiently analyses on diverse sets of human associate-habitat microbial community samples. Results have shown that
Meta-Mesh could serve well as an efficient data analysis platform for discovery of clusters, biomarker and other
valuable biological information from a large pool of human microbial samples.
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INTRODUCTION

Microbes are ubiquitous on our planet, and it is well-
known that the total number of microbial cells on earth is
huge [1]. These organisms usually live in communities,
and each of these communities has a different structure.
As such, microbial communities would serve as the
largest reservoir of genes and genetic functions for a vast
number of applications in “bio”-related disciplines,
including biomedicine, bioenergy, bioremediation, and
biodefense [2].
Since over 90% of strains in a microbial community

could not be isolated or cultivated [3], metagenomic
methods have become popular for analysis of a microbial
community as a whole. Such an approach enables the
exploration of the relationships among microbes, their
communities and habitats at the most fundamental

genomic level. Understanding the taxonomical structure
of a microbial community (alpha diversity) and the
differences in taxa among microbial communities (beta
diversity) have been two of the most important problems
in metagenomic research [4], in which understanding beta
diversity is especially critical for studying microbial
communities’ heterogenity. For example, the Human
Microbiome Project [5] and related efforts to study
microbial communities occupying various human body
habitats have shown a surprising amount of diversity
among individuals in skin [6,7], gut [8,9], and mouth
ecosystems [10,11]. Furthermore, even microbial com-
munities from similar types of environment might differ
significantly [12].
Next-generation sequencing techniques have enabled

fast profiling of large volumes of metagenomic samples.
As a result, a rapidly increasing number of metagenomic
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profiles of microbial communities have been archived in
public repositories and research labs around the world.
Therefore, it is becoming more and more important to
perform in-depth analysis for the valuable biological
information hidden in large number of samples. Hence, a
system that provides functionalities for data analysis and
mining would be of significant value to a worldwide user-
base from multiple disciplines.
Current metagenomic databases, such as MG-RAST

[13] and CAMERA2 [14], serve mainly as data
repositories, with neither comprehensive tools for com-
parative analysis nor capabilities for extensive search. A
number of methods have been proposed for the
comparison and clustering of different metagenomic
samples. MEGAN [15] is a metagenomic analysis tool
for taxonomical comparisons [16] and statistical analyses
[17], which can only compare single pairs of metage-
nomic samples based on taxonomical annotations, as is
also the case with STAMP [18]. ShotgunFunctionalizeR
[19], Mothur [20] and METAREP [21] identify the
differences between samples using standard statistical
tests (mainly t-tests with some modifications). UniFrac
[22] and Fast UniFrac [23] examine the similarities
among species based on their overlaps in phylogenetic
tree to discover ecological patterns.
In this work we introduce Meta-Mesh, an integrated

metagenomic analysis system that includes a set of highly
efficient tools, and verified the reliability and correctness
based on simulated datasets constructed by known
genomes. Then we applied Meta-Mesh on two studies
with human associated-habitat samples from different
body sites and health status: one study including gut
samples from feces, oral samples from tongue, skin
samples from left palm and right palm; another study with
saliva samples from naturally occurring gingivitis,
healthy gingivae and experimental gingivitis. Meta-
Mesh quantitatively evaluated the similarity among
samples, distinguished samples from different conditions
by the taxonomical distributions and phylogenetic
relationships, elucidated the key taxa led to the structure
difference by biomarker analysis, and further calculated
the correlation between the taxa distribution and the
environmental meta-data (e.g., hosts, habitats, healthy
conditions). Results have shown that Meta-Mesh would
serve as an effective data analysis platform to quickly
discovery the valuable biological information from a large
pool of metagenomic samples.

RESULTS

In this work we have applied the Meta-Mesh in two
studied of human-associated habitat microbial commu-
nities for data comparison and biomarker discovery.

Case study 1: Study on simulated microbial
community samples for accuracy assessment and
correctness verification

In this case we constructed two simulated metagenomic
datasets with human oral related genomes and human gut
related genomes, respectively. Each dataset contained 50
samples. The oral related genomes mainly included
Actinomyces odontolyticus, Campylobacter rectus, Fuso-
bacterium periodonticum, Neisseria subflava, Porphyr-
omonas gingivalis and Prevotella denticola , which were
all from HOMD database [24], and mixed with some
other randomly selected oral genomes in very low ratio.
The gut related genomes mainly included Bacillus cereus,
Clostridium beijerinckii, Deinococcus radiodurans,
Escherichia coli and Helicobacter pylori, which were
all from the NCBI database (http://www.ncbi.nlm.nih.
gov/), and also mixed with some other randomly selected
gut genomes in very low ratio.
We parsed out the taxonomical structure of all samples

by metagenomic structure analysis, and evaluated the
error rate of the analysis by the Euler distance of the
relative abundance between the calculated values and real
values of all taxa. Suppose that N taxa (Ti, i = 0 to N-1)
existed in a simulated sample, Vi was the calculated
relative abundance value and V#i was the real relative
abundance value for Ti, then the error was evaluated by
formula (1). Results in Figure 1A showed the average
error rate of all samples was lower than 4% (2.86% and
3.25% for oral sample on phylum and genus level, 2.10%
and 3.59% for gut sample on phylum and genus level),
which indicated the high reliability of the metagenomic
structure analysis in Meta-Mesh system.

E=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XN – 1

i=0
ðVi –V#iÞ2
N

s

: (1)

Then we computed the pair-wised similarity matrix for
oral samples and gut sample separately by Meta-Mesh
scoring function, and verified the results by the UniFrac
[23] that had already been widely used for comparison
among microbial communities. The strong correlation
between results by Meta-Mesh scorning function and
weighted UniFrac (Pearson coefficient R = 0.9928 for oral
samples and R = 0.9731 for gut samples, Figure 1B and
Figure 1C) illustrated that Meta-Mesh could precisely
assess the quantitative difference among metagenomic
samples. Based on the pair-wised similarity matrix we
performed the clustering analysis by PCoA. It was
obvious that samples from two datasets could be
differentiate based on their similarity scores (Figure
1D), and the following biomarker analysis also explained
the reason by the dissymmetrical distribution of the
relative abundance on abundant taxa between two
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datasets (Figure 1E), which was coincident to the different
genomes used for simulation.

Case study 2: Study on microbial community
samples from different human-habitats

In this case we used 1,758 human-associated habitat
microbial community samples from four different body
sites [25] (gut samples from feces, oral samples from
tongue, skin samples from left palm and right palm, Table
1) of two individuals of opposite genders from the same
family.
We firstly generated the pair-wised similarity matrix

(Figure 2A) of all sample pairs among the 1,758 samples,
and performed the clustering and PCoA analysis (Figure
2B) based on the similarity matrix. Results in Figure 2
have shown that samples from the same body site type
could be clustered together. In Figure 2A we found that
samples from the same site (skin, oral and gut) have
higher similarity values, compared with those from
different sites. Among them, the taxonomical structures
oral samples were very similar with those for skin
samples, while the taxonomical structure of gut samples
were quite different from others. The PCoA analysis
results (Figure 2B) supported the similarity patterns in
Figure 2A. In Figure 2B, gut samples and oral samples
were divided by PC1 very well, and clear separation of
samples from oral and gut could also been observed by
PC2, yet samples from left palm and right palm were
mixed.
The following biomarker analysis (Figure 3) on the

taxonomical structure analysis also elucidated the reasons
that taxa Bacteroidaceae and Clostridiaceae were
dominated in gut samples, among which Bacteroidaceae
predominantly habitats in the alimentary canal or on
mucous surfaces of warm-blooded animals [25], which
could serve well as biomarkers for gut microbiota. And
Neisseriaceae and Prevotellaceae were dominated in oral
samples, among which species Prevotellaceae is among
the most abundant microbes cultivable from the rumen
and hind gut of cattle and sheep as well as human oral
environment, where they help the breakdown of protein

and carbohydrate in foods [25]. Corynebacterineae were
dominated in skin samples.
We further compared samples of each body site

separately, and found that the microbial community
structures in gut and oral environment of the two hosts
had difference distribution in PCoA results (Figure 4A
and Figure 4B). The reason was that the high abundance
taxa in gut (Clostridiaceae and Prophyromonadaceae,
Figure 5A) and oral (Neisseriaceae and Streptococca-
ceae, Figure 5B) showed significant different with
Wilcoxon Rank-sum Test P-value< 0.001. However,
skin samples from different hosts and palms had higher
similarity to each other reflected in the PCoA results
(Figure 4C and Figure 4D), which could also been
explained by the biomarker analysis that their abundant
taxa (Corynebacterineae and Streptococcaceae, Figure
5C and Figure 5D) had similar pattern between hosts and
palms.
As regard to efficiency, we have evaluated Meta-Mesh

for it running time on pair-wise similarity analysis, PCoA
and biomarker analysis. Meta-Mesh would be able to
compute (based on GPU) the pair-wise similarity values
for 1,758 human-associated habitat microbial community
samples within six minutes and following PCoA and
biomarker analysis (based on all samples) within nine
minutes (Figure 6), which in theory have outpaced the
speed of metagenomic data generation by several folds.
Therefore, the efficient computational engine in Meta-
Mesh have enabled near real-time process of microbial
communities.

Case study 3: Study on oral microbial communities
of different health status

In this case study we applied the Meta-Mesh in the study
of oral samples to discover the microbial community
structure variation among different health status. 150
samples were collected from 50 hosts’ saliva in 3 stages:
naturally occurring gingivitis (I), healthy gingivae (B) and
experimental gingivitis (E) by Huang, et al, 2014 [26].
The Mazza Gingival Index (MGI) of each stage for the
host was recorded to reflect the gingival conditions from
medical aspect.
All samples were compared to construct the similarity

matrix (Figure 7A). Then we performed the clustering
(Figure 7A) and PCoA analysis (Figure 7B). From the
results we can observe that samples could be divided by
the gingival status: healthy and gingivitis (both naturally
and experimental occurred).
Then the in-depth biomarker analysis focused on

discovering the taxa that caused the differences. From
the results (Figure 8) we found that the distribution of taxa
Streptococcaceae, Actinomycineae, Micrococcineae and
Prevotellaceae had significant different between gingival

Table 1. Information of human associated-habitat
samples.
Type Habitat Sex # of Samples

Gut Feces Female 130

Gut Feces Male 331

Oral Tongue Female 131

Oral Tongue Male 365

Skin Left palm Female 123

Skin Left palm Male 276

Skin Right palm Female 128

Skin Right palm Male 274
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Figure 2. The clustering analysis results of human associated-habitat samples from different body sites based on the
similarity matrix. (A) Similarity matrix and hierarchical clustering results. (B) PCoA analysis results of body sites.

8 © Higher Education Press and Springer-Verlag Berlin Heidelberg 2015

Xiaoquan Su et al.



Figure 3. The biomarker analysis results of of human associated-habitat samples from different body sites. Boxplots have

shown the relative abundance of each biomarker taxa in different body site types, and the rank-sun test P-value indicated the
significance of their difference.
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status (Wilcoxon Rank-sum Test P-value< 0.001).
Among them, Prevotellaceae was abundant in gingivitis
samples (I and E), while other three taxa were abundant in

healthy samples (B), which has also been verified by the
previous works in Huang, et al, 2014 [26].
We also measured the correlation between the taxa

Figure 4. The PCoA analysis results of samples from different body sites. (A) Gut samples from different hosts. (B) Oral
samples from different hosts. (C) Skin samples from different hosts and (D) Skin samples from different palms.
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Figure 5. Biomarker analysis results of samples from each body site. (A) Gut samples from different hosts. (B) Oral samples from
different hosts. (C) Skin samples from different hosts and (D) Skin samples from different palms.
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pattern and the MGI and calculated the Pearson correla-
tion coefficient (R). Results in Figure 9 illustrate the
strong correlation of the abundant taxa to the MGI: the
pattern of Streptococcaceae (R = – 0.806), Actinomyci-
neae (R = –0.755), Micrococcineae (R = – 0.879) were
negatively correlated to the MGI, while Prevotellaceae
was positively correlated (R = 0.810) to the MGI.
Interesting, the abundant yet dynamic species Prevotella-
ceae, which can server as biomarker of oral samples from
gut and skin samples, could again serve as biomarkers to
differentiate healthy and gingivitis samples within oral
environment, indicating that it could serve as the “local
weather forecaster” for oral health status.
For processing speed, again we observed that Meta-

Mesh could analyze 150 oral microbial community
samples, including pair-wise similarity analysis, PCoA
and biomarker analysis (based on all samples), within
only 30 seconds. This also showed the capability of Meta-
Mesh for facilitating near real-time oral microbial
community monitoring.

DISCUSSION AND CONCLUSIONS

With the rapid accumulation of metagenomic samples and
sequencing data, methods for efficient comparison and
database search for metagenomic samples are becoming
increasingly important. However, a good integrated
system for organizing metagenomic samples, providing
large-scale comparison, as well as data-mining is still
lacking and thus urgently needed. Current metagenomic
sample comparison methods are generally based on pair-
wise comparisons (which make them difficult for large
scale analysis) without efficient data indexing that could
support large-scale comparison and data-mining. Over-
coming of this drawback has been attempted by our Meta-
Mesh system, an integrated platform that could be used

for sample taxonomical structure analysis, sample
comparison and similarity matrix generation, sample
clustering and biomarker identification, all based on an
efficient computational engine.
The application of Meta-Mesh on comparison of

different metagenomic samples has shown that it is able
to accurately and efficiently cluster similar microbial
communities and identify the biomarkers for these
communities, as well as shedding new light on the
functional diversity of the microbial communities. For
example from thousands of oral microbial communities,
Meta-Mesh could quickly differentiate communities from
hosts with different health status with very high accuracy,
and identify biomarkers that might contribute for such
differences. Therefore, Meta-Mesh has proven its ability
for efficient data-mining for large-scale metagenomic
datasets.
With the advancements in Whole Genome Sequencing

(WGS) of human related metagenomic samples, it is
anticipated that the profiling and comparison of a large
number of metagenomic samples would become more
and more important, for which an integrated comparison
system would be of great help. Currently bioinformatics
analysis of metagenomic data has also entered the era of
“big-data”. Having this in its development philosophy,
Meta-Mesh is well-positioned to provide key methods for
human microbiome projects to facilitate research in
metagenomics, and thus would be suitable for data-driven
and in-depth data-mining for a variety of human microbial
community datasets, including those from Human
Microbiome Project, etc.
The Meta-Mesh system that we presented in this work

will be continuously updated (http://www.meta-mesh.org/).
Firstly, for the metagenomic sample database, automatic
and manual curation will continuously provide high-
quality metagenomic data, ensuring that users have access
to accurate and consistently annotated experimental
information coupled with manually verified sequence
analysis results. Secondly, some text-mining techniques
to further improve the efficiency in data curation would
also be attempted for more accurate annotation. Thirdly,
the current Meta-Mesh database is optimized for
taxonomical annotation; with the fast accumulation of
human related metagenomic data, a functional annotation-
based system would be developed in the future.

METHODS

Meta-Mesh is an open-source system designed for
efficient and integrated analysis of metagenomic samples
that offer functions such as community structure analysis,
sample comparison and metagenomic data mining for
microbial community researches. The overall scheme of
Meta-Mesh database is illustrated in Figure 10.

Figure 6. Efficiency analysis for processing speed

of Meta-Mesh for 1,758 human-associated habitat
microbial community samples.
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Figure 7. The clustering analysis results of human associated-habitat samples from different body sites based on the
similarity matrix. (A) Similarity matrix and hierarchical clustering results. (B) PCoA analysis results by different healthy status.

Saliva samples could be categorized into 3 groups: naturally occurring gingivitis (I), healthy gingivae (B) and experimental gingivitis
(E).
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Metagenomic structure analysis

Meta-Mesh parses taxonomical and phylogenetic struc-
ture of metagenomic samples based on the Parallel-
META software [27,28] with configurable parameters.
Parallel-META extracts 16S rRNA or 18S rRNA
fragments which are considered as bio-markers by the
HMM algorithm [29] with the model built by Sliva
database [30], and maps these extracted rRNA sequences
to GreenGenes [31], RDP [32], Sliva [30] or Oral Core
[33] database using megablast for high accuracy species
identification, taxonomical annotation and phylogenetic
analysis.

Quantitative phylogenetic-based sample
comparison and similarity matrix

Meta-Mesh evaluated the similarity value (0%–100%)
between each sample pair based on their quantitative
comparison of common phylogenetic tree using the Meta-
Storms scoring function [34]. This scoring function
compares two microbial community samples’ structures
by bottom-up recursive traversal to their common
weighted phylogenetic tree, in which edge weight
represents the phylogenetic distance and node weight
represents the species abundance. The similarity value of
each leaf node (species) is the common relative

Figure 8. Biomarker analysis results of samples in different healthy status. Saliva samples could be categorized into three
groups: naturally occurring gingivitis (I), healthy gingivae (B) and experimental gingivitis (E).
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Figure 9. Correlation analysis results of the biomarker taxa of samples in different healthy status gauged by MGI.
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abundance of the two samples. Then the value of their
abundance difference is reduced to the ancestor node by
multiplying the phylogenetic distance for the calculation
on upper level in the phylogenetic tree as the leaf nodes.
Finally the sum of similarity values on all nodes is the
overall similarity score (between 0% and 100%) of these
two samples (for more details please refer to Su, et al.,
2012 [34]). Then the pair-wised similarity values of all
given sample pairs construct a similarity matrix. Meta-
Mesh produces a visualization of the matrix where each
tile represents a similarity value between two samples
from a color gradient between red and green: red color

indicates higher similarity value and green color indicates
lower similarity value, with red/green shades in between
indicating intermediate values.

Clustering analysis based on similarity matrix

The hierarchical clustering analysis measures the relation-
ships among the microbial community samples based on
the similarity matrix. This method is implemented by
“HClust” function of CRAN R [35], and results are
visualized by MetaSee software [36] and “gplots”
package (Gregory R., et al., gplots: Various R program-

Figure 10. The overall scheme of Meta-Mesh system.
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ming tools for plotting data. http://CRAN.R-project.org/
package = gplots) of CRAN R. The Principal Coordinates
Analysis (PCoA) are used to elucidate the distribution of
similarity among samples by a give meta-data (e.g., host,
body site) which is implemented by “vegan” package (ari
Oksanen, et al., vegan: Community Ecology Package.
http://CRAN.R-project.org/package = vegan) of CRAN
R.

Biomarker and correlation analysis

In biomarker analysis the Meta-Mesh select abundant taxa
which are considered as key factor led to the variations
among sample clusters and groups. The significance of
difference in abundance distributions is measured by the
Wilcoxon and Kruskal rank-sum test, then Meta-Mesh
select the taxa that have P-value smaller or equal to 0.001.
Meta-Mesh also calculates the Pearson correlation
coefficient (R) between abundance values of biomarker
taxa their meta-data, and select the taxa with absolute R
value equal to or larger than 0.7 which indicate the strong
correlated varying trend between the abundance values
and meta-data.

High-performance computation techniques for
Meta-Mesh

In Meta-Mesh system, all steps are supported by high-
performance computation techniques including multi-
thread computation and GPU computation.
In metagenomic structure analysis we implemented

CPU based parallel computing to improve the analysis
efficiency. In Parallel-META software we developed the
OpenMP technology based parallel 16S/18S rRNA
sequence mapping on multi-core CPU. This strategy
could achieved much higher efficiency based on multi-
core CPU and OpemMP technology than single thread
serial computing [27,28].
In sample comparison analysis we used GPU comput-

ing for calculation of similarity matrix with large number
of samples. Benefited by the many-core architecture of
GPU, scoring function can be invocated in parallel by
multi-threading to compute the similarities among
massive amount of samples. To calculate the pair-wise
similarity matrix of N samples, N�(N-1)/2 threads are
launched in GPU to make each similarity value in the
matrix processed by one independent thread. In our
previous experiment the running time with GPU would be
able to compute the pair-wise similarity values for 10, 240
samples within 10 min, which gained a speed-up of
> 17,000 times compared with single-core CPU, and
> 2,600 times compared with 16-core CPU [37].
Therefore, the high-performance computation back-

bone for Meta-Mesh could significantly accelerate the

comparison analysis, thus facilitate in-depth data mining
among massive microbial community samples.
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