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Imaging genetics is an emergingfield aimed at identifying and characterizing genetic variants that influence measures

derived from anatomical or functional brain images, which are in turn related to brain-related illnesses or

fundamental cognitive, emotional and behavioral processes, and are affected by environmental factors. Here we

review the recent evolution of statistical approaches and outstanding challenges in imaging genetics, with a focus on

population-based imaging genetic association studies. We show the trend in imaging genetics from candidate

approaches to pure discovery science, and from univariate to multivariate analyses. We also discuss future directions

and prospects of imaging genetics for ultimately helping understand the genetic and environmental underpinnings of

various neuropsychiatric disorders and turning basic science into clinical strategies.
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INTRODUCTION

The past decade has witnessed a tremendous growth in
brain imaging as well as an enormous explosion of
interest and success in genomics. Imaging genetics, as an
interdisciplinaryfield, aims to identify and characterize
genetic variants that influence measures derived from
anatomical or functional brain images, which are in turn
related to brain-related illnesses or fundamental cognitive,
emotional and behavioral processes, and are affected by
environmental factors. An increasing number of studies
have shown that many brain measures quantifying the
organization or function of the human brain derived from
complex image analyses are heritable and under genetic
control, which indicates thefirst validity of analyzing the
underlying genetic factors that influence these measures.
Compared to many self-reported and questionnaire-based
cognitive or clinical assessments in psychiatry, non-
invasive brain imaging techniques provide much more
objective and reproducible phenotypes, and can accom-
modate highly heterogeneous symptoms expressed by
patients classified into the same diagnostic group. More
importantly, quantitative brain imaging measures are
considered to be intermediate or endophenotypes [1,2]

—on one hand, they are potential biomarkers (indicators
of biological processes or treatment response) for and
genetically related with particular mental disorders; on the
other hand, they are closer to the disease process and have
a simpler genetic architecture than disease syndrome and
categorical diagnoses, and thus provide much greater
power to identify and localize genetic loci [3]. In this
context, brain imaging measures sit in the pathway that
connects genetic factors to brain illnesses. Imaging
genetics thus has the potential endpoint to help under-
stand the genetic underpinnings of various neuropsychia-
tric disorders and improve early diagnosis and treatment.
Moreover, brain images typically have high spatial
resolution, and thus offer the opportunity to precisely
localize genetic influences or map the spatial profile of the
genetic effects over the entire brain. Partly due to these
reasons, public and private funding resources have poured
their investments into thefield of imaging genetics with
the hope of boosting the studies in this area, and
ultimately to improve human health care in the future [4].
Although standard imaging-only or genetic-only meth-
ods are well established and have many successful
applications, merging the twofields is not straightfor-
ward. To handle the extremely high dimensional imaging
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and genetic data set with complex covariance structures,
joint efforts are needed from the communities of
mathematicians, statisticians and computer scientists,
along with the guidance from geneticists, neuroscientists,
psychologists and clinicians. In this review article, we
summarize our current knowledge on recent methodolo-
gical developments and innovations in imaging genetics.
We start with a brief introduction to quantitative
neuroimaging phenotypes and the molecular basis of
imaging genetic studies. We then focus on population-
based imaging genetic association studies and show the
evolution of imaging genetics from candidate approaches
to whole-brain and genome-wide searches, and from
univariate analyses to multivariate analyses. We close the
review with a discussion on the prospects and future
directions of imaging genetics.

Neuroimaging phenotypes

In principle, any measures extracted and derived from
different brain imaging modalities can be used as
phenotypes in imaging genetic studies. These typically
involve voxel-, vertex-, surface- or connection-based
traits computable from structural, functional or diffusion
images. For example, the volume or concentration of gray
or white matter in a particular brain region can be
extracted from structural images, using methods such as
voxel-based morphometry [5]. Cortical thickness refers to
the distance between the pia mater and the gray-white
matter interface, and captures the variability of the six
cortical layers. Cortical area refers to the area of the pia
mater and the gray-white matter interface. These surface-
based measures of a particular brain region can be
computed using surface representations and computa-
tional models of the cerebral cortex [6–8]. A number of
studies have shown that these features of cortical
morphology are heritable and regionally influenced by
distinct genetic factors [9,10]. Other morphological
measures, such as gyrification index (the ratio between
the pial surface and its convex hull), quantify the
complexity and folding patterns of the cerebral cortex.
They have yet been widely investigated in the imaging
genetic context, and deserve future studies. Brain imaging
phenotypes can also be extracted from functional MRI
images. The extent of activation or deactivation of brain

areas in response to external stimuli can be estimated from
functional brain images. The level of spontaneous brain
activity under resting state also has implications on
function of the brain and may be used as imaging traits
[11,12]. Recently, thefield of connectome genetics, which
investigates how genetic factors affect both anatomical
and functional brain connectivity, is rapidly expanding
[13]. In particular, diffusion tensor imaging (DTI)
provides a number of measures, such as fractional
anisotropy (FA), mean diffusivity (MD), radial diffusivity
(RD), and axial diffusivity (AD), which reflect the
coherent direction of axons and assess white matter
integrity. These measures are highly heritable [14,15] and
related with a variety of neuropsychiatric disorders [16].
More complex variants of DTI, such as diffusion
spectrum imaging (DSI) and high angular resolution
diffusion imaging (HARDI), are more sensitive to intra-
voxel heterogeneities in diffusion directions caused by
crossingfiber tracts, and thus provide more accurate
mapping of anisotropy. Tractography calculates the
likelihood for tracts and reconstructsfiber tracts using
diffusion and anisotropy [17]. Thus it largely reflects the
physical connection between brain regions and can be
used as imaging phenotypes as well. Functional con-
nectivity between brain regions, assessed from task based
or intrinsic brain activities, also provides heritable and
sensitive measures of functional integration and informa-
tion processing in the brain [18–20]. Finally, the totality
of anatomical and functional connectivities in the brain
can be viewed as networks and represented as graphs.
Many topological graph theory measures [21] can then be
used to evaluate the local and global organization of the
structural and functional connections in the brain. Table 1
summarizes different types of neuroimaging phenotypes.
Although brain images provide numerous candidate
phenotypes for imaging genetic studies, selected imaging
traits should be highly heritable and be genetically related
with the mental disorder or biological process under
investigation as closely as possible. Some imaging traits
may be less relevant to the process of interest, less
reproducible in a particular experimental design or data
collection protocol, or simply noisier than other measures,
and thus have reduced statistical power to localize genetic
variants. However, there are currently few statistically
rigorous methods for optimally choosing appropriate

Table 1. Summary of neuroimaging phenotypes

Morphology Function Connectome

Volume/concentration of gray/white matter;

cortical thickness; cortical area; gyrification

index

Extent of activation/deactivation;

contrast map; measures characterizing

spontaneous brain activity

Anisotropy (FA, MD, RD, AD); tractography;

functional/effective connectivity measures

(correlation, coherence, causal influences, etc.);

complex network measures
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endophenotypes given the complexity and high dimen-
sional nature of brain imaging data, and the largely
unknown biological mechanisms that underlie mental
illnesses.
Winkler et al. [10] examined the relationship between
brain volume, grey matter volume, cortical thickness and
surface area from a genetic standpoint. These measures
were extracted using both surface-based and voxel-based
methods, and their heritability and genetic correlations
were estimated from 468 individuals with extended
pedigrees design using a variance-component model.
They confirmed that cortical thickness and surface area
measures were genetically and phenotypically indepen-
dent, suggesting that surface area and cortical thickness
measures should be considered separately in imaging
genetic studies. Moreover, they found that, although all
imaging traits were significantly influenced by genetic
factors, compared to voxel-based grey matter volumes
which have mixed genetic components, surface-based
measures such as surface area and cortical thickness
should be preferred for imaging genetic studies.
Glahn et al. [22] proposed a novel objective index of
the genetic utility of endophenotypes for an illness,
termed as the endophenotype ranking value (ERV), which
is able to choose appropriate endophenotypes that are
heritable and have high level of pleiotropy with the illness
of interest. They applied the ERV analysis to a high
dimensional set of over 11000 traits drawn from
behavioral/neuro-cognitive, neuro-anatomic, and tran-
scriptomic phenotypic domains, and identified a set of
top-ranked endophenotypes for recurrent major depres-
sion in a sample of 1122 individuals from large randomly
selected extended pedigrees. This efficient screening
method has the potential to prioritize more appropriate
endophenotypes for imaging genetic analyses.
To summarize, although brain imaging techniques
provide an array of potential endophenotypes, computa-
tionally efficient and statistically rigorous methods are
needed to facilitate the identification of endophenotypes
that are most appropriate for imaging genetic studies.
“Fishing”and vibration, i.e., screening measures and
adjusting analysis methods until some promisingfindings
appear, should be avoided.

Genetic background

DNA is an informational molecule containing the genetic
information used in the development and functioning in
all living organisms. It is a macromolecule that is essential
for all known forms of life. In humans, DNA molecules
are double-stranded helices, consisting of two long
polymers made of about 3 billion nucleotides. Each
nucleotide has its backbone made of afive-carbon sugar
(deoxyribose) and a phosphate group, and a nucleobase

attached to the sugar. There are four types of nucleobase
— adenine (A), thymine (T), guanine (G) and cytosine
(C). The two strands of DNA run in opposite directions to
each other and are complementary, i.e., adenine bonds
only to thymine and cytosine bonds only to guanine. It is
the sequence of these nucleobases along the backbone
that encodes information. Within cells, DNA is highly
compressed and organized into long structures called
chromosomes. Humans have 23 pairs of chromosomes
— 22 pairs of autosomal chromosomes and one pair of
sex chromosomes.
A gene is a molecular unit of heredity in a living
organism. It is a DNA segment that contains information
to make proteins. Therefore, genes hold the information to
build and maintain an organism’s cells and pass genetic
traits to offsprings. Not all DNA sequences encode
proteins. There are regions called introns that are removed
after DNA is transcribed into ribonucleic acids (RNA).
Only the exons are transcribed into messenger RNA,
which is later translated into proteins. Humans have about
20000 to 25000 genes and their coding regions compose
about only 1%–2%of our genome. The function of 98%
of our DNA is largely unknown.
Imaging genetics assesses the variation in brain
imaging phenotypes that can be explained by genetic
variation. Genetic variation can be caused by mutations or
during chromosomal events like cell division and sexual
reproduction. It provides the genetic material for natural
selection. Genetic variation may occur at a variety of
levels— the genome level, the chromosome level, the
gene level, and at single nucleotides. Many of the
variations are copy-number variations (CNVs), which
refer to an abnormal number of copies of one or more
sections of the DNA. CNV is a form of structural variation
that corresponds to relatively large regions of the genome
that have been deleted or duplicated, and may be tested
for association with imaging traits.
In contrast to CVNs, a majority of the current imaging
genetic studies focus on a particular type of genetic
variation, the single nucleotide polymorphism (SNP),
which is a DNA sequence variation at a single nucleotide.
Each alternative form at a single nucleotide is called an
allele. Almost all common SNPs have only two alleles.
Therefore, the more frequent allele in the population is
called the major allele and the rarer the minor allele. The
lower allele frequency at a locus that is observed in a
particular population is called the minor allele frequency
(MAF). Since humans are diploid (i.e., there are two
physical copies of each chromosome in the cell), each
SNP can be coded in the form of 0 (homozygotic major
alleles), 1 (heterozygote) and 2 (homozygotic minor
alleles). There are more than 20 million common SNPs
and many more rare SNPs (MAFs<1%–5%), and their
genomic distribution is not homogenous. SNPs may fall

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2013 229

Imaging genetics—— towards discovery neuroscience



within coding sequences of genes, non-coding regions of
genes, or in the intergenic regions. Even though it lies in
the exonic region of a protein-coding gene, a SNP does
not necessarily change the amino acid sequence of the
protein that is produced (synonymous polymorphism) due
to the redundancy of the genetic coding. However it may
also be a missense polymorphism (resulting in a different
amino acid) or a nonsense polymorphism (resulting in a
premature stop). Moreover, SNPs that are not in protein-
coding regions may still affect gene splicing, transcription
factor binding, messenger RNA degradation, or the
sequence of non-coding RNA.
A key concept in association studies is linkage
disequilibrium (LD), which refers to non-random associa-
tion of alleles at two or more loci. This means that certain
pairs of alleles in a population appear more often (or less
often) than expected by chance based on their frequen-
cies. LD is due to the physical connection between nearby
loci on a chromosome, which is known as genetic linkage,
referring to the tendency of two alleles proximal to each
other to be inherited together from generation to
generation. LD can be quantified by the difference
between observed and expected allelic frequencies, but
the level of LD is influenced by a number of factors and is
largely unpredictable. One factor that causes the decay of
LD is genetic recombination, or more specifically, the
chromosomal crossover occurring during meiosis— a
special type of cell division necessary for sexual
reproduction. Homologous chromosomes exchange sec-
tions or fragments of their genetic materials, which
produces chromosomes with a new combination of genes.
This crossover of DNA can cause alleles previously on
the same chromosome to be separated and end up in
different daughter cells, and hence break the LD. Since, in
general, nearby alleles tend to be inherited together and
distant alleles have a higher probability of recombination,
it is expected that alleles proximal to each other are in
high LD while alleles with a large physical distance are
almost uncorrelated. A combination of alleles at adjacent
loci on the chromosome that are transmitted together (and
therefore statistically associated) is called a haplotype
block [23]. However, since the recombination rate is
highly inhomogeneous over the genome, the extent of LD
or the size of a haplotype block varies between a few
kilobases and a few hundred kilobases long in humans.
One useful aspect of LD is that it reduces the number of
SNPs necessary in whole-genome SNP association
studies. For a region of the genome with high LD, only
a single representative SNP is needed to capture most of
the genetic variability in the region. These highly
informative SNPs are called tag SNPs. It is known that
99% of the approximately 20 million common SNPs
(with MAFs>5%) can be reasonably tagged by only one
million tag SNPs.

Population-based association studies

Association is one of the main ways to localize
chromosomal regions that influence a trait. Genetic
association study tests if a genetic variation helps to
predict the phenotype. In contrast to another gene
discovery method, linkage analysis, which requires a
twin or pedigrees design, association analysis can be
conducted on unrelated individuals, making it easier to
recruit a relatively large number of subjects. Due to the
efficient and straightforward statistical methods, associa-
tion study is now a common and practical approach for
gene discovery. However, association analysis also
suffers from several major issues and caution is needed
in interpreting thefindings.
Currently, association studies are exclusively focused
on a subset of common genetic variants, which do not
capture the entirety of the genetic variation. As a result,
association analysis relies on the LD among nearby
genetic variants, and works only when (1) The causative
SNP (the SNP that is mechanically related to the
phenotype) is genotyped, or (2) The genotyped marker
is in disequilibrium with a causative SNP. Since LD is
largely unpredictable and the sizes of haplotype blocks
vary across both the genome and populations, the use of
LD makes it challenging to estimate statistical power for
genetic association studies. One needs to be careful that a
positivefinding is not necessarily a causative SNP but
may be in LD with an approximal causative SNP, while
negative results have implications only for the marker
tested and do not exclude the entire gene or genetic
region. Association studies typically provide a localized
chromosomal region that is approximately 500 kilobases
that harbors the causative SNP. Follow-up analyses are
required to identify the causal variants and study their
biological effects. The situation may change with the
recently available whole genome sequence data that
genotypes all the 3 billion nucleotides in the genome and
captures the totality of human genetic variation.
Population stratification is another potential source of
bias in association studies. If a sample collected for
genetic association analysis contains multiple populations
that systematically differ in the trait of interest, any locus
whose allele frequencies differ between the populations
could show an erroneous association [24,25]. Therefore,
the genetic origins of the samples included in association
analyses should be kept as homogeneous as possible.
Statistical corrections for population stratification, such as
genomic control [26], EIGENSTRAT [27] and EMMAX
[28], are well developed and largely successful.
We now review recent methodological developments
for population-based imaging genetic association studies,
in an order that reflects the trend of imaging genetic
studies— from candidate approaches to whole-brain
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genome-wide searches, and from univariate analyses to
multivariate analyses. We summarize some merits and
disadvantages of the methods reviewed in the paper in
Table 2.

CADIDATE-GENE CADIDATE-
PHENOTYPE ANALYSES

Thefield of imaging genetics started with candidate-gene
and candidate-phenotype studies, as it was uncommon,
and costly, to scan and genotype a large number of
subjects to obtain both whole-brain and genome-wide
data. Prior biological knowledge is needed to select a
handful of specific, well-studied genetic variants and a
few characteristic measures of brain anatomy, function, or
connectivity that are under genetic control and are
intermediate phenotypes of the biological process of
interest. Candidate approaches allow people to test
biologically plausible hypotheses and determine how
specific genetic variants affect brain structure and
function in a range of neurological and psychiatric
disorders. Strong hypotheses often drive clearly inter-
pretable results.

For example, attention-deficit/hyperactivity disorder
(ADHD) symptoms include impulsivity and hyperactiv-
ity, which are associated with the activation of the reward
area of ventral striatum (VS) and the principal inhibitory
frontal area, the right inferior frontal gyrus (IFG), during
reward anticipation and response inhibition, respectively.
Nymberg et al. [29] investigated how these fronto-striatal
activation patterns contribute to ADHD symptoms
depending on the genotype of SNP rs12843268 on
monoamine oxidase A (MAOA) gene, which is localized
on the human X chromosome and thought to underlie
neural functions associated with ADHD. They found, in a
sample of adolescent boys, that in A hemizygotes of the
SNP, ADHD symptoms are associated with lower VS
blood-oxygen level dependent (BOLD) response during
the monetary incentive delay (MID) task and lower IFG
BOLD response during the stop signal task (SST). In G
hemizygotes, ADHD symptoms are associated with
increased IFG BOLD response during the SST in the
presence of increased VS BOLD response during the
MID task (Figure 1). Thus, ADHD symptoms may be
associated with reward deficiency or insufficient response
inhibition.

Figure 1. Association of ADHD symptoms with distinct BOLD responses depending onMAOAgenotype.(A) Significant

correlation between right VS activation and ADHD symptoms during reward anticipation in A hemizygotes. (B) Significant positive

correlation between right IFG activation and ADHD symptoms during successful stop trials in G hemizygotes, and significant

negative correlation between right IFG activation and ADHD symptoms during successful stop trials in A hemizygotes. Adapted from

Nymberg et al. [29]
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Joyner et al. [30] found that common sequence
variations in a region in and around geneMECP2,a
well-known determinant of brain structure, show associa-
tion with cortical surface area in two independent cohorts.
Recently, there are also studies that assessed genetic
effects on both structural connectivity and functional
connectivity [31], and investigated the effect of candidate
genes, such asAPOE[32] andCNTNAP2[33], on
selected local and global topological measures of
anatomical brain networks that characterize the organiza-
tion of brain wiring.
Gene-environment (G E) interaction is under active
investigation as few individual phenotype variations are
solely determined by genetics or environment, but a
mixture and interaction of both factors. Genetics may not
directly influence the development or progression of a
brain illness, but modulate the effects of various
environmental risk factors on the disease, producing
variations across subjects even exposed to the same
environment. In general, it is easier to tease apart and
estimate genetic and environmental factors along with
G E interaction using a twin or pedigrees design.
However, investigating main and interactive genetic and
environmental effects in unrelated samples is also
possible. In a recent study, Loth et al. [34] investigated
the effect of an SNP, located in the oxytocin receptor
(OXTR) gene, on the functional MRI BOLD activity in
the ventral striatum (VS) and amygdala to animated angry
faces, and the association with social-affective problems.
They reported that, compared to adolescents with
heterozygotic and homozygotic major alleles, adolescents
with homozygotic minor alleles had significantly lower
VS activity, which was simultaneously associated with
more sex-specific emotional problems (girls) and peer
problems (boys) in favorable environments, and greater
resilience against stressful experiences (Figure 2). These
findings partly revealed theOXTR-dependent brain
mechanisms associated with social-affective problems.
In spite of these advantages and successful examples of
candidate-gene candidate-phenotype analysis, a priori
knowledge needs to be summarized from reliable results
and evidence accumulated in specific areas, and is not
always available especially when the underlying mechan-
isms and the genetic factors of the disease process are
largely unknown. One is also faced with the risk to miss
potential associations, and is unable to identify novel
genetic factors when the search is restricted to a small set
of candidate genetic variants and brain regions.

CANDIDATE-GENE WHOLE-BRAIN
ANALYSES

Candidate-gene whole-brain analysis searches the 3-
dimensional map across many points, surfaces,fiber

tracts, or connections in the brain, for potential associa-
tions with a handful set of candidate genetic variants. It is
a traditional imaging analysis— association tests are
performed at each point in the brain independently,
producing a statistical parametric map (SPM) [35]. The
SPM is then thresholded to identify significant genetic
influences. The image of brain features with high spatial
resolution makes it possible to precisely localize the
genetic effect or map the 3-dimensional profile of the
genetic effects in the brain.
A number of studies fall in this category due to the wide
availability of standard anatomical MRI images. Filippini
et al. [36] investigated the allele-load dependent influ-
ences of the best-established genetic risk gene for
sporadic Alzheimer’s disease (AD),APOEε4 [37,38],
on the regionally specific brain cortical atrophy, and
showed distinct patterns of grey matter volume change
revealed by different allelic models. Ho et al. [39] studied
a variant within the fat mass and obesity-associated gene
FTO[40] and localized its effect on structural brain
atrophy of the elderly. Mapping genetic effects on brain
connectome is also possible [13]. Braskie et al. [41]
evaluated the association betweenCLUrisk variant,
another strong genetic risk for late-onset AD, and the
voxel-wise white matter integrity, measured by FA, in
healthy young individuals with DTI and found the most
vulnerable brain regions. Westlye et al. [42] tested the
hypothesis ofAPOE-related alterations in resting state
functional connectivity. In particular, they performed
between-subjects analysis using independent component
analysis (ICA) in combination with a dual regression
approach [43], which allows for voxel-wise comparisons
of resting state functional connectivity. A number of
regions were found to have aberrant functional connec-
tivities, which were also correlated with performance on a
test of memory functioning. Many other similar studies
have mapped the influences of genetic variants in
candidate genes, such asAPOE[44],BDNF[45],
COMT [46,47],CNTNAP2 [48],MET [49],NTRK1
[50], andZNF804A[51], on various brain measures.

CANDIDATE-PHENOTYPE
GENOME-WIDE ANALYSES

Genome-wide association studies (GWAS) had been
widely performed on disease status, or diagnostic,
cognitive and behavioral measures before imaging traits
were introduced as endophenotypes and have been
discovering new genetic loci which might influence the
risk of a certain disease in recent years [52,53].
Candidate-phenotype genome-wide analysis is a tradi-
tional genome-wide association study (GWAS). When a
single measure derived from brain images is known to be
an outstanding biomarker for a particular mental disorder
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or biological process, a whole genome screening
identifies genetic variants that are most associated with
the imaging trait. Ap-value less than the nominal 5.0
10–8is commonly used to reject the null hypothesis of no
genetic effect. Follow-up analyses can then be performed
to identify the causal genes, and investigate a set of
biological processes that the causal genes are involved,
such as the protein expressed by the genes, or the
interaction of the genes.
There are also quite a few studies in this category as
genome-wide data has become far more cost effective to
acquire. For example, Potkin et al. [54] discovered the
association of two genes with the BOLD contrast
activation in the left dorsal lateral prefrontal cortex
measured during a working memory task in schizophrenia
patients, and verified thefinding in an independent study.
Stein et al. [55] identified genetic variants associated with
the highly heritable caudate volume and cross-validated
the results in two large cohorts. Other GWAS using

quantitative brain imaging phenotypes measuring the
structure, function, and anatomical connectivity in the
brain have also been conducted [56–59]. The imaging
phenotype does not need to be restricted to a single brain
measure. Shen et al. [60] split the brain into 142 cortical
and subcortical regions, and extracted summary measures
of grey matter density, volume, and cortical thickness
from each of the regions using voxel-based morphometry
(VBM) [5]. These region-specific imaging traits were
then fed into genome-wide association scans. Several
SNPs and genes were shown to be associated with the
vulnerability to structural change in multiple brain
regions. Parcellating the brain into a number of regions
based on an atlas and deriving summary measures for
each region make it feasible to perform a coarse whole-
brain genome-wide association study. Similarly, Jahan-
shad et al. [61] divided the cortex into areas of known
structure and function, and mapped white matterfiber
pathways between pairs of brain regions with high-

Figure 2. Path diagram of the associations betweenOXTRrs237915, left ventral striatum (VS) activity and peer problems

in boys.(A) The effect of rs237915 on left VS activity. Minor allele homozygotes (CC) have reduced VS activity. (B) rs237915-

genotype stressful life events (SLE) interaction effect on peer problems in boys. Male CC-carriers show greater resilience against

stressful experiences but have more peer problems than CT/TTcarriers in low-SLE environments. (C) CC-carriers show a significant

correlation between lower left VS activity and increased peer problems. Adapted from Loth et al. [34]
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resolution tractography. GWAS was then performed and
replicated on 59 anatomical connectivities with moderate
to high heritability. Secondary GWAS analyses on several
organizational and topological network measures char-
acterizing the weighted brain anatomical networks
discovered variants significantly associated with local
properties of the network. This study can be viewed as a
coarse connectome-wide genome-wide association study.
To date, few studies search the entire connectome and
genome for association. This will be a promising direction
in the future.

WHOLE-BRAIN GENOME-WIDE
ANALYSES

Unlike traditional association studies that test the
association between a single trait and many genetic
variants, brain imaging data provides a trait at each voxel
in the brain, each vertex on a surface, or each connection
in a brain network. The trend in imaging genetics may be
to embrace the whole-brain, genome-wide association
paradigm, where both the entire brain and entire genome
are searched for non-random associations. This brings
unprecedented opportunities to identify novel genetic
variants underpinning imaging measures and map their 3-
dimensional spatial effects in the brain. However, the
dramatically increased dimensionality of the problem also
imposes many challenges on the attempt to do whole-
brain genome-wide searches, and makes most conven-
tional methods have a low statistical power. We now
review the rapidly evolving methodological approaches in
this category.

Univariate-imaging univariate-genetic association

Stein et al. [62] were thefirst to perform a completely
unbiased whole-brain genome-wide association study.
They explored the relation between 448293 SNPs and
31622 voxels in whole-brain maps of local brain
volumetric change calculated by tensor-based morpho-
metry (TBM) [63] across 740 elderly subjects from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI)
(http://adni.loni.ucla.edu). Massive univariate association
tests were performed for each pair of the SNPs and
voxels, resulting in a total of approximately 1.4 1010

statistical tests. The heavy computational burden was
handled by paralleling the computation across 300 cluster
nodes. To accommodate the huge number of statistical
tests performed, only thep-value for the most associated
SNP across the genome was recorded at each voxel, and
thus the null distribution for thep-value at each voxel
follows a Beta distribution, which was used to theoreti-
cally adjust thep-values. Several top genetic variants
were identified with biological interest, suggesting further

explorations, but no SNP had whole-brain whole-genome
significance.
This work is pioneering and is a proof of concept as it
shows that a completely unbiased scan of the whole brain
and the entire genome is feasible. However, the draw-
backs of this approach are also clear. Univariate-imaging
univariate-genetic association tests completely ignore the
spatial correlation in 3-dimensional imaging data and the
LD structure along the genome. Since voxel-wise brain
measures are noisy, and a single common variant
normally has only very small effect on brain structure,
massive univariate approaches, which fail to borrow
information from neighboring voxels or nearby genetic
variants, typically have poor reproducibility and low
power. Also, with millions of billions of statistical tests to
perform, the computational burden is extremely heavy,
and the colossal multiple comparisons correction often
leaves no significant associations [62]. Clearly, more
sophisticated multivariate methods [64] are needed to
account for the correlation structures in both imaging and
genetic data.

Univariate-imaging multivariate-genetic
association

Multivariate methods can be used to combine the effects
from multiple SNPs and model their joint effect on
imaging traits. Multivariate genetic approaches typically
use a priori information on the gene or haplotype structure
to group SNPs into a multivariate statistical model. SNP
sets can be formed by SNPs located in or near a gene,
SNPs located within a gene pathway, SNPs within
evolutionary conserved regions, or other a priori biolo-
gical information. Alternatively, the grouping may be
based on a sliding window with an appropriate window
size or the haplotype blocks to provide a full coverage of
the entire genome [65]. Performing set-based association
tests combines nearby SNPs to model their joint effect,
reduces the total number of statistical tests, and thus
alleviates the stringent multiple testing correction com-
pared to individual-SNP tests. Overall, multivariate
methods often have improved reproducibility and
increased power relative to univariate methods, especially
when SNPs with similar but modest effects that are hard
to detect individually are grouped and modeled jointly.
Early work on set-based tests combines test statistics or
p-values from standard individual-SNP tests by making
use of the gene annotation information and the estimated
LD structure [66,67]. These methods heavily rely on
individual-SNP tests and therefore suffer from many of
the same problems as univariate tests. For example, they
cannot accommodate interactions between SNPs and have
low power when SNPs are not in LD with the causal
variants.
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A natural and classical way to model the overall effect
of multiple SNPs is to construct a multiple regression
model. However, high LD between co-segregated SNPs
in haplotype blocks [23] often leads to collinearity
between the SNP regressors and can produce unstable
parameter estimates and substantially overestimated
degrees of freedom. If it is reasonable to assume that all
the genetic variants in a chromosomal region are
causative and affect the phenotype in the same direction
with similar magnitudes, a burden test can be performed
which collapses or summarizes the SNP information in a
genetic region into a single burden regressor. For
example, the burden regressor could be a single
dichotomous variable for each subject, indicating whether
or not the subject has any rare variants within a region
(cohort allelic sum test, CAST [68]), or a single weighted
average (based on MAF) of the number of minor alleles
for each individual (weighted sum test, WST [69]), or a
single regressor indicating the number of rare variants in a
genetic region for each individual [70]. It is also possible
to form several burden regressors and then perform a
standard multiple regression [71]. Alternatively, high
dimensional variable selection techniques could be used
to handle the collinearity of the SNP regressors. These
include the penalized and sparse regression techniques
such as the ridge regression [72,73], the least absolute
shrinkage and selection operator (LASSO) [74,75], and
elastic net [76,77]. These regularized regression methods
allow for a large number of correlated SNPs being
incorporated in a single model and have detection power
by selecting a sparse set of SNPs that are associated with
imaging measures.
Hibar et al. [78] applied the principal components
regression (PCReg) to approach the collinearity problem.
PCReg is a method thatfirst performs principle
component analysis (PCA) on the set of SNP regressors
to extract mutually orthogonal predictors that explain a
large majority of the overall variance as the original
regressors, and then applies a standard partialF-test with
the orthogonal regressors, and thereby balances the total
variance explained and the degrees of freedom of the
model. With this technique, Hibar et al. [78] was able to
carry out a voxel-wise gene-wide association study
(vGeneWAS) using the same imaging and genetic data
as in Stein et al. [62] by grouping SNPs into 18044 genes
based on gene membership. They showed the increased
power of their methods compared to vGWAS [62] due to
the multivariate modeling of the SNPs and a substantially
reduced number of statistical tests. However, no gene was
identified with whole-brain genome-wide significance,
perhaps due to the over-simplification of the empirical
and linear method, and the massive univariate nature of
the method on brain images.
Ge et al. [79] introduced to imaging genetics literature a

semi-parametric kernel machine based multi-locus model
[80,81], which provides a biologically-informed way to
capture the interactions between SNPs and model their
joint effect on imaging traits. This method is easy to adjust
for non-SNP covariates and offers aflexible framework to
model epistatic effects between genetic variants based on
the choice of kernels, whose elements are measures of
genetic similarity between pairs of subjects. By using
nonparametric kernels, the method can in principle
capture any types of SNP-SNP interactions [82], and is
more powerful relative to burden test when a genetic
region has both protective and deleterious variants or
many non-causal variants. Recently, there is an increasing
recognition that rare variants (with MAFs<1%–5%) are
important for complex disease, and it appears that most
imaging traits are influenced by many common variants
with relatively small effects and a handful of rare variants
with larger effects. An attracting feature of the kernel
method is that it is capable of testing cumulative effects of
rare variants in genetic regions or SNP sets. By
introducing appropriate weights in the kernel function
when combining SNPs, one can even up-weight rare
variants and down-weight common variants using a priori
knowledge as similarity in rare alleles might be more
informative than similarity in common alleles. Lastly, by
using a connection to linear mixed models, the semi-
parametric multi-locus model can befitted efficiently at
each voxel, and a standard variance component test [83],
termed as a sequence kernel association test (SKAT), can
be used to make inference, yielding an approximate chi-
squared statistical map whose degrees of freedom can
adapt to the correlation structure of the SNP sets [80]. In
combining this kernel method with a suite of other
approaches, a head-to-head comparison with vGWAS
[62] and vGeneWAS [78] using exactly the same data set
showed boosted statistical power. Several genes were
identified with whole-brain whole-genome significance
for thefirst time (Figure 3) [79].

Joint multivariate association

To account for the multivariate nature and exploit the
covariance structure of both imaging and genetic data,
joint modeling of the imaging and genetic data appears to
be promising. One possible candidate in this category is a
regularized version of the two-block method, e.g., the
canonical correlation analysis (CCA) [84] and the partial
least squares (PLS) regression [85] with an additional l1or
l2regularization to handle high dimensional data and
perform variable selection. Both methods hypothesize
that imaging and genetic data are linked through two
unobserved latent variables, and seek linear combinations
of the two data blocks— as an approximation to the
latent variable— that possess the maximum correlation
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(CCA) or covariance (PLS) with each other. Recently,
sparse CCA and sparse PLS have been applied to imaging
genetics respectively [86,87].
Liu et al. [88] proposed another method to link the two
blocks of data known as parallel independent component
analysis (paraICA or PICA). The method discovers
independent components of the imaging and genetic
data respectively, and at the same time selects the
components of the two modalities by maximizing a
correlation measure. One challenge of this approach is
that it may be hard to recover the contributing SNPs and
localize the spatial effect in the brain from large genetic
and imaging components, making the results hard to
interpret. In addition, the power of the method to detect
associations may be reduced when there is substantial
amount of noise from the genetic data.
An alternative perspective on handling the two blocks
of data is to consider a multivariate multiple regression, i.
e., regressing the entire imaging data block on the genetic
data, and impose different structures or regularizations on

the regression coefficient matrix. Recent works in this
category include group-sparse multi-task regression [89]
and sparse multi-modal multi-task regression [90], which
incorporate the grouping of SNPs induced from their
genetic arrangement and enforce sparsity across different
SNP groups. The combined structured sparsity regular-
izations also allow for identifying multi-modal biomar-
kers and their shared underlying genetic factors. Also
within the multivariate multiple regression framework,
Vounou et al. [91] proposed a sparse reduced-rank
regression (sRRR) method. sRRR reduces the rank of
the regression coefficient matrix to a number much
smaller than the number of imaging traits and the number
of SNPs, and then factorizes the coefficient matrix into the
product of two small full-rank matrices, which are
imposed with structures for gene/pathway grouping and
constrained to be sparse. Vounou et al. [91] showed the
boosted sensitivity of sRRR in simulation studies with an
increased number of subjects and SNPs relative to
massive univariate methods. The method was applied to

Figure 3. Results from the whole-brain genome-wide association study using the kernel machine based multi-locus

model.The parietal (upper panels) and temporal (lower panels) foci are influenced by the most associated geneGRIN2B. Brain-

wide genome-wide significant voxels are in yellow; brain-wide (post hoc gene-wise) significant voxels are in dark blue; and 0.001

uncorrected significant voxels are in light blue. Both parietal and temporal lobes are known to be affected in Alzheimer’s disease.

Adapted from Ge et al. [79]
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real whole-brain whole-genome data sets in subsequent
publications [92,93].
Joint multivariate methods respect and exploit the
multivariate nature of the imaging and genetic data, and
substantially reduce the number of statistical tests, which
alleviates the multiple testing correction problem. There-
fore, they may provide increased statistical power relative
to univariate-imaging or univariate-genetic methods.
However, joint modeling of very high dimensional data
also brings both computational and statistical challenges.
Sparse regularization methods normally employ iterative
optimization procedures, so the computational demand is
high, especially when one needs to tune some regulariza-
tion parameters and to validate the results through cross-
validation or permutation schemes. Over-fitting is also a
common issue in handling high dimensional data, which
may result in a reduced power of the methods. Currently,
in most applications, considerable downsampling of the
imaging and genetic data is needed before they are fed
into these multivariate models.
In addition to machine learning approaches, recently,
there are efforts to develop more comprehensive prob-
abilistic models for the joint modeling of imaging and
genetic data. Stingo et al. [94] presented a Bayesian
hierarchical modeling approach for imaging genetics,
which incorporates the selection of brain regions that
discriminate patients and healthy controls. Genetic data
were linked to the observed imaging features by
specifying group-specific distributions that are dependent
on model selected SNPs. They also imposed a neighbor-
hood structure on the brain regions based on their spatial
locations, and applied the random Markovfield theory to
incorporate prior knowledge on the connectivity among
brain regions. When applied to real imaging genetic data,
the model allows for simultaneous selection of a set of
discriminatory brain regions and the relevant SNPs,
together with the reconstruction of the dependence
structure of the selected regions. Batmanghelich et al.
[95] proposed a unified Bayesian framework for the joint
modeling of genetic variants, imaging traits, and the
disease phenotype. The generative model captures the
overall process via a logistic regression, which predicts
disease status from imaging traits, and a ridge regression,
which associates genetic variants to imaging features.
With appropriately specified priors, the model is able to
select a small set of genetic variants that induce the
variation in certain representative imaging traits, which in
turn exhibit discriminative capability with respect to the
disease phenotype. Thus the model establishes the
pathway among genetics, imaging features and disease
status with associated probability measures.
Joint modeling of imaging and genetic data, and even
disease phenotypes using rigorous modeling strategies is

a promising direction as it accounts for, to some extent,
the underlying mechanisms of the observations, incorpo-
rates prior information, and better captures intrinsic
structures of imaging and genetic data, and thus provides
a more comprehensive way to integrate multi-modal data
than many machine learning approaches. The only issue is
that these methods typically involve sophisticated infer-
ence methods, such as Markov chain Monte Carlo
(MCMC), which require intensive computation, and
therefore need a balance between modelflexibility and
computational burden.

DATA REDUCTION AND MULTIPLE
TESTING CORRECTION

Data reduction methods

The ultra-high dimensional imaging and genetic data
imposes many challenges on whole-brain genome-wide
modeling, and often causes statistical and computational
problems. Therefore, a balance is often needed between
pure discovery methods and those that invoke data
reduction. A priori hypotheses or biological information
may be used to constrain the analysis to a handful of brain
regions or a wide list of potentially associated SNPs and
genes. Alternatively, various software packages and
atlases may be used to parcellate the brain into a number
of cortical and subcortical regions of interest (ROI), and
derive a summary measure from each ROI to get a coarse
coverage of the entire brain. Such parcellation is easy to
perform and consistent across subjects, but has the risk of
missing patterns of effects that lie only partially within the
chosen ROIs. Data-driven feature extraction methods
such as principal component analysis (PCA) and
independent component analysis (ICA) may be used to
avoid these problems, but may raise difficulties to align
extracted features across subjects. Recently, Chiang et al.
[58] proposed a novel approach to reduce the dimension-
ality of voxel-wise data. Specifically, they selected highly
genetically influenced voxels and then grouped these
voxels into ROIs using hierarchical clustering based on
their genetic correlation within images. This approach has
the advantage of defining ROIs whose component voxels
are influenced by a highly overlapping set of genes, and
can potentially be applied to any imaging modalities that
show pleiotropy. As for the data-driven dimension
reduction of the whole-genome data, a preliminary
univariatefiltering is usually applied. Multivariate
methods may also be used iteratively, removing the
lowest ranked variables at each iteration [96]. Iterative
sure independence screening [97,98] iterates a univariate
screening procedure conditional on the previously
selected features to capture important features that are
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marginally uncorrelated with response. This may be a
promising method for genetic data reduction and has been
applied to genome-wide association studies [99].

Multiple testing correction

Seeking potential associations between imaging traits and
genetic variants using univariate-imaging or univariate-
genetic analyses typically involves performing a large
number of statistical tests at each voxel in the brain or for
each genetic variant on the genome. In both contexts,
multiple testing correction must be made to account for
the number of statistical tests and control false positives.
When multiple testing correction is needed over the
brain, i.e., to threshold the SPM and localize significant
genetic influences, traditional methods such as Bonferroni
correction and false discovery rate (FDR) procedures
[100,101] may be used. However, while they are sensible
ways to control false positives, these voxel-wise correc-
tion methods do not account for the spatial correlation
structure in imaging data and thus often lack power. If one
needs only to map the 3-dimensional genetic influences
for a small number of genetic variants, nonparametric
permutation methods [102,103] may be an optimal
choice, as it requires few assumptions and allows for
the consideration of nonstandard test statistics when no
parametric result is available. However, the heavy
computational burden of permutation tests prevents its
application to more than a handful of genetic variants.

Sometimes, under appropriate assumptions, pooling and
parametricfitting [104] of permutation distributions offer
the potential to make permutation practical [79]. Random
field theory (RFT) is a core inferential tool in neuroima-
ging [35]. It assesses the behavior of extreme test statistic
value or spatial extent of a set of contiguous voxels
exceeding some predefined threshold in an elegant way
[105], and has a unified theory for various statistical maps
[106,107]. Ge et al. [79] were thefirst to overcome the
time consuming smoothness estimation process, and
applied a fast implementation of RFT to a voxel-wise
genome-wide data set. RFT makes use of the spatial
information in imaging data by implicitly accounting for
the search volume and the smoothness of the statistic
images, and produces more sensitive family-wise error
(FWE) corrected inferences than voxel-wise correction
methods. Cluster-inspired methods other than standard
peak and cluster size inferences such as threshold-free
cluster enhancement [108] and RFT cluster-mass test
[109] may also be useful. A variant that combines RFT
and FDR, known as topological FDR, has also been
developed [110]. With a similar spirit as RFT to make use
of spatial information, Zhang et al. [111] proposed a novel
FDR procedure that embeds the information of neighbor-
ing voxels into the conventional FDR to improve
sensitivity and enhance signal detection.
Multiple testing correction over the genome is also not
straightforward as the correlation structure along the
genome is complex and unpredictable. In screening the

Table 2. Advantages and disadvantages of various imaging genetic association methods

Imaging genetic association methods Advantages Disadvantages

Candidate

approaches

Candidate-gene candidate-phenotype

analyses/Candidate-gene whole-brain

analyses/Candidate-phenotype

genome-wide analyses

Test biologically plausible

hypotheses; clearly interpretable

results; well established statistical

methods

Need strong a priori knowledge; low

potential for novelfindings

Whole-brain

genome-wide

analyses

vGWAS
Completely unbiased scan of

voxel-wise genome-wide data

Ignore spatial correlation and LD struc-

ture; poor reproducibility, low power;

heavy computational burden & multiple

testing correction

Regularized multiple regression/

PCReg

Model the overall effect of multiple

SNPs; reduce multiple comparison

problem

Ignore spatial correlation; unable to

capture complex SNP-SNP interactions

Kernel methods and RFT

Make use of spatial information;

capture any types of SNP-SNP

interactions; test effects of rare

variants; computationally efficient

Assumptions needed for parametric

methods being valid and accurate

Regularized two-block methods/

regularized multivariate multiple

regression / paraICA

Respect multivariate nature of

imaging and genetic data;

dramatically reduce multiple

comparison problem

High computational demand; over-fitting

issues; results may be hard to interpret

Bayesian probabilistic modeling

A comprehensive way to integrate

multi-modal data; offer model

flexibility and interpretability power;

incorporation of prior information

Typically involve sophisticated infer-

ence methods
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genome for association, the number of SNPs often
substantially outnumbers the independent statistical tests
actually performed, making the Bonferroni correction or
standard FDR procedure over-conservative. One widely
used approach is to apply a PCA on the LD matrix
between SNPs and set the effective number of indepen-
dent tests as the number of principal components required
to jointly explain a large majority (e.g., 99.5%) of the
overall variance in the original SNP sets [112,113]. A
standard Bonferroni or FDR procedure can then be
applied, replacing the total number of SNPs by the
effective number of independent tests. Recently, follow-
ing a similar idea but with full statistical rigor, Fan et al.
[114] proposed a novel method based on principal factor
approximation that can accurately estimate false discov-
ery proportion under an arbitrary dependence structure.
Multi-dimensional local FDR procedures [115] may also
be promising to capture different aspects of the informa-
tion contained in genetic data.
Finally, with the increasing popularization of graphic
processing unit (GPU) that provides orders of magnitude
speed-ups [116], large-scale resampling-based tests will
become practically feasible. However, Bayesian prob-
abilistic modeling, as a completely different direction,
which assigns probabilistic measures of relevance to each
pair of genetic variants and imaging traits, and is free of
multiple testing correction problems, also has its place as
it can provide more information, e.g., the spatial
confidence intervals, on genetic effects of interest,
incorporate prior information, offer moreflexible and
interpretable model estimates, and facilitate model
comparison and selection [117].

CONCLUSION AND FUTURE DIRECTIONS

Although imaging genetic studies have been discovering
novel genetic loci and imaging markers that are associated
with brain illnesses, it has been increasingly recognized
that replications are particularly important in discovery
science such as imaging genetics to lower false positives
and spuriousfindings [118]. However, unlike many
studies in psychiatric genetics that involve tens of
thousands of replication samples to facilitate replication
[119], a majority of the imaging genetic association
studies are still limited to hundreds rather than thousands
of subjects. Moreover, genetic variants typically have
only subtle effects on imaging measures (influencing the
phenotypic variance less than 1%per allele), much lower
than the effect of brain activity evoked by external
stimuli, or morphometric change induced by some disease
processes [13]. Therefore, replications in imaging genetic
studies are faced with more difficulties than in imaging-
only or genetic-only studies. To address the non-
replication issue, a few large imaging genetics data sets

have been collected in the past few years and made
publicly available. For example, since 2005, the long-
itudinal Alzheimer’s Disease Neuroimaging Initiative
(ADNI; http://adni.loni.ucla.edu/) has been collecting
and releasing MRI and PET images, whole-genome
genetics, cognitive tests, and other biomarkers of
Alzheimer’s Disease (AD) from hundreds of AD patients,
mild cognitive impairment (MCI) subjects and elderly
controls with an aim to define the progression of AD and
validate the use of various biomarkers for AD diagnosis
and treatment. The IMAGEN study (http: //www.imagen-
europe.com/) is another large-scale multi-center imaging
genetic consortium aiming at identifying the genetic and
neurobiological basis of individual variability in impul-
sivity, reinforcer sensitivity and emotional reactivity, and
determining their predictive capability for the develop-
ment of frequent psychiatric disorders [120]. Multi-modal
data including MRI, functional MRI, genome-wide
genetics were collected from 2000 14-year-old adoles-
cents with longitudinal follow-ups. A more recent
endeavor along this line is an EU multi-million
collaborative project IMAGEMEND (IMAging GEnetics
for MENtal Disorders). IMAGEMEND focuses on
schizophrenia, bipolar disorder and attention deficit/
hyperactivity disorder (ADHD), and aims to assemble
Europe’s largest data set, combining imaging, genetic,
environmental, cognitive and clinical information. This
consortium, comprising data from multiple disorders,
allows for the development of trans-diagnostic models in
order to uncover shared genetic and environmental risk
factors, and fundamental processes underlying multiple
mental disorders, and helps understand comorbidity
among disorders. These freely available large data sets,
collected and preprocessed following standard protocols
and procedures, will undoubtedly keep processing errors
to the minimum and improve reliability and credibility of
thefindings.
Meta-analytic studies, which synthesize and combine
imaging geneticfindings from many cohorts worldwide to
increase statistical power and identify consistent genetic
effects across studies, can to some extent resolve the
replication problem and have attracted increasing interest.
The ENIGMA Consortium (Enhancing Neuro Imaging
Genetics Through Meta-Analysis; http://enigma.loni.
ucla.edu) pools data from imaging genetic studies to
offer the power to detect robust common genetic
associations. As a successful example, Stein et al. [121]
pooled data on hippocampal volume and intracranial
volume from 21151 individuals scanned at 125 institu-
tions worldwide, and identified several common genetic
variants that influence these brain structures. Follow-up
efforts screening the genome for common genetic
influences on subcortical structures as well as high-
resolution FA images [122] are underway. Interactive
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tools to visualize the ENIGMA association results
(EnigmaVis) are also under active development [123].
To summarize, imaging genetics is still in its infancy
but promises to shed light on how genetic variants
influence brain organization and function. Statistical
approaches are rapidly evolving from univariate analyses
to multivariate analyses, and from candidate approaches
towards complete discovery science. Computationally
efficient, biologically plausible, and statistically powerful
methods are needed to handle the very high dimensional
imaging and genetic data with complex covariance and
noise structures. International joint efforts and collabora-
tions are needed to improve the reliability, incredibility
and reproducibility of thefindings through data sharing,
phenotypic harmonization procedures and meta-analysis.
The desire to understand the human brain will never come
to an end. Very recently, the European Union (EU) and the
US have successively launched the Human Brain Project
(HBP) and the BRAIN Initiative (Brain Research through
Advancing Innovative Neurotechnologies) respectively.
Both projects have the ambition to simulate and mimic the
human brain with supercomputers, and even map the
activity of every single neuron, in order to gain profound
insight into how the human brain is functioning, and to
better diagnose brain illnesses and develop new treat-

ments. With the ever largest investment in brain science
from EU and the US government— approximately one
billion euro in funding for HBP and three billion dollars
for the BRAIN over ten years, the gap between brain
activity at the level of single neurons and the measure-
ments at the level of brain regions using functional brain
imaging techniques will be largelyfilled.
Eventually, the 5-O (GenO-, NeurO-, EndophenO-,
BehaviO-, and EnvirO-) approach will open a new era to
the investigation of mental disorders. As shown in Figure
4, big data willfirst be collected and analyzed at the
genotypic (e.g., SNPs, CNVs, etc.), neuronal (e.g.,
electrophysiological recordings, animal models, etc.),
endophenotypic (e.g., features extracted from structural,
functional, and diffusion images), behavioral (e.g.,
various neuropsychiatric rating scales), and environmen-
tal (e.g., negative experience, stress, etc.) level. More
importantly, the 5-O approach refers to integration of the
data and results across multiple levels and modalities
using multi-level multi-modal modeling and cutting-edge
computational tools, to identify biomarkers for various
neuropsychiatric disorders, reveal their genetic basis,
account for their underlying biological processes and
mechanisms, as well as their interaction with environ-
mental factors. Well-developed animal models will help

Figure 4. The 5-O (GenO-, NeurO-, EndophenO-, BehaviO-, and EnvirO-) approach for the investigation of mental

disorder.Multi-level multi-modal data are collected and integrated by comprehensive modeling and cutting-edge computational

tools, to identify biomarkers for various neuropsychiatric disorders, reveal their genetic basis, account for their underlying biological

processes and mechanisms, as well as their interaction with environmental factors.
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cross-validate thefindings. The gap between genetics,
brain images, and behaviors will be largely bridged,
providing deep insight into how genetic variants underpin
various neuropsychiatric disorders, and depicting a
complete picture of the pathways through which genetic
factors exert their effects on the brain. We would expect
that we will be getting increasingly close to improve
automated diagnosis at the pre-symptomatic stage, better
monitor and predict disease progression and treatment
response, develop personalized treatment, andfinally
reach full clinical practice in psychiatry.
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