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The importance of mathematics and statistics in genetics is well known. Perhaps less well known is the
importance of these subjects in evolution. The main problem that Darwin saw in his theory of evolution by
natural selection was solved by some simple mathematics. It is also not a coincidence that the re-writing
of the Darwinian theory in Mendelian terms was carried largely by mathematical methods. In this article I
discuss these historical matters and then consider more recent work showing how mathematical and
statistical methods have been central to current genetical and evolutionary research.

INTRODUCTION

A brief description of the Darwinian theory of evolution
by natural selection is as follows. In his revolutionary
book, generally called The Origin of Species, Darwin [1]
claimed that biological evolution arises by natural
selection, operating on the variation that exists between
the individuals in any biological population. The argu-
ment has four main components. First, the more fit
individuals in the population leave disproportionately
more offspring than the less fit individuals. Second, the
offspring in large measure inherit the fitness of their
parents. Third, and following from the first two points, the
offspring generation is on average more fit than the
parental generation. Finally, as generation succeeds
generation, the population steadily becomes more and
more fit, and eventually the more fit types replace the less
fit. The changes in the population are often taken as being
quite gradual, and may well be thought of as taking place
over a time span of many thousands or even hundreds of
thousands of years. This is a population level theory.
There is no concept of the evolution of the individual. The
individual himself does not evolve. It is the population
that evolves as generation succeeds generation.
Clearly the existence of variation in the population is

crucial to the argument. Without this variation there are no
fitness differentials between individuals, and the selective
process cannot proceed. Darwin considered variation
from one person to another in physical, mental and other
characteristics, but when his argument is recast in
genetical terms, as it will be below, it will be necessary

to measure variation at the genetic level, and to assess the
extent to which his theory continues to hold when
investigated at the level and in terms of the modern
molecular notion of a gene.
The main problem with the theory, as it was presented

by Darwin in 1859, was that at that time the hereditary
mechanism was unknown. However, the nature of this
mechanism is crucial to a complete understanding of the
argument. Worse than this, insofar as any idea of a theory
of heredity was known in 1859, the most prevalent theory
was based on the idea that any characteristic of a child, for
example his blood pressure, is a mixture or blending of
that characteristic in that child’s parents, plus or minus
some small deviation deriving from unknown random
effects. It is easy to see that under this so-called
“blending” theory an effective uniformity of any
characteristic among the individuals in the population
will soon arise, so that after no more than about ten or
twenty generations there will be essentially no individual-
to-individual variation in any characteristic available for
natural selection to act on. This difficulty was raised soon
after the Darwinian theory was put forward, and was
recognized immediately as a major criticism of the theory,
and (unfortunately) Darwin amended later editions of his
book in the light of it. To his dying day Darwin did not
know of the resolution of the “variation preserving”
difficulty.
Clearly some modification of the argument is neces-

sary, since we do not observe, in present-day populations,
the uniformity of characters that the blending theory
predicts. However, any modification to the blending
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theory would probably require the assumption that the
characteristics of children do not closely resemble those
of the parents, and would thus remove one of the main
underpinnings of the Darwinian theory.
The above discussion brings us to Mendel. Mendel’s

work [2] appeared in 1866, seven years after the
appearance of The Origin of Species. It was in effect
unread, and its importance unappreciated, until it was
rediscovered in 1900. It led, however, to the solution of
the maintenance of variation puzzle that Darwin could not
solve.
Mendel made the first and basic steps in elucidating the

hereditary mechanism. As is well known, he considered
seven characters in peas, each of which happened to have
a simple genetic basis. For example, he found that seed
color, either green or yellow, is determined by the genes at
a single gene locus, at which arose the “green” and the
“yellow” alleles. We will call the green/yellow gene
concept the billiard ball paradigm — a gene is seen under
this paradigm as being either a green or a yellow billiard
ball, with no known internal structure. In the first half of
the 20th century the billiard ball paradigm of the gene was
all that was available. The resolution of the variation
problem was made using this paradigm for the gene, and it
still holds even today when the DNA structure of the gene
is known. To see how this was so we turn to some
mathematical consequences of the billiard ball paradigm.

MATHEMATICAL IMPLICATIONS OF MENDELISM:

THE RANDOM-MATING CASE

Introductory concepts

Our focus throughout is on diploid organisms, such as
Man, in which any individual receives half his genetic
composition from his mother and half from his father. We
consider only autosomal loci: the sex-linked case involves
minor differences from the analysis below. Consider some
specific gene locus on some specific chromosome, which
we call locus “A”. In general, genes of many different
types might occur at this locus. Suppose for the moment
that only two types of genes can arise at this locus, which
we call the A1 allele and the A2 allele. (The words “gene”
and “allele” often become confused in the literature. Here
we adhere to the concept that a gene is a physical entity
while the word “allele” refers to a gene type. Despite this
we often use the expression “gene frequency” instead of
the more logical “allele frequency”, since the term “gene
frequency” has become embedded in the literature.) There
are three possible genotypes, A1A1, A1A2 and A2A2. As
mentioned above, the Darwinian theory is a population-
level theory, and it is therefore necessary to consider the
population frequencies of these genotypes, and how they
change with time. We start with arbitrary frequencies in
generation 1, as shown in the table below, and consider

what happens in succeeding generations under the
assumptions of random mating, no mutation, no selective
differences, and indeed no complicating elements of any
kind. It is easy to see that the genotype frequencies in
generations 1, 2 and 3 are as given below:

A1A1 A1A2 A2A2

f requency, generation 1 X11 2X12 X22

f requency, generation 2 x2 2xð1 – xÞ ð1 – xÞ2
f requency, generation 3 x2 2xð1 – xÞ ð1 – xÞ2

(1)

In this table x = X11+ X12, so that x is the frequency of the
allele A1 in generation 1. The entries in this table show
three important features. First, the genotype frequencies
attained in generation 2 are of a binomial form, with x, the
frequency of A1 in generation 1, being the parameter of
this distribution. Second, elementary calculations show
that the frequency of A1 in generation 2 is also x. Finally,
the genotype frequencies achieved in generation 2
continue to hold in generation 3, and hence also hold in
all future generations. This final observation shows that
there is no tendency for the variation in the population to
be dissipated. These elementary calculations, first made
independently by Hardy [3] and Weinberg [4] in 1908,
just a few years after Mendelism was re-discovered, show
that under a Mendelian hereditary system, Darwinism is
saved: the variation needed for the operation of the
Darwinian theory is preserved. A little bit of mathematics
has gone a long way!
The “Hardy-Weinberg”, or binomial, form of the

genotype frequencies in the above table, from generation
2 onwards, arise (in a randomly mating population) even
when selective differences between genotypes arise,
provided that genotype frequencies are taken at the time
of conception of any generation. Thus Hardy-Weinberg
frequencies will be used in the analysis of the selective
case below, it then being understood that all frequencies
are taken at this stage of the life cycle. In Genetics courses
the emphasis is often placed mainly on the binomial form
of the Hardy-Weinberg frequencies, which, conveniently,
depend on the single quantity x. The importance of the
permanence of these frequencies (at least in cases where
there is no selection) to the Darwinian paradigm is often
not even mentioned. Yet this permanence is the true
implication of the Hardy-Weinberg scheme. A similar
result hold for haploid populations: again, since the gene
is the unit of transmission, genetic variation is preserved
in these populations also.
Of course genetic variation might eventually be lost

through the action of selection or random drift (discussed
below), but the time-scales for changes brought about by
these is much longer than that appropriate to the blending
theory.
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It is worthwhile asking why variation is preserved in
the Mendelian system. The basic reason is a “quantal”
one: a parent of genotype A1A2 does not pass on, say, two-
thirds of an A1 gene and one-third of an A2 gene, but an
entire A1 gene or an entire A2 gene. It is also possible to
argue that the “quantal”Mendelian mechanism is the only
hereditary system that preserves variation, and thus
allows the evolution of superior forms by natural
selection. Thus it can be argued that if intelligent, that is
evolved, creatures exist elsewhere in the universe, they
also will have a Mendelian hereditary mechanism.

Selection and mutation

So far there has been no mention of selection or of
mutation. Selection occurs when the various genotypes
have different fitnesses. These differences can arise for
various reasons, in particular through different viabilities,
different fertilities and different mating success probabil-
ities for the various genotypes. The theory for the latter
two forms of selection is complex, and here we focus on
differential viability fitnesses, that is on different
capacities of the various genotypes to survive from the
time of conception to the age of reproduction.
Suppose then that the fitness of any individual depends

on his genotype at a single locus A, and (as above) that
two alleles, A1 and A2, and thus three genotypes, are
possible at that locus. The fitnesses of individuals of these
three genotypes are defined in the following table:

genotype A1A1 A1A2 A2A2

fitness w11 w12 w22

frequency x2 2xð1 – xÞ ð1 – xÞ2
(2)

From this table we are able to calculate several quantities,
in particular (i) the mean fitness w in the population, (ii)
the variance σ2 in fitness, (iii) the frequency x0 of A1 in the
offspring generation and from this the change Δx=x# – x
in the frequency of A1 between parental and offspring
generations, and finally (iv) the change Δw in the mean
fitness of the population between parental and offspring
generations. These values are found by straightforward
algebra and are given below:

w=w11x
2 þ 2w12xð1 – xÞ þ w22ð1 – xÞ2, (3)

�2=w2
11x

2 þ 2w2
12xð1 – xÞ þ w2

22ð1 – xÞ2 –w2, (4)

x0=x
w11xþ w12ð1 – xÞ

w
, (5)

Δx=xð1 – xÞw11xþ w12ð1 – 2xÞ –w22ð1 – xÞ
w

, (6)

Δw ¼ 2xð1 – xÞfw11xþ w12ð1 – 2xÞ –w22ð1 – xÞg2

� w11x
2 þ w12 þ

1

2
w11 þ

1

2
w22

� �
xð1 – xÞ

�

þw22ð1 – xÞ2 �w – 2: (7)

Clearly Δw is non-negative, so we may conclude that
natural selection acts so as to increase, or at worst
maintain, the mean fitness of the population. This
provides a quantification in genetic terms of the
Darwinian concept that an “improvement” in the popula-
tion has been brought about by the action of natural
selection.
If the wij are all close to unity we may write, to a

sufficiently close approximation,

Δw � 2xð1 – xÞfw11xþ w12ð1 – 2xÞ –w22ð1 – xÞg2: (8)

We return to this approximation later.
Equation (6) gives useful information about the central

microevolutionary process, namely the replacement of
one allele in a population by another. For example, it is
easy to see that if w11>w12>w22, the frequency of A1

steadily increases and asymptotically approaches the
value 1. The time Tðx1, x2Þ required to increase the
frequency of A1 from some low value x1 to some higher
value x2 can be found by approximating (6) by the
differential equation

dx

dt
=xð1 – xÞfw11xþ w12ð1 – 2xÞ –w22ð1 – xÞg, (9)

to obtain

Tðx1,x2Þ=!
x2

x1

dx

xð1 – xÞfw11xþ w12ð1 – 2xÞ –w22ð1 – xÞg
:

(10)

Note that the denominator w in (6) has been replaced by 1
in this calculation, in accordance with the view that, since
most population sizes are held at a constant value by
extrinsic forces such as food supply, the mean fitness of a
population can be taken as 1.
Equation (10) can be solved for Tðx1, x2Þ, but is best

left in the form given, since this is quite informative. For
example, the denominator of the integrand on the right-
hand side in (10) shows that when the frequency x of A1 is
close to 0 and close to 1, only very slow changes in this
frequency will arise through selection.
A second important fitness configuration is that for

which

w12 > w11, w12 > w22 , (11)

that is if there is heterozygote superiority in fitness. Here
there is a stable equilibrium at which the frequency of A1

QB

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2013 11

Mathematics, genetics and evolution



is x*, defined by

x*=
w12 –w22

2w12 –w11 –w22
: (12)

When the frequency of A1 is x
* the mean fitness does not

change from one generation to the next. These two
examples show that the Mendelian system can explain
both evolution (through changes in gene frequencies) or
the existence of standing genetic variation, with unchan-
ging gene frequencies.
Mutation is the spontaneous change of a gene from one

allele to another. Suppose that the mutation rate from A1 to
A2 is u and that the mutation rate from A2 to A1 is v. It is
easy to see that the daughter generation frequency of A1 is
given by

daughter  generation  f requency=xð1 – uÞ þ vð1 – xÞ,
(13)

so that the change in frequency from one generation to the
next is

Δx=v – ðuþ vÞx: (14)

This implies that there is an equilibrium where the
frequency of A1 is given by

f requency  of   A1=
v

uþ v
, (15)

and it is easy to see that this equilibrium is stable.
When both mutation and selection exist, the change in

the frequency of A1 is, to a first approximation, the sum of
the changes given in (6) and (14). Because mutation rates
are generally thought of as being smaller than selective
differences, the first of these changes is considered the
more significant one, except in the neighborhood of an
equilibrium point. There is again an equilibrium point of
the frequency of A1 when both selection and mutation
exist, and the nature of this point depends on the relative
values of the fitnesses wij. When w11>w12>w22, for
example, this equilibrium frequency is very close to
1 – u=ðw11 –w12Þ. The inferior allele A2 is maintained in
the population only because of the mutation from A1 to
A2, and this point is called one of selection-mutation
balance. When the inequalities (11) hold and mutation
exists there will also be a stable equilibrium frequency of
A1. Since mutation rates are very low, this will not differ
appreciably from the frequency given in (12).

GENES AND GENOTYPES: THE EVOLUTIONARY

“FAULT-LINE”

Despite the fact that the Mendelian hereditary system
provides the perfect framework for Darwinian evolution,
there remains one serious problem in joining Darwinism
with Mendelism. This arises because there is a fault-line
in the Mendelian/Darwinian process. A fitness belongs to

an individual and depends on that individual’s genotype,
but an individual passes on a gene, not his entire
genotype, to an offspring. This means that for a complete
evolutionary investigation of the process it is necessary to
isolate that part of the fitnesses of the various genotypes
that can be attributed to “genes within genotypes”. Doing
this was the great achievement of Fisher [5], who showed
how to overcome, as far as is possible, the fault-line
referred to above. To isolate the “genes within genotypes”
component of fitness we approximate the respective
fitnesses in (3) by “additive gene (or genetic) fitness”
values indicated as follows:

fitness of A1A1 fitted by wþ 2α1,
fitness of A1A2 fitted by wþ α1 þ α2,
fitness of A2A2 fitted by wþ 2α2.

Here α1 and α2 can be thought of as additive fitness
contributions of the alleles A1 and A2 respectively, relative
to the mean fitness w. Of course these approximate values
do not represent the true fitnesses of these genotypes,
since dominance effects (at the A locus) and epistatic
effects (between the A locus and all other loci in the
genome) have been ignored. Nevertheless, substantial
progress is possible using these approximations, as we
now see.
With these approximate fitted values as actual fitnesses,

we would compute the population mean fitness by

x2 wþ 2α1ð Þ þ 2xð1 – xÞ wþ α1 þ α2ð Þ
þ ð1 – xÞ2 wþ 2α2ð Þ,

which reduces to wþ 2½α1xþ α2ð1 – xÞ�. This would be
equal to w if

α1xþ α2ð1 – xÞ=0: (16)

The values of α1 and α2 are found by a weighted least
squares procedure that is, by minimizing the weighted
sum of squares

x2 w11 –w – 2α1ð Þ2
þ 2xð1 – xÞ w12 –w – α1 – α2ð Þ2
þ ð1 – xÞ2 w22 –w – 2α2ð Þ2 (17)

with respect to α1 and α2. The minimizing values of α1
and α2 are found to be

α1 ¼ w11xþ w12ð1 – xÞ –w,
α2 ¼ w12xþ w22ð1 – xÞ –w:

(18)

These values do satisfy (16), so that with the “fitnesses” of
the three genotypes given respectively by wþ 2α1, wþ
α1 þ α2 and wþ 2α2 and with α1 and α2 defined by (18),
the true mean fitness is recovered. In other words it was
not necessary to impose the condition (16): it is
automatically satisfied by the values of α1 and α2 defined
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by (18). On the other hand equations typified by (16)
will be needed later when the whole genome is
considered.
The residual sum of squares after these values of α1 and

α2 are inserted in (17) is called the dominance variance,
denoted �2

D, and is given by

�2D=x2ð1 – xÞ2fw11 – 2w12 þ w22g2: (19)

If the actual genotype fitnesses had been of the additive
form in which w11 –w12=w12 –w22, a perfect fit to the
fitnesses will be obtained by using the three approximat-
ing fitnesses wþ 2α1 for A1A1, wþ α1 þ α2 for A1A2 and
wþ 2α2 for A2A2. In this case the dominance variance �2D
is zero. In all other cases the fit will not be perfect; that is,
one can usually explain some but usually not all of the
variation in the fitness values by fitting the α values.
Of far greater importance than �2

D is that part of the
variance in fitness that is explained by fitting the additive
values α1 and α2. This is Fisher’s [5] additive genetic
variance and is denoted �2

A. It is found as the difference
between the total variance (4) and the dominance
variance. Straightforward algebra shows that

�2A=2xð1 – xÞðw11xþ w12ð1 – 2xÞ –w22ð1 – xÞÞ2: (20)

The additive genetic variance thus measures the amount
of variation in fitness that can be explained by genes
within genotypes. It might be expected from the foregoing
that the additive genetic variance plays an important role
in several evolutionary considerations. This is indeed the
case, and we now consider this concept in more detail.

THE ADDITIVE GENETIC VARIANCE

The importance of the additive genetic variance can
perhaps best be appreciated by considering some
examples of its use. We do this in this section. It is
important to remember that the additive genetic variance
is a diploid population concept: it has no equivalent for
haploid populations.

The Fundamental Theorem of Natural Selection

The Fundamental Theorem of Natural Selection (Fisher
[5]) is a very complicated theorem and its full and correct
version will be given later. The (incorrect and over-
simplified) version of the theorem states that since in a
population of constant size we can take w to be 1, the
change Δw in mean fitness between parental and daughter
generations (as given approximately in (8)) is approxi-
mately equal to the additive genetic variance (given in
(20)). This is often stated as the Fundamental Theorem of
Natural Selection. It is not, however, the correct statement
of the theorem. Nevertheless, this misinterpretation of the

theorem is interesting, since it shows that Darwinian ideas
have to be updated because of these mathematical
calculations, which show that because of the Mendelian
mechanism it is only the “additive genetic” part of the
total variance in fitness that contributes to an increase in
mean fitness. Thus it is not accurate to say that evolution
by natural selection will occur if there is positive variance
in fitness: a more accurate statement is that evolution will
occur if and only if there is positive additive genetic
variance in fitness in the population. Mathematics has
played a key role here in up-dating and indeed amending
the Darwinian paradigm in the light of Mendelian
genetics.
We give the correct version of the Fundamental

Theorem of Natural Selection later. For now we note
that it is quintessentially a diploid population result. At
any given gene locus a parent passes on a single gene to
an offspring, not his entire genotype. Thus it is essential to
isolate that part of the total variance in fitness that is due to
“genes within genotypes”. This is precisely what the
additive genetic variance does. Evolution by natural
selection will not occur if the additive part of the total
variance in fitness is zero. This is emphasized in the
following section.

Standing genetic variance

The “natural selection” change in gene frequency given in
(6) can be contrasted with the situation where the genetic
composition of a population does not change from one
generation to the next. The case where the fitness values
are of the form (11) provides one example of this. When
the frequency of A1 is at the value x* as given in (12)
neither of the alleles A1 and A2 is more “fit” than the other.
At this equilibrium, �2A=0. Thus while there is a positive
variance in fitness at this equilibrium point, none of this
variation is “additive”, or residing within genes. Thus
neither allele is superior to the other and no evolution
occurs, as is in any event clear since genotype frequencies
do not change from one generation to the next when the
frequency of A1 is x

*.

The correlation between relatives

One of the key components of the Darwinian theory is the
similarity, or in statistical terms the correlation, between
parent and offspring with respect to some measurement,
and in particular to fitness. Consider some character
determined entirely by the genotype at the locus A, and
for which all A1A1 individuals have measurement m11, all
A1A2 individuals have measurement m12, and all A2A2

individuals have measurement m22. To find the parent-
offspring correlation it is necessary to consider the flow of
genes between parent and offspring at the A locus.
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Elementary Mendelian arguments show that the genetic
combinations between parent and offspring that can arise,
with various probabilities, are as indicated in the table
below:

of f spring

genotype A1A1 A1A2 A2A2

A1A1 x3 x2ð1 – xÞ 0

parent A1A2 x2ð1 – xÞ xð1 – xÞ xð1 – xÞ2
A2A2 0 xð1 – xÞ2 ð1 – xÞ3

(21)

(The values in this table assume that the father and the
mother of any individual are unrelated, an assumption that
we make for now.) If one considers all possible
combinations of parental-offspring measurements and
their probabilities, it is found that the correlation between
parent and offspring for this measurement is

correlationðparent-of f springÞ=1

2

�2A
�2 ,

where �2 and �2A are as given in (4) and (20) respectively,
with wij replaced by mij. Similar calculations for other
relative pairs show that, for example,

correlationðsib-sibÞ=1

2

�2
A

�2
þ 1

4

�2D
�2

,

correlationðuncle-nephewÞ=1

4

�2
A

�2
,

correlationðgrandparent-grandchildÞ=1

4

�2
A

�2 :

For our present purposes the main interest in these
formulae is in the central role that the additive genetic
variance �2

A plays in them. In view of the comments made
earlier about the interpretation of the additive genetic
variance as describing that part of the variance deriving
from genes within genotypes, and the transmission of
genes from parent to offspring, it is not surprising that
parent-offspring correlation is directly proportional to the
additive genetic variance.
A more elegant way of finding these formulae was

proposed by Malécot [6]. We consider two individuals X
and Y, and define xf (xm) as the gene that X received from
his father (mother), with a similar definition for yf and ym.
We say for example that xf � ym if the gene that X
received from his father is “identical by descent” with the
gene that Y received from his mother, where two genes are
identical by descent if they can be traced back to a
common ancestor gene (for example in a parent or a

grandparent). Defining

Pff=probðxf � yf Þ,
Pfm=probðxf � ymÞ,
Pmf=probðxm � yf Þ,
Pmm=probðxm � ymÞ,

α=
1

2
ðPff þ Pfm þ Pmf þ PmmÞ,

β=Pff Pmm þ Pfm þ Pmf ,

the correlation between any pair of relatives is given by

correlation=α
�2
A

�2
þ β

�2
D

�2 : (22)

This formula can be used to verify the correlations given
above. For example, for two sibs, Pff = Pmm = 1/2, Pfm =
Pmf = 0, and insertion of these values into (22) yields the
sib-sib correlation given above.
This correlation formula (22) is used frequently in the

literature. However it applies only under very restrictive
circumstances, namely (i) that the character in question
depends only on the genes at one single gene locus, (ii)
that there is no contribution to the correlation deriving
from the environment, (iii) that the population mates at
random, (iv) that stochastic effects have been ignored, and
(v) that members of any mating pair are unrelated. Under
non-random mating and in cases where the character in
question depends on the genes at many loci the formulae
become much more complex, as is shown later. All the
same, the additive genetic variance plays a key roll in
these more complex formulas.

Heritability

The concept of the (narrow) heritability (h2) is central in
plant and animal breeding. In the context described above
it is defined as

h2=
�2A
�2 ,

where �2
A and �

2 relate to the additive and total variance in
the character in question. This can be regarded as a
measure of the extent to which the stock can be improved
by breeding. If for example h2 = 0 there is no additive
genetic variance in the character and no improvement is
possible. In other words the gene frequencies are already
at their optimum values as indicated by (12). The larger
the heritability the more the stock can be improved by
selective breeding.

GENERALIZATION TO THE CASE OF MANY

ALLELES

The theory developed above can be generalized in many
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ways. In this section we consider one of these, namely the
generalization to the case of an arbitrary number of
possible alleles at the gene locus A of interest.
Suppose that the number m of alleles that can arise at

the locus A exceeds two. There is now a (symmetric)
matrix W of fitness values given by

w11 w12 w13 � � � w1m
w21 w22 w23 � � � w2m
w31 w32 w33 � � � w3m

M M M M M
wm1 wm2 wm3 � � � wmm

2
6664

3
7775,

where wij is the fitness of the genotype AiAj. The condition
that there be a stable equilibrium with all alleles present at
positive frequencies is that W have exactly one positive
eigenvalue and at least one negative eigenvalue (Kingman
[7]). This is a far less transparent condition than that
arising in (11) when m = 2, and could not be found other
than by mathematical methods.
The simplest example of this result arises in the case

where wii = 1 – s, wij = 1, (i ≠ j), where s is a (small)
positive constant. In this case the eigenvalues of W are
m – s, – s, :::, – s, the above condition is satisfied, and the
equilibrium (where each xi takes the value m

–1) is stable.
If the frequencies of the various alleles are x1, x2, :::, xm,

the mean fitness w of the population is given by
w=

X
i

X
jwijxixj. It can be shown (Kingman [7]) that

this increases (or at worst remains unchanged) from one
generation to another, in agreement with the correspond-
ing conclusion when m = 2.
The additive genetic variance is found by minimizing

the expression
X
i

X
j

wij –w – αi – αj
� �2

with respect to parameters α1, α2, :::, αm. It is found that
the minimizing values of α1, α2, :::, αm are given by

αi=
X
j

wijxj –w, ði=1, 2, :::,mÞ: (23)

These are the direct generalizations of the values given in
(18). They also satisfy the generalization of (16), namely
that

X
i

xiαi=0: (24)

Thus this equation does not have to be imposed
extrinsically, as is often done. As with (16) it will have
a far greater importance later, when we consider the whole
genome.
The additive genetic variance �2

A, defined as the sum of
squares removed by fitting the values of α1, α2, :::, αm, can
be expressed in various ways, one of the most useful

being

�2
A=2

X
i

xiα
2
i : (25)

Provided that the wij values are close to each other, the
increase in mean fitness is found to be close to the additive
genetic variance, thus extending the incorrect and over-
simplified form of the Fundamental Theorem of Natural
Selection as described above to the case of an arbitrary
number of alleles at the locus under consideration.
If we define wi by wi=

X
jwijxj the change in the

frequency of Ai between successive generations can be
conveniently expressed as

Δxi=xi wi –wð Þ=w: (26)

This is consistent with the expression given in (6). In
general, many results found for the two allele case
continue to apply in the multi-allelic case. For example,
the correlation between relatives formula (22) continues
to hold, with �2A being defined as in (25) and the total
genetic variance being defined appropriately. For this
reason, much of the theory focuses on simpler the two-
allele case, with the assumption that results found from
the analysis will apply exactly, or at least approximately,
to the multi-allele case.

THE STOCHASTIC THEORY

All of the above theory is deterministic — there is no
component of randomness involved. But random phe-
nomena arise at several levels in evolutionary genetics,
from the small-scale intrinsic effect of the random
transmission of one of two genes from a parent to an
offspring, to large-scale extrinsic random ecological and
other events which affect the genetic make-up of an entire
population. It is therefore necessary to consider the
stochastic theory which takes these random events into
account, since among other things it is important to assess
the effects of the stochastic behavior on the Darwinian
theory.
Before this theory is described, it has to be emphasized

that the models used are at best rough approximate
descriptions of what happens in reality. The complexity of
the real world makes it impossible to formulate models
that have the predictive value of many models in physics.
For example, we assume in this section that the
population of interest mates at random. We later consider
more realistic models that take the complexities of nature
somewhat more into account.
A key component of the stochastic theory is the size of

the population under consideration. The classic stochastic
model describing the evolution of the population, the so-
called “Wright-Fisher” model (named after its two
independent originators Fisher [5] and Wright [8]) is a
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Markov chain model and indeed is one of the first
examples of these models that was examined in depth.
This model is one of simple binomial sampling.
Assuming that there is no selection, mutation, geographi-
cal dispersal, no complications due to there being two
genders, and so on, the model assumes that the genetic
composition of an offspring generation is found by
random sampling with replacement from the genes of the
parental generation until the full offspring generation of
genes is obtained.
We adopt the standard notation N for the number of

diploid individuals, so that the population total number of
genes at the locus A of interest is 2N. Then if there are i A1

genes in the parental generation, the probability pij that
there are j such genes in the offspring generation is given
by

pij=
2N
j

� �
i

2N

� �j 2N – i

2N

� �2N – j

: (27)

When selection and mutation occur a more general
expression, namely

2N
j

� �
ðx0Þjð1 – x0Þ2N – j (28)

arises, where x0 depends on the selective and mutation
parameters. In the case where mutation is absent and
parental generation fitnesses and genotype frequencies are
given in (2) the value of x0 is as given in (5), where on the
right-hand side of (5) x is replaced by i/(2N). When there
is mutation but no selection, x0 is given by (13). A more
complicated model allows both selection and mutation.
Many other models, for example birth and death

models, have been investigated in detail in the literature,
but here we consider only models of the binomial type
(27) and (28).
The qualitative behavior of the model (27) is that loss

of one or other allele will eventually occur, so that genetic
variation will no longer exist at the locus in question. It is
thus of relevance to the Darwinian theory to assess how
long genetic variation may be expected to persist at this
locus, assuming that the (very simple) model (27) holds.
Unfortunately, even for the simple model (27), which

does not allow for selection, it seems to be impossible to
find a simple closed expression for the mean fixation time,
that is for the mean time until one or other allele is lost
from the population. This problem leads to the approx-
imation of this model, which is in discrete time and
discrete space, by a continuous-time continuous-space
diffusion process. Approximations of this type have been
common in the population genetics literature since the
1920’s, and they sometimes have curious mathematical
properties not shared by diffusion processes arising in
physics. The result obtained by the diffusion process

approximation is that if the initial frequencies of the two
alleles are p and 1 – p, the mean time until one or other
allele is lost from the population is, to a very close
approximation,

– 4Nðplogpþ ð1 – pÞlogð1 – pÞÞ
generations. This implies that although in this model
genetic variation will eventually be lost, in a population of
any reasonable size the mean time for such loss is
generally very large. In practice this time might be so long
that other considerations, such as the creation of new
variation by mutation, have to be taken into account. In
any event the main conclusion, that the “variation
preserving” property of the Mendelian system continues
to hold, is essentially maintained.
Sometimes interest focuses on conditional mean times.

Suppose for example that the condition is made that A1 is
eventually lost from the population. The conditional mean
time for this to occur is

– 4N
plog p

1 – p

generations. A parallel calculation applies when the
condition is made that it is A2 that is eventually lost.
It is also of interest to find the probability that a

selectively favored allele becomes fixed. This probability
depends on the population size, the fitness values of the
various genotypes and the initial frequency of the favored
allele. Again a diffusion approximation (now to the model
(28)) is needed. If for example w11 = 1+ s, w12 = 1+ s/2
and w22 = 1, the probability that A1 becomes fixed
depends on s and on the number of genes 2N in the
population at the locus of interest. The table below gives
some typical calculations, assuming that the initial
frequency of A1 is 0.001.

N 104 105 106

0:00001 0:001 0:002 0:020

s 0:0001 0:002 0:020 0:181

0:001 0:020 0:181 0:865

0:01 0:181 0:865 1:000

(29)

Clearly the larger the population size, the more likely it is
that the favored allele becomes fixed. This occurs
essentially because in a large population random factors
are of less importance than in a small population. Also, of
course, the probability of fixation of the favored allele
increases with its selective advantage.
Particular interest attaches to the case where there is

one single initial A1 gene, corresponding to a situation
where a single initial A1 mutant arises in an otherwise
purely A2A2 population. Branching process theory was
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employed in the 1920’s to calculate the survival
probability of this new mutant, and it is found that
when the fitnesses are of the form w11=1þ s,
w12=1þ s=2, w22=1, this probability is about s. This
is clearly independent of the population size.
When mutations from A1 to A2 (at rate u) and from A2 to

A1 (at rate v) both occur, there exists a stationary
distribution of the frequency of A1. When there is no
selection, this distribution depends on u, v and the number
2N of genes in the population at the A locus. The diffusion
theory approximation to this distribution is

f ðxÞ=Γð4Nuþ 4NvÞ
Γð4NuÞΓð4NvÞx

4Nv – 1ð1 – xÞ4Nu – 1, (30)

where x is the frequency of A1. The mean of this
distribution is v=ðuþ vÞ, as might be expected from (15),
and the variance is

uv

ðuþ vÞ2ð4Nuþ 4Nvþ 1Þ: (31)

This variance has no analogue in the deterministic
analysis, and thus the stochastic analysis provides new
information about the likely values of the frequencies of
the two alleles under two-way mutation.
The form of the distribution is U-shaped for small

population sizes, indicating that for such populations the
most likely situation is that one or other allele is quite rare
(or even temporarily missing from the population). For
large population sizes the distribution is unimodal, and
concentrates closely around the mean.
When selection exists the form of the stationary

distribution is more complicated, being of the form

f ðxÞ=Γð4Nuþ 4NvÞ
Γð4NuÞΓð4NvÞx

4Nv – 1ð1 – xÞ4Nu – 1gðxÞ, (32)

where g(x) depends on the nature of the selective values of
the various genotypes.
Generalizations of many of the above results are known

when an arbitrary number of alleles m can arise at the
locus in question, in particular of the stationary distribu-
tion (32). Thus the above results serve only as an
introduction to the entire theory that is now known. All of
the above ignores many complicating factors that exist in
real populations, for example the presence of two sexes,
the likely geographical dispersion of the population,
changes (either cyclical or monotonic) in the population
size, and so on. These complications are often dealt with
usefully through the concept of the “effective population
size Ne”. This is a quite complicated concept and there are
several definitions of an effective population size (see for
example Ewens [9]). For our purposes here it is sufficient
to say that significant properties of the behavior of a
population can be found by replacing N in the above

formulae by one or other of the definitions of the effective
population size. The formula for Ne depends on the
complicating factor involved and the definition of Ne

used. In the case of two sexes, for example, most
definitions lead to an effective population size of about
4NfNm/(Nf + Nm), where Nf and Nm are, respectively, the
number of females and the number of males in the
population. This formula implies that, when Nm = 1, the
effective population size is very close to 4, no matter how
many females there are in the population. This happens
because half the genes transmitted in any generation
derive from a single male, leading to rapid changes in
gene frequencies. This implies among other things that
there is a rapid loss of genetic variation over succeeding
generations, a matter of serious concern to animal
breeders.

NON-RANDOM-MATING POPULATIONS

In this section we generalize some of the results described
above to the case of non-random-mating populations.
Such a generalization is necessary, given the interest in
the human population deriving from data from the Human
Genome Project (see http://www.ornl.gov/sci/techre-
sources/Human-Genome/project/about.shtml for more
on this) and the fact that the human population does not
mate at random. Because of the complications involved,
we only consider the deterministic theory.

Genotype frequency changes

Suppose that at the time of conception of the parental
generation

f requency  of   AiAi=xii, ði=1, 2, :::,mÞ,
f requency  of   AiAj=2Xij, ði≠jÞ:

From this, the allelic frequencies xi, ( i=1, 2, :::,m) are
given by xi=

Xm
j=1Xij. (All summations in this analysis

are over the range (1, 2, :::,m), so this range is not
explicitly mentioned below.)
The mean population fitness at the time of conception

of the parental generation is w ¼ X
i
X

jXijwij, where as
above the fitness of AiAj is wij, while the variance in fitness
is �2=

P
i

P
jXijw

2
ij –w

2, The within-generation change in
the frequency of the allele Ai is then

X
j

Xij wij –w
� �

=w: (33)

There exist few if any population genetic models in which
the frequency of an allele at the time of reproduction in a
parental generation differs from the frequency of that
allele in the daughter generation at conception. Thus
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assuming that this equality holds, the between generation
change Δxi in allelic frequencies is also given by (33), that
is,

Δxi=
X
j

Xij wij –w
� �

=w: (34)

The additive genetic variance

To find the additive generic variance in the non-random-
mating case, it is first necessary to find the average effects
α1, α2, :::, αm of the various alleles at the locus of interest.
These are found by the natural generalization of the
procedure in the random-mating case that is by minimiz-
ing the expressionX

i

X
j

Xij wij –w – αi – αj
� �2

with respect to the parameters α1, α2, :::, αm, subject to a
constraint generalizing (16), namely (in the present
notation)

X
xiαi=0. (Once again, this constraint is not

necessary. However we nevertheless make it because in
the multi-locus case considered below a constraint
generalizing (16) is needed.) The values of α1, α2, :::, αm
so found are given implicitly as the solutions of the
equations

xiαi þ
X
j

Xijαj=wΔxi, ði=1, 2, :::,mÞ: (35)

If we define matrices D and X by

D ¼ diagfx1, x2, :::, xmg, X ¼ fXijg,
and vectors α and Δ by

α=ðα1, α2, :::, αmÞ0,
Δ=ðΔx1,Δx2, :::,ΔxmÞ0,

then the various equations in (35) can be written in matrix
form as

ðDþ XÞα=wΔ: (36)

The additive genetic variance can be written in terms of
the average effects as

�2A=2w
X
i

αiΔxi: (37)

This differs in general from the “random mating”
expression given in (25). However it reduces to (25)
when random mating is the case. This occurs because
under random mating,

P
jXijαj=xi

P
jαjxj=0, so that

from (35), wΔxi=xiαi. Using this equality in (37), the
expression for �2

A becomes 2
P

ixiα
2
i , as in (25).

The Fundamental Theorem of Natural Selection

It was remarked above that the commonly-stated version
of the Fundamental Theorem of Natural Selection is not
the true version. The incorrect version of the theorem
states that for a random-mating population in which
fitness depends on the genes at a single locus only,
Δw � �2A=w. Thus the incorrect version assumes a
random-mating population and provides an approximate
statement only. Also, we shall see later that this version of
the theorem cannot be true when fitness depends on the
genes at two or more loci since in this case mean fitness
can decrease, even under random mating. Thus this
change in mean fitness then cannot be approximately
equal to any form of variance. Thus commonly-stated (but
incorrect) version of the theorem has a limited usefulness,
since in practice fitness depends on the genes at many
loci. Further, many populations of interest, especially the
human population, do not mate at random. We now give
the correct version of the theorem for the case when
fitness depends on the genes at a single locus only, and
later generalize the theorem to the case where fitness
depends on any collection of genes in the entire genome.
Random mating is not assumed.
We rewrite the mean fitness as w ¼ X

i

X
jXij

wþ αi þ αj
� �

, and then define the partial change ΔPw
in the mean fitness by

ΔPw=
X
i

X
j

ΔXij wþ αi þ αj
� �

: (38)

Then

ΔPw=2
X
i

αiΔxi=�2
A=w: (39)

This is the correct version of the Fundamental Theorem of
Natural Selection when fitness depends on the genes at a
single locus only. The statement of the theorem is an exact
one, not an approximation, and random mating is not
assumed.

The correlation between relatives

Quite apart from its importance in determining the
evolution of a population, non-random mating has an
important effect on the correlation between relatives.
There is a vast literature on this subject, and here only
a few comparatively straightforward results will be
given.
The fundamental new parameter of interest is ρ, the

correlation between mating individuals in the measure-
ment of interest. For a random-mating population, ρ = 0.
When �≠0 the correlations given in (22) need to be
modified. Defining
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h2=
�2A
�2 ,

d2=
�2
D

�2 ,

equation (22) implies that in the very simple case
considered previously, the correlation between relatives
in a random-mating population is of the form a1h

2 þ a2d
2

for some constants a1 and a2. However, under non-
random mating, we find, for example, that

correlationðparent-of f springÞ=1

2
ð1þ �Þh2,

correlationðsib-sibÞ=1

2
ð1þ �h2Þh2 þ 1

4
d2,

correlationðuncle-nephewÞ

=
1

2
ð1þ �Þh2

� �2

h2 þ 1

8
�h2d2:

The second and third of these correlations are not of the
random-mating form a1h

2 + a2d
2. Further, a dominance

(that is d2) term now enters uncle-nephew correlations
(and many other correlations) whereas under random
mating it does not. This implies that conclusions drawn
from simple correlations such as those following from
(22) can be quite erroneous. Despite this, and maybe
through ignorance, correlations as given by (22) and its
various generalizations often appear in the literature.

TWO LOCI: THE RANDOM-MATING CASE

We now turn to the case where the fitness and indeed any
other characteristic of any individual is assumed to
depend on the genes that the individual has two loci, not
just one. Although this generalization is only a small step
towards considering the case where the individual’s
fitness depends on his entire genome, it does allow some
significant advances to be made beyond the one-locus
analysis.

Evolutionary calculations

In this section we assume random mating of the
population in question, and restrict attention to the
deterministic case. To analyze the joint evolution at two
loci, A and B, it is necessary and sufficient (in the case of
random mating) to use the frequencies of the various
possible gametes formed by the alleles at these two loci.
For our purposes it is sufficient to assume that the two loci
are on the same chromosome, and then to think of a
gamete as this chromosome. If there are two alleles (A1

and A2) possible at the A locus and two alleles (B1 and B2)
possible at the B locus, there are four possible gametes,
A1B1, A1B2, A2B1 and A2B2 defined by these alleles, and
we write the frequencies of these in a parental generation
as c1, c2, c3 and c4 respectively.
Because of the phenomenon of crossing over, gametes

are not necessarily passed on faithfully from a parent to an
offspring. An individual with one chromosome of the
gametic form A1B1 and the other chromosome of gametic
form A2B2 will pass on a chromosome of gametic form
A1B2 or of gametic form A2B1 if a crossing over (more
exactly, an odd number of crossings over) occurs between
the A and the B loci. We denote the probability of such a
crossing over by R; in practice it is always the case that
0£R£1=2. Assuming no selection at either locus, the
recurrence relations defining offspring generation gametic
frequencies in terms of parental generation frequencies
are

cí1 =c1 þ Rðc2c3 – c1c4Þ,

cí2 =c2 –Rðc2c3 – c1c4Þ,

cí3 =c3 –Rðc2c3 – c1c4Þ,

cí4 =c4 þ Rðc2c3 – c1c4Þ,
where the dash notation refers to the offspring generation
frequencies.
One of the important features of a two-locus analysis is

that one can assess whether some conclusion found from a
one-locus analysis gives results that are consistent with
those found for the two-locus analysis. For example, one
of the first one-locus analysis results given above is that if
there is no selection, gene frequencies remain unchanged
from one generation to the next. In the two-locus analysis
the offspring generation frequency of A1 is c

í
1 þ cí2 , and

the above equations show that this is equal to c1 þ c2, the
parental generation frequency of A1. Thus the one-locus
result is confirmed in this more general analysis.
However, as shown below, not all one-locus conclusions
are confirmed by a two-locus analysis.
Clearly gametic frequencies, unlike gene frequencies,

change from one generation to another. To analyze the
evolutionary properties of the system governed by the
gametic frequency recurrence relations it is useful to
introduce the “coefficient of linkage disequilibrium” D,
defined by D=c1c4 – c2c3. Then defining ηi by

ηi=þ 1, ði=2, 3Þ,
ηi= – 1, ði=1, 4Þ,

the gametic recurrence relations can be written

cíi =ci þ ηiRD, ði=1, 2, 3, 4Þ: (40)
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The recurrence relation for D itself is easily shown to be
D0=ð1 –RÞD, so that DðtÞ=ð1 –RÞtD. Clearly the value
of D decreases geometrically fast as time goes on. When
D = 0, the frequency of any gamete is the product of the
frequencies of its constituent alleles, and the two loci
evolve in effect independently. A state of “linkage
equilibrium” has been reached.
A different picture emerges when selective differences

exist between the nine genotypes possible at the two loci.
Suppose that the fitnesses are as given in (41), and that at
the time of conception of the parental generation the
frequencies of the various genotypes are as given in (42).

B1B1 B1B2 B2B2

A1A1 w11 w12 w22

A1A2 w13 w14=w23 w24

A2A2 w33 w34 w44

(41)

B1B1 B1B2 B2B2

A1A1 c21 2c1c2 c22

A1A2 c1c3 2ðc1c4 þ c2c3Þ 2c2c4

A2A2 c23 2c3c4 c24

(42)

The mean fitness w of the population is then given by

w=
X
i

X
j

cicjwij,

and it is straightforward to show that the gametic
frequency recurrence relations are

cíi =w – 1ðciwi þ ηiRw14DÞ,
where wi=

P
jcjwij and ηi is as defined above. These

recurrence relations have some quite interesting proper-
ties. For example, at equilibrium (cíi =ci),

w=wi þ c – 1i ηiRw14D, ði=1, 2, 3, 4Þ,
whereas mean fitness is maximized when

w=wi, ði=1, 2, 3, 4Þ:
Thus mean fitness is not necessarily maximized at an
equilibrium point, and indeed is maximized at such a
point only if, at this point, the coefficient of linkage
disequilibrium D is zero. This condition rarely holds in
practice when selection exists, and an immediate
implication of this is that the course of natural selection
is such that mean fitness does not necessarily increase
from one generation to the next. The reason for this is that
a parent can pass on a gamete to an offspring that he does
not possess himself, and to this extent the genetic make-
up of the child does not resemble that of the parent. Thus

the simple version of the Fundamental Theorem of
Natural Selection given above, that mean fitness increases
from one generation to the next, cannot be true.
When this observation was first made it caused

consternation among the population genetics community,
since it seemed to imply that the (textbook version of the)
Fundamental Theorem of Natural Selection is not true for
a two-locus system (and, a fortiori, for the entire genome).
This quickly led to many further developments, for
example an investigation of cases of fitness arrays for
which mean fitness did necessarily increase from one
generation to the next. It was shown that one such array is
the “additive over loci” fitness case, where the fitnesses
are of the additive form shown in (43).

B1B1 B1B2 B2B2

A1A1 �1 þ l1 �1 þ l2 �1 þ l3

A1A2 �2 þ l1 �2 þ l2 �2 þ l3

A2A2 �3 þ l1 �3 þ l2 �3 þ l3

(43)

A further line of enquiry concerns the additive genetic
variance in the case where fitness depends on the genes at
two loci. This is found by a least-squares procedure, using
the fitnesses in (41) and the frequencies in (42). This is not
described in detail here since a much more complete and
general discussion is given later.
One can also calculate an additive genetic variance

estimate found from the marginal fitnesses at the various
loci. Thus the marginal fitness of A1A1 is

w11c
2
1 þ 2w12c1c2 þ w22c

2
2

ðc1 þ c2Þ2
,

with a similar definition for other A-locus genotypes. The
marginal A-locus additive genetic variance is then found
using the procedure that led to (19). A similar calculation
can be done for the B locus, and from this one can
calculate the sum of the single locus marginal values. It is
found that the condition that the true additive genetic
variance be equal to the sum of the single locus marginal
values is that D = 0.

The correlation between relatives

The correlation structure given in (22) and its various
generalizations for the case when the character of interest
is determined by the genes at one locus, and random
mating of the population is assumed, requires consider-
able amendment when the character of interest is
determined by the genes at two loci. We now discuss
some of the complications involved.
Suppose that the measurement in question depends on

the genes that an individual has at two loci, A and B.
There are now nine genotypes and thus nine potentially
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different measurements, as shown in the table below.

B1B1 B1B2 B2B2

A1A1 m11 m12 m22

A1A2 m13 m14=m23 m24

A2A2 m33 m34 m44

(44)

A collection of nine measurements implies a total of eight
degrees of freedom between measurements. Thus the total
variance σ2 in the measurement can be split up into eight
different meaningful components. Assuming for the
moment that mating is random and linkage equilibrium
(D = 0) between loci occurs, σ2 can be split up into eight
components in the form

�2=�2
Að1Þ þ �2

Að2Þ þ �2AA þ �2
Dð1Þ þ �2Dð2Þ

þ�2
DD þ �2

ðADÞ þ �2ðDAÞ:

In this decomposition �2A (1) is the additive genetic
variance at the A locus as calculated from marginal
measurement values, �2

A (2) is the corresponding quantity
for the B locus, dominance variances are defined
similarly, while all other variances relate to various
interactions. It is convenient to write

�2
A=�2Að1Þ þ �2

Að2Þ,

�2D=�2
Dð1Þ þ �2Dð2Þ,

�2AD=�2
ðADÞ þ �2ðDAÞ,

so that

�2=�2
A þ �2

D þ �2AA þ �2
DD þ �2

AD:

When A and B loci are unlinked (R = 1/2), it is found
that the parent-offspring correlation in the measurement is

1

2
�2
A þ

1

4
�2
AA

� �
= �2,

and that the sib-sib correlation is

1

2
�2
A þ

1

4
�2
D þ 1

4
�2
AA þ

1

8
�2AD þ 1

16
�2DD

� �
= �2:

When A and B loci are linked ðR≠1=2Þ the parent-
offspring remains as above, but the sib-sib correlation
becomes

1

2
�2A þ

1

4
�2D þ 1

8
ð3 – 4Rþ 4R2Þ�2

AA

�

þ 1

4
ð1 – 2Rþ 2R2Þ�2

AD þ 1

4
ð1 – 2Rþ 2R2Þ2�2

DD � = �2:

It is clear that even in the comparatively simple case of the
sib-sib correlation, linkage causes complications to the
correlation formulae. This becomes increasingly the case
for more distant relationships. Thus complications to
correlation formulae are evident even under the simplify-
ing assumptions of random mating and linkage equili-
brium. In the more general case with linkage
disequilibrium (D≠0), linked loci and with non-random
mating, it is almost impossible to find expressions for the
various correlations, and theoretical work on this problem
has essentially come to a halt. It is even more difficult to
use correlations to estimate parameters such as herit-
ability, and one is forced to rely on various approximation
formulae. Theory, it appears, is of limited help so far as
correlation questions are concerned.

MANY LOCI: RANDOM-MATING AND

NON-RANDOM-MATING POPULATIONS

Evolutionary considerations

In this section we consider what can be said about the
completely general case where the fitness of any
individual depends in an arbitrary way on all the genes
in the entire genome, random mating is not assumed, and
the recombination structure in the entire genome is
completely arbitrary. Unfortunately it is not possible to
derive the intra-generational changes in whole genome
genotypes in the absence of knowledge of the mating
scheme and the recombination structure between loci. On
the other hand it is possible to find the intragenerational
changes in gene frequencies, and from this to the inter-
generational changes in gene frequencies, and then to
derive the correct whole-genome Fundamental Theorem
of Natural Selection. That is our aim in this section.
Assume that the various (gigantically large number of)

possible whole-genome genotypes are listed in some
agreed order as genotypes 1, 2, :::, s, :::, S. The “time of
conception” frequency of the typical genotype s in the
parental generation is denoted by gs and the fitness of this
genotype by ws. Thus at this time the parental generation
population mean fitness is w=

X
sgsws. From this it is

possible to find the intragenerational changes in gene
frequencies, and from this to derive the whole-genome
Fundamental Theorem of Natural Selection. The intra-
generational change in the frequency of the genotype s,
that is the change from the time of conception to the time
of reproduction, is Δgs=gsws=w – gs. This implies that
the corresponding intra-generational change Δpai in the
frequency pai of the allele Ai at the typical gene locus A is
given by

2Δpai=
X
s

caiðsÞΔgs, (45)
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where the sum is taken over all whole-genome genotypes
and cai(s) = 1, 2 or 0 depending on whether Aai arises once,
twice or not at all within the genotype gs. This is also the
inter-generational change in the frequency of this allele,
where frequencies are taken at the time of conception of
the two generations. This is all that can be said about
inter-generation frequency changes. It is, however,
enough for our purposes.

Average effects

To make further progress it is necessary to define whole-
genome average effects. As in the one locus case, the
average effects of the various alleles at the various loci in
the genome are defined by minimizing the sum of squares

X
s

gs ws –w –
X

caiðsÞαai
n o2

: (46)

In the expression (46), αai is the average effect of Ai, the
outer sum is taken over all whole-genome genotypes and
the inner sum is taken, for each whole-genome genotype,
over all alleles at all loci in the genome contained within
that genotype, with cai defined above. The values of the
αai defined in this way are not unique, but become unique
if a condition of the form (24) is imposed for the average
effects of the alleles at each locus in the genome.
It is not necessary to give explicit formulae for the

various α values defined by this least-squares procedure:
indeed they can only be expressed implicitly as the
(unique) solution of a gigantic set of simultaneous
equations. In parallel with the one-locus case analysis,
the mean fitness of the population is now thought of as
being X

g

gs wþ
X

caiαai
n o

, (47)

where now αai denotes the minimizing α values. This
expression (as with the expression in the corresponding
one-locus case) is numerically identical to that given by
the standard definition of mean fitness

P
sgsws as given

above.
The whole-genome additive genetic variance �2A is the

sum of squares removed by fitting the α values. Standard
least-squares theory shows that

�2
A=2w

X
a

X
i

αaiðΔpaiÞ,

the sum being over all loci (a) in the genome and all
alleles (i) at each locus.

The Fundamental Theorem of Natural Selection: the
correct whole-genome statement

Again in parallel with the one-locus case, the partial

change ΔPw in mean fitness is defined as the change in the
expression (23) derived solely from the changes Δgs in the
various whole-genome genotype frequencies and ignor-
ing the changes in the α values, namely

X
s

Δgs   nX caiαai  o: (48)

The resulting expression can be shown to be equal to
�2
A=w, where �

2
A now denotes the whole-genome additive

genetic variance, defined in a manner extending that for
the one-locus case. This simple and exact result is the
modern interpretation of the whole-genome Fundamental
Theorem of Natural Selection. It is true whatever the
mating scheme and the recombination structure might be.
It is inconceivable that this result could have been
obtained by anything other than a mathematical treatment.
Two comments are in order. First, fitness is considered

here (and throughout this article) as a parameter, that is, as
an intrinsic property of a genotype. It is in practice
unknown, as is any parameter in statistical theory.
Second, it is not clear that the FTNS makes a satisfactory
statement — the concept of a partial change in mean
fitness appears to some to be arbitrary.
The investigation of multi-locus properties in non-

randomly-mating populations outlined above has hardly
begun, and yet it will be essential to an investigation of
the evolution of non-randomly-mating populations, in
particular the human population, using whole-genome
data.

MOLECULAR POPULATION GENETICS

Introduction

Multi-locus evolutionary theory arises by going outwards
from the single gene locus to the whole genome. In
considering molecular genetics we go in the other
direction, and consider the internal nature of the gene.
The investigation of evolutionary population genetics at
the molecular level was initiated by Kimura [10], and it is
without doubt the most important development of
population genetics theory in the last fifty years. We
therefore devote substantial attention to it.
Classical population genetics considered processes

going forward in time, motivated by the need of rewriting
and validating the Darwinian theory in terms of
Mendelian genetics. In this task it was completely
successful. Current research, by contrast, is largely
focused on using current genetic data and assessing the
evolutionary processes that led to them. The ensuing
theory is thus retrospective rather than prospective, and it
involves many statistical inference procedures. In carry-
ing these procedures out it is essential to use the actual
genetic material and not abstract quantities like “the allele
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A1” so prevalent in the classical theory. Thus the entire
retrospective theory and all the inferential procedures
must be carried out using the theory of molecular
population genetics.
In molecular population genetics we view the gene for

what it is, namely a sequence of the four nucleotides A, G,
C and T. For a gene with 1000 nucleotides there are 41000

different possible nucleotide sequences. This number is so
large that little accuracy is lost in taking it to be infinite.
Each one of these sequences corresponds (in our previous
terminology) to some allele, so in using the word “allele”
in the following section we mean some specific DNA
sequence. We therefore assume an effective infinity of
different possible alleles. This viewpoint motivates the
theory in the following sections.

The infinitely many alleles model

The theory of molecular genetics is a stochastic one, and
the most frequently used analysis assumes a diploid
population of size N and a Wright-Fisher model of
evolution. (Several other models have, of course, been
considered in the literature.) In this model one assumes,
since there is an effective infinity of possible alleles as just
described, that when a gene mutates, for example by a
change A ! T at some place in its nucleotide sequence, it
changes to a gene of an entirely new allele, not so far seen
in the population. In the simplified version of the theory
considered here, any gene of any allelic type is assumed to
mutate at the same rate, denoted u. Further, all allelic
types are assumed to be selectively equivalent. (A more
advanced theory of course drops these assumptions.)
These various assumptions imply that, if in generation t

there are Xi genes of allelic type Ai ( i=1, 2, 3, :::), then the
probability that in generation t + 1 there will be Yi genes
of allelic type Ai, together with Y0 new mutant genes, all
of different novel allelic types, is

probfY0, Y1, Y2, ::: X1,X2, :::j g=ð2NÞ!
∏Yi!

∏πY i
i , (49)

where π0=u and πi=Xið1 – uÞ=ð2NÞ, i=1, 2, 3, :::.
This model differs fundamentally from previous

mutation models in that since each allele will sooner or
later be lost from the population, there can exist no
nontrivial stationary distribution for the frequency of any
allele. Nevertheless we are interested in stationary
behavior, and it is thus important to consider what
concepts of stationarity exist for this model. To do this we
consider delabeled configurations of the form fa, b, c, :::g,
where such a configuration implies that there exist a genes
of one allele, b genes of another allele, and so on. The
specific alleles involved are not of interest. The possible
configurations can be written down as f2Ng, f2N – 1, 1g,
f2N – 2, 2g, f2N – 2, 1, 1g, …, f1, 1, 1, :::, 1g in diction-

ary order: the number of such configurations is p(2N), the
number of partitions of 2N into positive integers. The
quantity p(2N) has been extensively studied in the
mathematical literature.
It is clear that (49) implies certain transition probabil-

ities from one configuration to another. Although these
probabilities are extremely complex and the Markov
chain of configurations has an extremely large number of
states, nevertheless standard theory shows that there
exists a stationary distribution of configurations. We first
consider one simple property of this stationary distribu-
tion, namely the probability that two genes drawn at
random are of the same allelic type. For this to occur
neither gene can be a mutant and, further, both must be
descended from the same parent gene (probability
ð2NÞ – 1) or different parent genes which were of the

same allelic type. Writing FðtÞ
2 for the desired probability

in generation t, we get

Fðtþ1Þ
2 =ð1 – uÞ2ðð2NÞ – 1 þ f1 – ð2NÞ – 1gFðtÞ

2 Þ: (50)

At equilibrium, Fðtþ1Þ
2 =FðtÞ

2 =F2 and thus

F2=f1 – 2N þ 2Nð1 – uÞ – 2g – 1
, (51)

where �= 4Nu. This is the simplest property of the
stationary distribution of the configuration process.

Consider next the probability Fðtþ1Þ
3 that three genes

drawn at random in generation t+ 1 are of the same allele.
These three genes will all be descendants of the same gene
in generation t, (probability ð2NÞ – 2), of two genes
(probability 3ð2N – 1Þðð2NÞ – 2Þ) or of three different
genes (probability ð2N – 1Þð2N – 2Þðð2NÞ – 2Þ). Further,
none of the genes can be a mutant, and it follows that

Fðtþ1Þ
3 =ð1 – uÞ3ð2NÞ – 2ð1þ 3ð2N – 1ÞFðtÞ

2

þ ð2N – 1Þð2N – 2ÞFðtÞ
3 Þ: (52)

By equating FðtÞ
3 and Fðtþ1Þ

3 and using the value calculated
above for F2 we can find the stationary probability F3 that
three genes drawn at random are of the same allelic type.
Clearly a continuation of this process is cumbersome and
does not lead to any revealing results. We consider some
approximate results below.
The above arguments do, however, lead to simple

closed form for the partition process Markov chain
eigenvalues. Equation (50) can be written in the form

Fðtþ1Þ
2 –Fð1Þ

2 =ð1 – uÞ2f1 – ð2NÞ – 1gfFðtÞ
2 –Fð1Þ

2 g, (53)

and this implies that ð1 – uÞ2f1 – ð2NÞ – 1g is an eigenva-
lue of the Markov chain configuration process discussed
above. A similar argument using (52) shows that a second
eigenvalue is ð1 – uÞ3f1 – ð2NÞ – 1gf1 – 2ð2NÞ – 1g. Simi-
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lar arguments can be used for all of the eigenvalues, and it
is found that

li ¼ ð1 – uÞif1 – ð2NÞ – 1gf1 – 2ð2NÞ – 1g
� � � f1 – ði – 1Þð2NÞ – 1g (54)

is an eigenvalue of the configuration process matrix and
that its multiplicity is pðiÞ – pði – 1Þ, where p(i) is the
partition number given above. This provides a complete
listing of all the eigenvalues. For details see Ewens and
Kirby [11].
An important aspect of the theory concerning the

infinitely many alleles model is that it is used for
inferential procedures. This implies that it is necessary
to derive properties of a sample of genes taken from the
population. The elements of this sampling theory are now
outlined. We call the limiting process N ↕ ↓1, u ↕ ↓0
with �=4Nu held constant, the “asymptotic limit”. Then
(51) shows that in this limit

F2=
1

1þ �
: (55)

Similarly, (52) shows that in this limit

F3=
2

ð1þ �Þð2þ �Þ: (56)

It is possible to continue in this way to find the limiting
(N ↕ ↓1) probability distribution of any allelic partition
of a sample of n genes. This partition is best described by
the vector ( a1, a2, :::, an), where aj denotes the number of
alleles in the sample that are represented by exactly j
genes (so that

P
jaj=n). The probability distribution of

this vector is given by

Pða1, a2, :::, an; �Þ=
n!

Snð�Þ
∏
n

j=1

�aj

aj!j
aj
, (57)

(Ewens [12]). Here Snð�Þ ¼ �ð�þ 1Þð�þ 2Þ � � � ð�þ
n – 1Þ ¼ S1n

�� ���þ S2n
�� ���2 þ � � � þ Snnj j�n, so that Sjn

�� �� is
the absolute value of a Stirling number of the first kind.
A particular case of this formula arises when an = 1, that

is there is only one allele represented in the sample. The
probability of this is

ðn – 1Þ!
ð1þ �Þð2þ �Þ � � � ðn – 1þ �Þ: (58)

The total number of alleles observed in the sample is
X

aj.
Denoting this sum by K, it is found from (57) that the
probability distribution of K is

PðK=k; �Þ= Skn
�� ���k
Snð�Þ

, ðk=1, 2, :::, nÞ: (59)

From this it follows that the mean of K is

EðKÞ=
Xn
j=1

�

�þ j – 1
: (60)

We return to these calculations below, when considering
inference procedures in population genetics and also
when considering the coalescent process.

The infinitely many sites model

The infinitely many alleles model refers to a situation
(obtaining in the 1970’s) where it was assumed that it is
possible to assess whether two different genes were of the
same or of different alleles. However that was all that was
assumed, since the actual nucleotide sequence of any gene
was not, at that time, known. A more refined model is the
“infinitely many sites” model, (Kimura [13]), applicable
in cases where the nucleotide sequence is known. The
various assumptions made above for the infinitely many
alleles model are retained in the infinitely many sites
model, in particular that the gene mutation rate is u. It is
assumed that there is no recombination within any gene,
so that recombination does not create new alleles. The
DNA sequence of the gene is assumed to be sufficiently
long that any mutation occurs at a site at which no
mutation has previously occurred. (As a less extreme and
equivalent assumption so far as the mathematical theory is
concerned, we assume any mutation occurs at a site at
which only one nucleotide currently exists in the
population.) Thus as with the infinitely many alleles
model, all mutations are to new alleles, not so far seen in
the population. Of course this assumption might not be a
reasonable one in view of the properties of protein
folding, and this has led to a “finitely many sites” theory
not discussed here.
Most of the relevant theory was developed by

Watterson [14]. Because exact expressions are very
cumbersome, all of the results given here are approximate
formulas deriving from the asymptotic limit N ↕ ↓1. We
define a “segregating site” in a sample (population) as a
site where two different nucleotides exist in the sample
(population). Watterson found that the mean of the
number S of segregating sites in a sample of n genes is
approximately

EðSÞ=g1�, (61)

where g1=
Xn – 1

j=1 j
– 1. We return to this equation later

when considering inferential procedures. For n> 10 the
variance of S is very close to

V ðSÞ=g1�þ g2�
2, (62)

where g2=
Xn – 1

j=1 j
– 2. Watterson also found that the

probability that there are no segregating sites in this
sample is
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PðS=0Þ= ðn – 1Þ!
ð1þ �Þð2þ �Þ � � � ðn – 1þ �Þ: (63)

This is identical to the probability that K = 1 in the
infinitely many alleles model as given in (58) above. This
provides a confirming link between the infinitely many
alleles model and the infinitely many sites model, since if
there are no segregating sites there is only one DNA
sequence, or allele, in the sample of n sequences.
Unfortunately it is extremely difficult to find other links
between the two models, and it is also very difficult to find
the joint probability distribution of K and S.
An important case arises when n = 2. Watterson found

that the probability that there s segregating sites in a
sample of this size is

1

�þ 1

�

�þ 1

� �s

:

This distribution has mean θ and variance �þ �2. More
generally it was shown by Tavaré [15] that in a sample of
n sequences the probability distribution of S is

probðS=sÞ=n – 1

�

Xn – 1
j=1

ð – 1Þj – 1 n – 2

j – 1

� �
�

jþ �

� �sþ1

:

(64)

Inferential procedures: estimating θ and testing for
selective neutrality

In this section we consider two inferential operations:
estimating the parameter θ referred to above, and testing
the hypothesis that the frequencies observed in our data
are the result of purely random genetic drift and are not,
for example, the result of natural selection. We consider
these procedures for the two models outlined above, the
infinitely many alleles model and the infinitely many sites
model. In both models we use the simple approximate
results such as (55), (57) deriving from the asymptotic
limit theory, and Eq. (64) (given below) for the infinitely
many sites model.

The infinitely many alleles model: inference methods

We start with Eqs. (57) and (59), both of which assume
selective neutrality among the alleles observed. The
conditional distribution of (a1, a2, :::, an) given that K = k
is found from (57) and (59) to be

Pða1, a2, :::, anj kÞ= n!

Skn
�� ��∏n

j=1aj!j
aj
: (65)

The form of this expression shows that K is a sufficient
statistic for θ: all the information in the sample relevant to

θ is embodied in the observed value k of K. Thus any
statistical inference concerning θ using the sample
information must be carried out entirely by using the
observed value k of K. This implies that θ should be
estimated by using only the observed value k. In doing
this we regard Eq. (59) as providing the likelihood of θ,
given the observed value k of K. It is found that the
maximum likelihood estimate �̂ is the implicit solution of
the equation of

k=
Xn
j=1

�̂

�̂þ j – 1
: (66)

Given the observed value of k, this equation has to be
solved numerically for �̂.
We now turn to tests of selective neutrality. These are

based on Eq. (65), which is a “neutral theory” distribution
and which does not contain any unknown parameters. It is
therefore possible (at least in principle — in practice the
computations involved are quite complicated) to consider
any reasonable test statistic, evaluate its probability
distribution from (65), and thus assess whether the
observed value of this test statistic is a reasonable one,
given this distribution. The most popular form of this test
was devised by Watterson [16]: we do not provide any
details here.

The infinitely many sites model: inference methods

Suppose that we have data consisting of n DNA
sequences and that in these data there are s segregating
sites. Equation (61) leads to two possible estimates of θ.
The first (Ewens [17], Watterson [14]) follows directly
from (61): given the observed value s of S, the estimate of
�̂S of θ is

�̂S=s=g1: (67)

This is clearly an unbiased estimate of θ. Assuming no
recombination between the sites in the gene of interest,
the variance of this estimate is

g1�þ g2�
2=g21: (68)

A second estimate follows from the fact that in the case n

= 2 the mean of S is θ. This implies that if all
n

2

� �

combinations of pairs of sequences in the data are taken,
and the average T of the number of sites at which
two sequences differ is taken, then the mean of T is given
by

Mean  of   T=�: (69)

Thus T could be used as an estimator of θ, and because of
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this we write it as �̂T , and we re-write (69) as

Mean  of   �̂T=�: (70)

Although this is an unbiased estimator of θ, it suffers
because of the fact that its variance, which is

nþ 1

3ðn – 1Þ �þ
2ðn2 þ nþ 3Þ
9nðn – 1Þ �2, (71)

does not approach 0 as the sample size n increases.
However our interest here in this estimator is that it forms
part of the neutrality hypothesis testing procedure and not
as a possible estimator of θ.
The fact that there are two unbiased estimators of θ

under the hypothesis of selective neutrality forms the
basis of a test first put forward by Tajima [18]. The Tajima
procedure is carried out in terms of the statistic D, defined
by

D=
�̂T – �̂Sffiffiffiffî

V
p , (72)

where V̂ is an unbiased estimate of the variance of �̂T – �̂S
and which we do not give here. The logic in choosing the
test statistic is that if selective neutrality is the case (which
in statistical terms is the null hypothesis) �̂T and �̂S both
have the same mean (θ), so that D is similar to a
standardized normal statistic.
The next problem is to find the null hypothesis

distribution of D. Under the null hypothesis of neutrality,
D does not have a mean of zero, nor does it have a
variance of 1, since the denominator of D involves a
variance estimate rather than a known variance. Further,
the distribution ofD depends on the value of θ, which is in
practice unknown. Thus there is no null hypothesis
distribution of D invariant over all θ values.
The Tajima procedure approximates the null hypothesis

distribution of D in the following way. First, it is possible
to find both the smallest value that D can take and also the
largest value that D can take. These are functions of n and
we denote them by a and b respectively. Second, it is
assumed, as an approximation, that the mean ofD is 0 and
the variance of D is 1. Finally, it is also assumed that the
density function of D is the generalized beta distribution
over the range (a, b), defined by

f ðDÞ=Γðαþ βÞðb –DÞα – 1ðD – aÞβ – 1
ΓðαÞΓðβÞðb – aÞαþβ – 1 , (73)

with the parameters α and β chosen so that the mean of D
is indeed 0 and the variance of D is indeed 1. This leads to
the choice

α=–
ð1þ abÞb

b – a
,

β=
ð1þ abÞa

b – a
:

This approximate null hypothesis distribution is then used
to assess whether any observed value of D is significant.
There are various approximations involved in the above

procedure. Various authors have assessed the importance
of these and have attempted to devise improved tests. We
do not provide the details here.

THE COALESCENT

Coalescent theory

The concept of the coalescent is now discussed at length
in many textbooks, and entire books (for example Hein,
Schierup and Wiuf [19] and Wakeley [20]) and book
chapters (for example Marjoram and Joyce [21] and
Nordborg [22]) have been written about it.
The aim of the coalescent is to describe the common

ancestry at various times in the past of the sample of n
genes at some given gene locus through the concept of an
equivalence class. (Essentially the same arguments apply
to describe the common ancestry of all the 2N genes at a
given locus in the population (of size N) at various times
in the past.) To do this we introduce the notation τ,
indicating a time τ in the past (so that if τ1> τ2, time τ1 is
further in the past than time τ2). The sample of n genes is
assumed taken at time τ = 0.
Two genes in the sample of n are in the same

equivalence class at time τ if they have a common
ancestor at this time. Equivalence classes are denoted by
parentheses: thus if n = 8 and at time τ genes 1 and 2 have
one common ancestor, genes 4 and 5 a second, and genes
6 and 7 a third, and none of the three common ancestors
are identical and none is identical to the ancestor of gene 3
or of gene 8 at time τ, the equivalence classes at time τ are

fð1, 2Þ, ð3Þ, ð4, 5Þ, ð6, 7Þ, ð8Þg: (74)

We call any such set of equivalence classes an
equivalence relation, and denote any such equivalence
relation by a Greek letter. As two particular cases,
at time τ = 0 the equivalence relation is
f1=fð1Þ, ð2Þ, ð3Þ, ð4Þ, ð5Þ, ð6Þ, ð7Þ, ð8Þg, and at the time
of the most recent common ancestor of all eight genes,
the equivalence relation is fn=fð1, 2, 3, 4, 5, 6, 7, 8Þg.
The Kingman coalescent process (Kingman [23,24]) is a
description of the details of the ancestry of the n genes
moving from f1 to fn. For example, given the
equivalence relation in (74), one possibility for the
equivalence relation following a coalescence is
fð1, 2Þ, ð3Þ, ð4, 5Þ, ð6, 7, 8Þg, so that equivalence classes
ð6, 7Þ and ð8Þ have just amalgamated. Such an amalga-
mation is called a coalescence, and the process of
successive amalgamations is called the coalescence
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process.
Coalescences are assumed to take place according to a

Poisson process, but with a rate depending on the number
of equivalence classes present. Suppose that there are j
equivalence classes at time τ. The probability that the
process moves from one nominated equivalence class (at
time τ) to some nominated equivalence class which can be
derived from it is δτ. (Here and throughout we ignore
terms of order ðδτÞ2.) Since there are jðj – 1Þ=2 possible
choices for pairs of equivalence classes, a coalescence
takes place in this time interval with probability
1

2
jðj – 1Þδτ, since all of the jðj – 1Þ=2 amalgamations

possible at time τ are equally likely to occur. This implies
that no coalescence takes places between time τ and time

τ þ δτ with probability 1 –
1

2
jðj – 1Þδτ.

In order for this process to describe the “random
sampling” evolutionary model described above, it is
necessary to scale time so that unit time corresponds to 2N
generations. With this scaling, the time Tj between the
formation of an equivalence relation with j equivalence
classes to one with j – 1 equivalence classes has an
exponential distribution with mean 2=ðjðj – 1ÞÞ.
The (random) time TMRCAS=Tn þ Tn – 1 þ Tn – 2 þ � � �

þ T2 until all genes in the sample first had just one
common ancestor has mean

EðTMRCASÞ=2
Xn
j=2

1

jðj – 1Þ=2 1 –
1

n

� �
: (75)

(The suffix “MRCAS” stands for “most recent common
ancestor of the sample.) This is, of course close to 2
coalescent time units, or 4N generations, when n is large.
Kingman (Kingman [23,24]) showed that for large
populations, many population models (including the
Wright-Fisher model considered in this paper) are well
approximated in their sampling attributes by the coales-
cent process. The larger the population the more accurate
is this approximation. Calculations such as this are
relevant to the time back to “Eve” and to the “Out of
Africa” migration.
These calculations provide a population equivalent

of the sample expression (61). The mean time for
which these are j – 1 equivalence classes is 2=ðjðj – 1ÞÞ,
as shown above. The mean number of mutations
along the j – 1 arms of the coalescent tree is thenX2N – 1

j=1 2=ðjðj – 1ÞÞ � 2Nuðj – 1Þ=X2N – 1
j=1 �=j. This is the

population form of the sample expression (61).
We have just introduced mutation into the coalescent,

and we now consider the effects of mutation in more
detail. Suppose that the probability that any particular
ancestral gene mutates in the time interval ðτ þ δτ, τÞ is
�

2
δτ. All mutants are assumed to be of new alleles (the

infinitely many alleles assumption). If at time τ in the
coalescent there are j equivalence classes, the probability
that either a mutation or a coalescent event had occurred
in ðτ þ δτ, τÞ is

j
�

2
δτ þ jðj – 1Þ

2
δτ=

1

2
jðjþ � – 1Þδτ: (76)

We call such an occurrence a defining event, and given
that a defining event did occur, the probability that it was a
mutation is �=ðjþ � – 1Þ and that it was a coalescence is
ðj – 1Þ=ðjþ � – 1Þ.
The probability that k different alleles are seen in the

sample is then the probability that k of these defining
events were mutations. The above reasoning shows that
this probability must be proportional to �k=Snð�Þ, where
Snð�Þ is defined below Eq. (57), the constant of
proportionality being independent of θ. This argument
leads directly to the expression (59) for the probability
distribution of the number of alleles in the sample.
Using these results and combinatorial arguments

counting all possible coalescent paths from a partition
ða1, a2, :::, anÞ back to the original common ancestor,
Kingman (Kingman [23,24]) was able to derive the more
detailed sample partition probability distribution (57), and
deriving this distribution from coalescent arguments is
perhaps the most pleasing way of arriving at it.

“Age” and “time” results

Many further results are available from coalescent theory
(or can be derived by special arguments). The ones listed
in this section are “age” results and “time” results (such as
(75)). They all relate to the Wright-Fisher infinitely many
alleles model introduced above. Some are sample results
and some are population results. In view of the nature of
the coalescent in which we look backward into time, some
of these results concern properties of the oldest allele in a
sample (or in the population).
Kelly [25] showed that the probability that the oldest

allele in the sample is represented j times in the sample is

�

n
n
j

� �
nþ � – 1

j

� � – 1

, ðj=1, 2, :::, nÞ: (77)

The case j = n is of particular interest. If an allele is
represented n times in a sample, it must be the oldest allele
in the sample. Thus the expression (77) for the case j = n
should reduce to the expression (58). It is easy to see that
this happens, so that (77) may be regarded as a
generalization of (58). These calculations also show that
the probability that a gene seen j times in the sample is of
the oldest allele in the sample is j/n.
Perhaps the most important sample distribution

concerns the frequencies of the alleles in the sample when
ordered by age. This distribution was found by Donnelly
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and Tavaré [26], who showed that the probability that the
number of alleles in the sample takes the value k, and that
the age-ordered numbers of these alleles in the sample are,
in age order, nð1Þ, nð2Þ, :::, nðkÞ, is

�kðn – 1Þ!
Snð�ÞnðkÞðnðkÞ þ nðk – 1ÞÞ � � � ðnðkÞ þ nðk – 1Þ þ � � � þ nð2ÞÞ

,

(78)

where Sjð�Þ is defined below (57). This formula can be
found in several ways, one being as the size-biased
version of (57).
These are many other interesting results concerning the

oldest allele in a sample, and further results connecting
the oldest allele in the sample to the oldest allele in the
population, but the above examples give the general
flavor of these.
We now turn to population results and their relation

with sample data. Kelly [25] has shown that the
probability that the oldest allele in the population is
represented by j genes in the population is

�

2N
2N
j

� �
2N þ � – 1

j

� � – 1

: (79)

This is the population analogue of (77). There is also a
sample result connected with this, namely that in the
limiting case N ↕ ↓1, the probability that the oldest allele
in the population is observed in a sample of size n is
n=ðnþ �Þ.
Donnelly [27] showed, more generally, that the

probability that the oldest allele in the population is
observed j times in the sample is

�

nþ �
n
j

� �
nþ � – 1

j

� � – 1

, ðj=0, 1, 2, :::, nÞ: (80)

For the case j = 0 the probability (80) is �=ðnþ �Þ,
confirming the complementary probability n=ðnþ �Þ
found above. Conditional on the event that the oldest
allele in the population does appear in the sample, the
probability that it arises j times in the sample is given by
the expression (77).
We now consider “age” questions. It is found that the

mean time, into the past, that the oldest allele in the
population entered the population (by a mutation event)
is

mean  age  of   oldest  allele=
X2N
j=1

4N

jðjþ � – 1Þgenerations:

(81)

It was shown by Watterson and Guess [28] and Kelly [25]
that not only the mean age of the oldest allele, but indeed

the entire probability distribution of its age, is indepen-
dent of its current frequency and indeed of the frequency
of all alleles in the population.
If an allele is observed in the population with frequency

p, its mean age is

X2N
j=1

4N

jðjþ � – 1Þð1 – ð1 – pÞ
jÞgenerations: (82)

This is a generalization of the expression in (81), since if p
= 1 only one allele exists in the population, and it must
then be the oldest allele.
A further calculation concerns the mean age of the

oldest allele in a sample of n genes. This mean age is

4N
Xn
j=1

1

jðjþ � – 1Þgenerations: (83)

Except for small values of n, this is close to the mean age
of the oldest allele in the population, given in (81). In
other words, unless n is small, it is likely that the oldest
allele in the population is represented in the sample. In
fact we have seen above that the probability that the oldest
allele in the population is represented in the sample is
n=ðnþ �Þ.
We conclude by discussing two very important

“population” probability distributions. For both distribu-
tions we consider the limiting N ↕ ↓1 case and thus
consider frequencies of than numbers of genes of some
allele, and density functions rather than discrete prob-
ability distributions. All results considered relate to the
infinitely many alleles model.
The first of these distributions is Kingman’s [29]

Poisson-Dirichlet distribution. This is the joint density
function of the allele frequencies in a population when
ordered by size (that is, the order statistics of the allele
frequencies). Unfortunately this distribution is not “user-
friendly” and few explicit results are known. Perhaps the
most important is that of Watterson [30], which gives the
joint density function of the first r order statistics xð1Þ,
xð2Þ, :::, xðrÞ in the Poisson-Dirichlet distribution. This
joint density function is

f ðxð1Þ, xð2Þ, :::, xðrÞÞ
¼ �rΓð�Þeg�gðyÞfxð1Þxð2Þ � � � xðrÞg – 1x� – 1ðrÞ , (84)

where y=ð1 – xð1Þ – xð2Þ – � � � – xðrÞÞ=xðrÞ, g is Euler’s
constant 0.57721…, and g(y) is best defined through the
Laplace transform equation (Watterson and Guess [28])

!
1

0
e – tygðyÞdy=exp �!

1

0
u – 1ðe – tu – 1Þdu

� �
: (85)

The expression (84) simplifies to
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f ðxð1Þ, :::, xðrÞÞ
¼ �rfxð1Þ � � � xðrÞg – 1ð1 – xð1Þ – � � � – xðrÞÞ� – 1, (86)

when xð1Þ þ xð2Þ þ � � � þ xðr – 1Þ þ 2xðrÞ³1, and in parti-
cular,

f ðxð1ÞÞ=�ðxð1ÞÞ – 1ð1 – xð1ÞÞ� – 1, (87)

when
1

2
£xð1Þ£1.

Equation (87) provides two interesting results. First,
population geneticists are interested in the probability of
“population monomorphism”, defined in practice as the
probability that the most frequent allele arises in the
population with frequency in excess of 0.99. Equation
(87) implies that this probability is close to 1 – ð0:01Þ�.
Second, if there is an allele with frequency between 1/2
and 1 it must be the most frequent, and thus the mean
frequency of the most frequent allele must exceed

!
1

1=2
xð1Þ�xð1Þð1 – xð1ÞÞ� – 1=

1

2

� ��

:

This is close to 1 when θ is small. In other words, if the
mutation rate and the population size are jointly small
enough, we are likely to see one allele at high frequency
in the population, together with a small number of low-
frequency alleles.
Consideration of the most frequent allele in a popula-

tion and the oldest allele in the population led to the
following question (Crow [31]): “What is the probability
that the most frequent allele in a population at any time is
also the oldest allele in the population at that time?” A
nice application of reversibility arguments for suitable
population models allowed Watterson and Guess [28] to
obtain a simple answer to this question. In models where
all alleles are equally fit, the probability that any
nominated allele will survive longest into the future is
(by a simple symmetry argument) its current frequency.
For time reversible processes, this is also the probability
that it is the oldest allele in the population. Thus
conditional on the current allelic frequencies, the prob-
ability that the most frequent allele is also the oldest is
simply its frequency x(1). Thus the answer to Crow’s
question is simply the mean frequency of the most
frequent allele. A formula for this mean frequencθy, as a
function of the mutation parameter θ, together with some

numerical values, were given in Watterson and Guess
[28]. This leads to the numerical values in the first row of
Table 1 below.
The fact that the Poisson-Dirichlet distribution is not

user-friendly makes it all the more interesting that a size-
biased distribution closely related to it, namely the GEM
distribution, named for Griffiths [32], Engen [33] and
McCloskey [34], who established its salient properties, is
both simple and elegant. This distribution gives the joint
density function of the frequencies of the alleles in the
population when ordered by age (and not, as with the
Poisson-Dirichlet distribution, when ordered by frequen-
cies).
Suppose that a gene is taken at random from the

population. The probability that this gene will be of an
allele whose frequency in the population is x is just x. This
allele was thus sampled by this choice in a size-biased
way. It can be shown from properties of the Poisson-
Dirichlet distribution that the probability density of the
frequency of the allele determined by this randomly
chosen gene is

f ðxÞ=�ð1 – xÞ� – 1, 0 < x< 1: (88)

The GEM distribution can then be defined as follows.
Suppose that x1, x2, x3, ::: are independently and identi-
cally distributed random variables, each having the
probability distribution (88). Then define new random
variables w1,w2,w3, ::: by w1 = x1, and for j=2, 3, 4, :::,

wj=ð1 – x1Þð1 – x2Þ � � � ð1 – xj – 1Þxj: (89)

The random vector ðw1,w2, :::Þ then has the GEM
distribution. We then identify w1 as the random variable
describing the frequency of the oldest allele in the
population, w2 as the random variable describing the
frequency of the second oldest allele in the population,
and so on. The GEM distribution shows that the mean
population frequency of the oldest allele in the population
is

�!
1

0
xð1 – xÞ� – 1dx= 1

1þ �
: (90)

This mean value of w1 is given in the second line of
Table 1 for various values of θ.
This table provides interesting comparisons between

properties of the most frequent allele and the oldest allele
in a population. If θ is small the means in the two rows of

QB

Table 1. Mean frequency of (a) the most frequent allele, (b) the oldest allele, in a population as a function of θ. The probability
that the most frequent allele is the oldest allele is also its mean frequency.
θ 0.1 0.2 0.5 1.0 2.0 5.0 10.0 20.0

Most frequent 0.936 0.882 0.758 0.624 0.476 0.297 0.195 0.122

Oldest 0.909 0.833 0.667 0.500 0.333 0.167 0.091 0.048
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the table are close, and this corresponds to the fact that for
small θ the most frequent allele in the population is very
likely to be the oldest allele in the population.
Given the focus on retrospective questions arising in

molecular population genetics, it is natural to ask further
questions about the oldest allele in the population. The
mean frequency ð1=ð1þ �ÞÞ of the oldest allele in the
population given above implies that when θ is very small,
this mean frequency is approximately 1 – �. It is
interesting to compare this with the mean frequency of
the most frequent allele when θ is small, found in effect
from the Poisson-Dirichlet distribution to be approxi-
mately 1 – �log2. More generally, the mean population
frequency of the jth oldest allele in the population is

1

1þ �

�

1þ �

� �j – 1

:

The probability that a gene drawn at random from the
population is of the type of the oldest allele is the mean
frequency of the oldest allele, namely 1=ð1þ �Þ, as just
shown, since “size-biased” sampling is equivalent to
“sampling by ages”. More generally the probability that n
genes drawn at random from the population are all of the
type of the oldest allele in the population is

�!
1

0
xnð1 – xÞ� – 1dx= n!

ð1þ �Þð2þ �Þ � � � ðnþ �Þ: (91)

From this result and the expression (58) we confirm that if
all genes in a sample of n are of the same allele, the
probability that this is the oldest allele in the population is
n=ðnþ �Þ.
The elegance of many of these formulas make

molecular population genetics an attractive field for
research. However, this elegance arises because of the
simplifying assumptions that have been made, in
particular that the gene locus of interest can be considered
in isolation from linked gene loci, and that there is no
selection. Modern theory considers realistic problems
taking these complications into account, and (unfortu-
nately) much of the elegance of the above theory is then
lost. Tavaré [35], Durrett [36] and Etheridge [37] give
accounts of this more recent theory.
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