Skip to main content
Log in

Revolutionizing cardiovascular care: the power of histotripsy

  • Review Paper
  • Published:
Journal of Ultrasound Aims and scope Submit manuscript

Abstract

Histotripsy, an innovative ultrasonic technique, is poised to transform the landscape of cardiovascular disease management. This review explores the multifaceted applications of histotripsy across various domains of cardiovascular medicine. In thrombolysis, histotripsy presents a non-invasive, drug-free, and precise method for recanalizing blood vessels obstructed by clots, minimizing the risk of vessel damage and embolism. Additionally, histotripsy showcases its potential in congenital heart defect management, offering a promising alternative to invasive procedures by creating intracardiac communications noninvasively. For patients with calcified aortic stenosis, histotripsy demonstrates its effectiveness in softening calcified bioprosthetic valves, potentially revolutionizing valve interventions. In the realm of arrhythmias, histotripsy could play an important role in scar-based ventricular tachycardia ablation, eliminating channel-like isthmuses of slowly conducting myocardium. Histotripsy`s potential applications also extend to structural heart interventions, enabling the safe sectioning of basal chordae and potentially addressing mitral regurgitation. Furthermore, it showcases its versatility by safely generating ventricular septal defects, providing a non-invasive means of creating intracardiac communications in neonates with congenital heart disease. Yet, most supporting studies are in-vitro or animal studies and there are possible challenges in translating experimental data on cardiac histotripsy to the clinical level. As histotripsy continues to evolve and mature, its remarkable potential in cardiovascular disease management holds promise for improving patient outcomes and reducing the burden of invasive procedures in the field of cardiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, Barengo NC, Beaton AZ, Benjamin EJ, Benziger CP, Bonny A, Brauer M, Brodmann M, Cahill TJ, Carapetis J, Catapano AL, Chugh SS, Cooper LT, Coresh J, Criqui M, GBD-NHLBI-JACC Global Burden of Cardiovascular Diseases Writing Group (2020) Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study. J Am Coll Cardiol 76(25):2982–3021. https://doi.org/10.1016/j.jacc.2020.11.010

    Article  PubMed  PubMed Central  Google Scholar 

  2. Xu Z, Ludomirsky A, Eun LY et al (2004) Controlled ultrasound tissue erosion. IEEE Trans Ultrason Ferroelectr Freq Control 51(6):726–736

    Article  PubMed  PubMed Central  Google Scholar 

  3. Xu Z, Hall TL, Vlaisavljevich E, Lee FT Jr (2021) Histotripsy: the first noninvasive, non-ionizing, non-thermal ablation technique based on ultrasound. Int J Hyperth 38(1):561–575. https://doi.org/10.1080/02656736.2021.1905189

    Article  CAS  Google Scholar 

  4. Lencioni R, Cioni D, Crocetti L et al (2005) Early-stage hepatocellular carcinoma in patients with cirrhosis: long-term results of percutaneous image-guided radiofrequency ablation. Radiology 234(3):961–967. https://doi.org/10.1148/radiol.2343040350

    Article  PubMed  Google Scholar 

  5. Goldberg SN, Hahn PF, Tanabe KK et al (1998) Percutaneous radiofrequency tissue ablation: does perfusion-mediated tissue cooling limit coagulation necrosis? J Vasc Interv Radiol 9(1):101–111. https://doi.org/10.1016/s1051-0443(98)70491-9

    Article  CAS  PubMed  Google Scholar 

  6. Hendricks-Wenger A, Weber P, Simon A et al (2021) Histotripsy for the treatment of cholangiocarcinoma liver tumors in vivo feasibility and ex vivo dosimetry study. IEEE Trans Ultrason Ferroelect Freq Contr. 68(9):2953–2964. https://doi.org/10.1109/tuffc.2021.3073563

    Article  Google Scholar 

  7. Zhou YF (2010) High intensity focused ultrasound in clinical tumor ablation. World J Clin Oncol 2(1):8–27. https://doi.org/10.5306/wjco.v2.i1.8

    Article  CAS  Google Scholar 

  8. Kereiakes DJ, Di Mario C, Riley RF, Fajadet J, Shlofmitz RA, Saito S, Ali ZA, Klein AJ, Price MJ, Hill JM, Stone GW (2021) Intravascular lithotripsy for treatment of calcified coronary lesions: patient-level pooled analysis of the disrupt CAD studies. JACC Cardiovasc Interv 14(12):1337–1348. https://doi.org/10.1016/j.jcin.2021.04.015

    Article  PubMed  Google Scholar 

  9. Wah TM, Pech M, Thormann M et al (2023) A multi-centre, single arm, non-randomized, prospective european trial to evaluate the safety and efficacy of the histosonics system in the treatment of primary and metastatic liver cancers (#HOPE4LIVER). Cardiovasc Intervent Radiol 46(2):259–267. https://doi.org/10.1007/s00270-022-03309-6

    Article  PubMed  Google Scholar 

  10. Xu Z, Hall TL, Vlaisavljevich E, Lee FT (2021) Histotripsy: the first noninvasive, non-ionizing, non-thermal ablation technique based on ultrasound. Int J Hyperther 38(1):561–575. https://doi.org/10.1080/02656736.2021.1905189

    Article  CAS  Google Scholar 

  11. Vidal-Jove J, Serres X, Vlaisavljevich E et al (2022) First-in-man histotripsy of hepatic tumors: the THERESA trial, a feasibility study. Int J Hyperther 39(1):1115–1123. https://doi.org/10.1080/02656736.2022.2112309

    Article  Google Scholar 

  12. Knott EA, Swietlik JF, Longo KC et al (2019) Robotically-assisted sonic therapy for renal ablation in a live porcine model: initial preclinical results. J Vasc Interv Radiol 30(8):1293–1302. https://doi.org/10.1016/j.jvir.2019.01.023

    Article  PubMed  PubMed Central  Google Scholar 

  13. Winterroth F, Xu Z, Wang TY et al (2011) Examining and analyzing subcellular morphology of renal tissue treated by histotripsy. Ultrasound Med Biol 37(1):78–86. https://doi.org/10.1016/j.ultrasmedbio.2010.10.002

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhou Y, Wang X (2018) Effect of pulse duration and pulse repetition frequency of cavitation histotripsy on erosion at the surface of soft material. Ultrasonics 84:296–309. https://doi.org/10.1016/j.ultras.2017.11.012

    Article  CAS  PubMed  Google Scholar 

  15. Xu Z, Fan Z, Hall TL, Winterroth F, Fowlkes JB, Cain CA (2009) Size measurement of tissue debris particles generated from pulsed ultrasound cavitational therapy–histotripsy. Ultrasound Med Biol 35(2):245–255. https://doi.org/10.1016/j.ultrasmedbio.2008.09.002

    Article  CAS  PubMed  Google Scholar 

  16. Vlaisavljevich E, Kim Y, Owens G, Roberts W, Cain C, Xu Z (2014) Effects of tissue mechanical properties on susceptibility to histotripsy-induced tissue damage. Phys Med Biol 59(2):253–270. https://doi.org/10.1088/0031-9155/59/2/253

    Article  PubMed  Google Scholar 

  17. White RH (2003) The epidemiology of venous thromboembolism. Circulation 107(90231):4I – 8. https://doi.org/10.1161/01.cir.0000078468.11849.66

    Article  Google Scholar 

  18. Goudot G, Khider L, Giudice CD et al (2019) Robotic assisted thrombotripsy allows high accurate venous recanalization in a porcine model of femoral venous thrombosis. Arch Cardiovasc Dis Suppl 11(1):100–101. https://doi.org/10.1016/j.acvdsp.2018.10.222

    Article  Google Scholar 

  19. Maxwell AD, Owens G, Gurm HS, Ives K, Myers DD Jr, Xu Z (2011) Noninvasive treatment of deep venous thrombosis using pulsed ultrasound cavitation therapy (histotripsy) in a porcine model. J Vasc Interv Radiol JVIR 22(3):369–377. https://doi.org/10.1016/j.jvir.2010.10.007

    Article  PubMed  Google Scholar 

  20. Bollen V, Hendley SA, Paul JD, Maxwell AD, Haworth KJ, Holland CK, Bader KB (2020) In vitro thrombolytic efficacy of single- and five-cycle histotripsy pulses and rt-PA. Ultrasound Med Biol 46(2):336–349. https://doi.org/10.1016/j.ultrasmedbio.2019.10.009

    Article  PubMed  Google Scholar 

  21. Bader KB, Haworth KJ, Shekhar H, Maxwell AD, Peng T, McPherson DD, Holland CK (2016) Efficacy of histotripsy combined with rt-PA in vitro. Phys Med Biol 61(14):5253–5274. https://doi.org/10.1088/0031-9155/61/14/5253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hendley SA, Bhargava A, Holland CK et al (2022) (More than) doubling down: effective fibrinolysis at a reduced rt-PA dose for catheter-directed thrombolysis combined with histotripsy. PLoS ONE 17(1):e0261567. https://doi.org/10.1371/journal.pone.0261567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bhargava A, Hendley SA, Bader KB (2021) an in vitro system to gauge the thrombolytic efficacy of histotripsy and a lytic drug. J Vis Exp Jove. https://doi.org/10.3791/62133

    Article  PubMed  Google Scholar 

  24. Lundt J, Hall T, Rao A, Fowlkes JB, Cain C, Lee F, Xu Z (2018) Coalescence of residual histotripsy cavitation nuclei using low-gain regions of the therapy beam during electronic focal steering. Phys Med Biol 63(22):225010. https://doi.org/10.1088/1361-6560/aaeaf3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shi A, Lundt J, Deng Z, Macoskey J, Gurm H, Owens G, Zhang X, Hall TL, Xu Z (2018) integrated histotripsy and bubble coalescence transducer for thrombolysis. Ultrasound Med Biol 44(12):2697–2709. https://doi.org/10.1016/j.ultrasmedbio.2018.08.013

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhang X, Owens GE, Gurm HS, Ding Y, Cain CA, Xu Z (2015) Noninvasive thrombolysis using histotripsy beyond the intrinsic threshold (microtripsy). IEEE Trans Ultrason Ferroelectr Freq Control 62(7):1342–1355. https://doi.org/10.1109/TUFFC.2015.007016

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhang X, Owens GE, Cain CA, Gurm HS, Macoskey J, Xu Z (2016) Histotripsy thrombolysis on retracted clots. Ultrasound Med Biol 42(8):1903–1918. https://doi.org/10.1016/j.ultrasmedbio.2016.03.027

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhang X, Macoskey JJ, Ives K et al (2017) Non-invasive thrombolysis using microtripsy in a porcine deep vein thrombosis model. Ultrasound Med Biol 43(7):1378–1390. https://doi.org/10.1016/j.ultrasmedbio.2017.01.028

    Article  PubMed  PubMed Central  Google Scholar 

  29. Alkan-Onyuksel H, Demos SM, Lanza GM, Vonesh MJ, Klegerman ME, Kane BJ, Kuszak J, McPherson DD (1996) Development of inherently echogenic liposomes as an ultrasonic contrast agent. J Pharm Sci 85(5):486–490. https://doi.org/10.1021/js950407f

    Article  CAS  PubMed  Google Scholar 

  30. Bhargava A, Huang S, McPherson DD, Bader KB (2022) Assessment of bubble activity generated by histotripsy combined with echogenic liposomes. Phys Med Biol 67(21):215015. https://doi.org/10.1088/1361-6560/ac994f

    Article  Google Scholar 

  31. Holzer RJ, Wood A, Chisolm JL et al (2008) Atrial septal interventions in patients with hypoplastic left heart syndrome. Cathet Cardiovasc Intervent 72(5):696–704. https://doi.org/10.1002/ccd.21673

    Article  Google Scholar 

  32. Xu Z, Owens G, Gordon D, Cain C, Ludomirsky A (2010) Noninvasive creation of an atrial septal defect by histotripsy in a canine model. Circulation 121(6):742–749. https://doi.org/10.1161/circulationaha.109.889071

    Article  PubMed  PubMed Central  Google Scholar 

  33. Owens GE, Miller RM, Ensing G et al (2011) Therapeutic ultrasound to noninvasively create intracardiac communications in an intact animal model. Cathet Cardiovasc Intervent 77(4):580–588. https://doi.org/10.1002/ccd.22787

    Article  Google Scholar 

  34. Owens GE, Miller RM, Owens ST, Swanson SD, Ives K, Ensing G, Gordon D, Xu Z (2012) Intermediate-term effects of intracardiac communications created noninvasively by therapeutic ultrasound (histotripsy) in a porcine model. Pediatr Cardiol 33(1):83–89. https://doi.org/10.1007/s00246-011-0094-6

    Article  PubMed  Google Scholar 

  35. Villemain O, Robin J, Bel A et al (2017) Pulsed Cavitational Ultrasound Softening: a new non-invasive therapeutic approach of calcified bioprosthetic valve stenosis. Jacc Basic Transl Sci 2(4):372–383. https://doi.org/10.1016/j.jacbts.2017.03.012

    Article  PubMed  PubMed Central  Google Scholar 

  36. Messas E, Rémond MC, Goudot G et al (2020) Feasibility and safety of non-invasive ultrasound therapy (NIUT) on an porcine aortic valve. Phys Med Biol 65(21):215004. https://doi.org/10.1088/1361-6560/aba6d3

    Article  CAS  PubMed  Google Scholar 

  37. Miller RM, Kim Y, Lin KW, Cain CA, Owens GE, Xu Z (2013) Histotripsy cardiac therapy system integrated with real-time motion correction. Ultrasound Med Biol 39(12):2362–2373. https://doi.org/10.1016/j.ultrasmedbio.2013.08.004

    Article  PubMed  Google Scholar 

  38. Abe Y, Otsuka R, Muratore R et al (2008) In vitro mitral chordal cutting by high intensity focused ultrasound. Ultrasound Med Biol 34(3):400–405. https://doi.org/10.1016/j.ultrasmedbio.2007.09.003

    Article  PubMed  Google Scholar 

  39. Messas E, IJsselmuiden A, Goudot G, et al (2020) Feasibility and performance of noninvasive ultrasound therapy in patients with severe symptomatic aortic valve stenosis: a first-in-human study. Circulation 143(9):968–970. https://doi.org/10.1161/circulationaha.120.050672

    Article  Google Scholar 

  40. Villemain O, Kwiecinski W, Bel A, Robin J, Bruneval P, Arnal B, Tanter M, Pernot M, Messas E (2016) Pulsed cavitational ultrasound for non-invasive chordal cutting guided by real-time 3D echocardiography. Eur Heart J Cardiovasc Imaging 17(10):1101–1107. https://doi.org/10.1093/ehjci/jew145

    Article  PubMed  Google Scholar 

  41. Lee KL, Lau CP, Tse HF, Echt DS, Heaven D, Smith W, Hood M (2007) First human demonstration of cardiac stimulation with transcutaneous ultrasound energy delivery: implications for wireless pacing with implantable devices. J Am Coll Cardiol 50(9):877–883. https://doi.org/10.1016/j.jacc.2007.04.081

    Article  PubMed  Google Scholar 

  42. Auricchio A, Delnoy PP, Regoli F, Seifert M, Markou T, Butter C, collaborative study group, (2013) First-in-man implantation of leadless ultrasound-based cardiac stimulation pacing system: novel endocardial left ventricular resynchronization therapy in heart failure patients. Europace 15(8):1191–1197. https://doi.org/10.1093/europace/eut124

    Article  PubMed  Google Scholar 

  43. Delling FN, Vasan RS (2014) Epidemiology and pathophysiology of mitral valve prolapse: new insights into disease progression, genetics, and molecular basis. Circulation 129(21):2158–2170. https://doi.org/10.1161/CIRCULATIONAHA.113.006702

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sinning JM, Grube E (2017) Unbreak my heart (Valve): can ultrasound be used for the treatment of a degenerated surgical bioprosthesis? JACC Basic Transl Sci 2(4):384–385. https://doi.org/10.1016/j.jacbts.2017.06.002

    Article  PubMed  PubMed Central  Google Scholar 

  45. Aliot EM, Stevenson WG, Almendral-Garrote JM, Bogun F, Calkins CH, Delacretaz E, Della Bella P, Hindricks G, Jaïs P, Josephson ME, Kautzner J, Kay GN, Kuck K-H, Lerman BB, Marchlinski F, Reddy V, Schalij M-J, Schilling R, Soejima K, Wilber D (2009) EHRA/HRS expert consensus on catheter ablation of ventricular arrhythmias: developed in a partnership with the European Heart Rhythm Association (EHRA), a registered branch of the European Society of Cardiology (ESC), and the Heart Rhythm Society (HRS); i. Eur Eur Pacing Arrhythm Card Electrophysiol 11:771–817

    Google Scholar 

  46. Stevenson WG, Khan H, Sager P, Saxon LA, Middlekauff HR, Natterson PD, Wiener I (1993) Identification of reentry circuit sites during catheter mapping and radiofrequency ablation of ventricular tachycardia late after myocardial infarction. Circulation 88:1647–1670

    Article  CAS  PubMed  Google Scholar 

  47. Marchlinski FE, Haffajee CI, Beshai JF, Dickfeld TL, Gonzalez MD, Hsia HH, Schuger CD, Beckman KJ, Bogun FM, Pollak SJ, Bhandari AK (2016) Long-term success of irrigated radiofrequency catheter ablation of sustained ventricular tachycardia: post-approval THERMOCOOL VT trial. J Am Coll Cardiol 67(6):674–683. https://doi.org/10.1016/j.jacc.2015.11.041

    Article  PubMed  Google Scholar 

  48. Reddy VY, Reynolds MR, Neuzil P, Richardson AW, Taborsky M, Jongnarangsin K, Kralovec S, Sediva L, Ruskin JN, Josephson ME (2007) Prophylactic catheter ablation for the prevention of defibrillator therapy. N Engl J Med 357(26):2657–2665. https://doi.org/10.1056/NEJMoa065457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Koruth JS, Dukkipati S, Carrillo RG, Coffey J, Teng J, Eby TB, Reddy VY, D’Avila A (2011) Safety and efficacy of high-intensity focused ultrasound atop coronary arteries during epicardial catheter ablation. J Cardiovasc Electrophysiol. https://doi.org/10.1111/j.1540-8167.2011.02084.x

    Article  PubMed  Google Scholar 

  50. Nazer B, Salgaonkar V, Diederich CJ, Jones PD, Duggirala S, Tanaka Y, Ng B, Sievers R, Gerstenfeld EP (2015) Epicardial catheter ablation using high-intensity ultrasound: validation in a swine model. Circ Arrhythm Electrophysiol 8:1491–1497

    Article  PubMed  Google Scholar 

  51. Tran BC, Seo J, Hall TL, Fowlkes JB, Cain CA (2003) Microbubble-enhanced cavitation for noninvasive ultrasound surgery. IEEE Trans Ultrason Ferroelectr Freq Control 50:1296–1304

    Article  PubMed  Google Scholar 

  52. Nazer B, Giraud D, Zhao Y, Qi Y, Mason O, Jones PD, Diederich CJ, Gerstenfeld EP, Lindner JR (2021) Microbubble-facilitated ultrasound catheter ablation causes microvascular damage and fibrosis. Ultrasound Med Biol 47(1):131–138. https://doi.org/10.1016/j.ultrasmedbio.2020.09.007

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Both authors contributed equally to the writing of this manuscript.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arosh S. Perera Molligoda Arachchige.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, Y., Arachchige, A.S.P.M. Revolutionizing cardiovascular care: the power of histotripsy. J Ultrasound (2024). https://doi.org/10.1007/s40477-023-00848-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40477-023-00848-7

Keywords

Navigation