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Abstract
Purpose of Review Development, testing, and evaluation of
medical countermeasures for melioidosis are hampered by a
lack of well-characterized and standardized animal models.
Recent work has both refined existing animal models for this
disease and identified new ones.
Recent Findings Head-to-head comparisons of mouse strains
with varying susceptibility to the organism and using different
routes of infection highlighted and confirmed important
similarities and differences between murine models and
exposure routes. Diabetic mouse models provided insight
into the disease process in humans having this major risk
factor. Large animal models, both livestock and non-human
primate, have been established. Alternative (non-mammalian)
models have been useful in identification of virulence factors
and screening of therapeutic candidates. They hold potential
for large-scale screening that would not be appropriate or
practical for mammalian species.
Summary Recent advances in animal and alternative
modeling will enhance our understanding of the organism
and the disease process, as well as accelerating the development
of medical countermeasures.

Keywords Melioidosis . Animal models . In vitro models .

Medical countermeasures . Virulence . Burkholderia
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Introduction

Burkholderia pseudomallei is a normal soil and water
saprophyte predominately found in Southeast Asia and
Northern Australia and the causative agent of the disease
melioidosis in these regions and elsewhere, including
Africa and the Americas [1, 2]. Melioidosis is considered
to be an emerging disease, in part due to improved diag-
nosis. To a lesser extent, it is also due to migration and
transport of infected animals [3–7] and increased immi-
gration from and tourism to endemic regions [8–10],
allowing for latent infected hosts to transport the disease
to non-endemic regions. Transmission of this disease is
thought to be by various routes: oral, respiratory, or
breaks in the skin [11–15]. Melioidosis outbreaks have
also been reported in a wide variety of animals, including
both terrestrial and aquatic mammals, reptiles, birds, and
fish in various settings (natural habitat, domestic, and
zoological as reviewed in [16–19]). For domestic animals,
natural infection is most commonly reported in sheep,
goats, and swine [16, 17, 20].

The U.S. Department of Health and Human Services
categorizes B. pseudomallei as a tier 1 biological select
agent. B. pseudomallei is thought to pose a threat for use
as a biological weapon because (1) hosts are susceptible to
infection via aerosol, (2) a long latency period is possible
prior to the development of clinical signs, (3) the organism
has intrinsic resistance to many antibiotics, and (4) no vaccine
is currently available. As such, the biodefense community has
taken much interest in developing appropriate animal models
for developing medical countermeasures (MCM) for
melioidosis. Here, we provide a review of the diverse animal
models available for melioidosis that provide a path forward
for development of medical countermeasures and future
pre-clinical studies.
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Mouse Models

Mouse models have been extensively used to characterize the
pathogenesis of B. pseudomallei. Data have illustrated that
BALB/c mice are more susceptible and may represent an
acute model of melioidosis; whereas, C57BL/6 mice are
significantly more resistant and may represent a more
chronic model of disease. While there is debate about the
definition of chronicity in a mouse model, clear differences
in susceptibilities are observed in these mice after challenge
with B. pseudomallei. Accordingly, work on these two strains
constitutes the majority of data available for B. pseudomallei
mouse models. Obvious benefits of working with mice
include the relatively low cost, ease associated with animal
husbandry, and the ability to attain statistical significance
with larger animal numbers. One drawback may be the
route-associated sensitivities with some of the mouse strains.
For example, some strains have a median lethal dose (LD50) of
less than 1 colony-forming unit (CFU) when delivered as an
aerosolized dose. There are also obvious issues associated
with the application of data obtained frommouse experiments
to human disease [21, 22]. Table 1 offers a quick reference
guide to what we consider important or noteworthy studies
designed to characterize the mouse model of melioidosis
[24–30, 31•, 32]. Due to space constraints, we have focused
mainly on mice exposed to aerosolized bacteria or mice that
received intraperitoneal (IP) inoculations. However, other
routes have been examined including intravenous (IV),
intranasal (IN), and subcutaneous (SC).

Intraperitoneal Exposure The IP route of exposure has been
used as an efficient way for characterizing pathogenesis and
ranking the virulence of B. pseudomallei clinical isolates. The
IP route offers a potential bridge of exposure routes between
laboratories for testing as it is easy to perform and there are
potentially less variables than when delivering aerosolized
bacteria. Welkos et al. demonstrated the IP route of exposure
was able to clearly discern differences in virulence associated
with a panel of clinical isolates. This report detailed LD50

values calculated for day 21 and day 60 after exposure to the
bacteria [30]. Because of the extended endpoint, the
importance of observing infected mice for extended periods
of time in order to accurately assess the final outcome of
the infection was demonstrated. This study has important
consequences on the design of vaccine and therapeutic
studies, particularly in the choice of bacterial strains and
experimental endpoints. Additionally, Welkos et al. provided
evidence suggesting an inverse correlation between in vitro
and in vivo virulence ofB. pseuudomallei as determinedwithin
the parameters of the macrophage cell model employed. It was
shown that strains ofB. pseudomalleimore cytotoxic to in vitro
to the J774.A1 tissue culture cells were generally less virulent
in the mouse model [30]. While further data are required to

substantiate this observation, this inverse correlation may
model an important aspect of intracellular B. pseudomallei
biology. Other reports have also used the IP model of
inoculation (see Table 1), and the cumulative data demon-
strate that this model is a valuable tool for B. pseudomallei
research. While IP challenge is obviously not a natural
route of infection, the resulting disease progression pre-
sents with interesting pathology and clinical signs which
can be anecdotally compared to human case reports. Some
examples described in the literature include pyogranuloma
formation in various organs [33, 34], primary pneumonia
[9] and secondary pneumonia after parenteral inoculation
[35], and orbital cellulitis or necrotizing fasciitis [36].

Aerosol Exposure Given that B. pseudomallei is transmitted
via exposure to aerosolized bacteria during monsoon seasons
in endemic areas and also that B. pseudomallei is a HHS tier 1
agent of concern for biological defense, the aerosol route of
exposure is of significant importance [37–39]. Several reports
have detailed this route of exposure using both C57BL/6 and
BALB/c mice and further characterized the course of disease
and importance of the biodefense-driven animal model [25,
26, 29, 31•, 32]. More recent reports have demonstrated that
variation between differentially virulent bacterial strains can
be ascertained in an aerosol model [29]. However, whereas the
IP model offers a relatively wide range of LD50 values
between clinical isolates [30, 40], the differences observed in
LD50 values when mice are exposed to aerosolized
B. pseudomallei are much more subtle. Due to the difficulty
in delivering reproducibly small doses of bacteria and the
findings revealing a narrower range of virulence differences
between clinical isolates, this mouse model is technically
challenging and limited to facilities with specialized
equipment.

Exposure to aerosolized bacteria results in a primary
pneumonia that leads to a highly disseminated disease
course in mice (and humans) [9, 29, 31•, 32, 34]. The
pathologies observed after exposure to aerosolized bacteria
have some similarities to those seen after IP inoculation,
but the variety and severity of these observations are different
than the IP route [31•]. For example, caudal disease
progression (e.g., rear end paralysis or tail lesions) can
be observed after mice inhale B. pseudomallei but is
less commonly observed and may be less severe when
contrasted with similar observations in mice receiving
the bacteria via an IP injection [30, 31•].

These differences are hypothesized to be due to the initial
site of entry and associated with local draining lymph nodes.
Even with these important discussion points and caveats, the
mouse model offers a highly useful system in which to study
bacterial pathogenesis as well as test and evaluate critically
needed novel MCMs.
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Table 1 Noteworthy mouse modeling studies for melioidosis

Mouse
strain(s)

Route Bacterial strain(s) Key data and experimental
findings presented

Dannenberg and Scott 1957 [23] Albino Namru IP
Aero

103-67 (mouse
adapted)

1. Long time course was examined, up to day 80
in some cases

2. Ranges of doses employed (from 2 to 100,000
LD50 equivalents)

3. Examined histopathology and gross pathology
4. Descriptive immune cell population data presented
5. Compared chronic disease in mice with humans

Leakey et al. 1998 [24] BALB/c
C57BL/6

IV
IP

Clinical isolate from
fatal case in 1990

1. Provided evidence for differential
model in C57BL/6 mice compared to BALB/c mice

2. Modeled mainly early disease: most data are 96 h
time course with mention of later times

3. Performed Mendelian analyses with generations
of BALB/c and C57BL/6 mice

4. Bacterial burden provided for select tissues (blood,
liver, spleen)

5. Examined growth kinetics in peritoneal exudate
cultures from BALB/c and C57BL/6 mice;
demonstrated that C57BL/6 cells were significantly
more microbicidal than BALB/c cells

Tan et al. 2008 [25] BALB/c
C57BL/6

IP
Aero
IN
SC

K96243 1. Modeling acute disease: 6 day time course was
examined with 3 time points

2. Cytokine/chemokine expression was reported for
sera and lung samples

3. Bacterial burden provided for select tissues (nasal
wash, blood, lung, spleen, liver)

4. Confirmed different susceptibilities of mouse strains
5. Differential immune responses of the mouse strains:

high levels of pro-inflammatory cytokines were
detrimental and contributed to the immuno-pathogenesis

Lever et al. 2009 [26] BALB/c Aero BRI 1. Modeled acute disease: through 120 h with moderate
dose of bacteria (20 LD50 equivalents)

2. Bacterial burden provided for select tissues
(lung, liver, spleen, blood, kidney, and brain)
3. Histopathology
4. Confirmed the sensitivity of the BALB/c mouse to melioidosis

Srisurat et al. 2010 [27] BALB/c IP A2 1. Exposed mice to high dose (230 CFU) or low dose (6 CFU) to
characterize chronicity

2. Moderate time course was reported, up to day 28 in some cases
3. Bacterial burden provided for select tissues (blood, spleen,

liver, lung)
4. ELISA data were presented describing resulting antibody

responses

Conejero et al. 2011 [28] C57BL/6 IN 576 1. Long time course was examined, up to day 90 in some cases
2. Bacterial burden provided for select tissues (blood, liver, spleen)
3. Cytokine/chemokine expression was reported for sera and lung
4. Histopathology and gross pathology
5. Provided evidence that a chronic mouse model of melioidosis

may be similar to that of humans

Massey et al. 2014 [29] BALB/c Aero K96243;
HBPUB-10303a

1. Achieved low delivered aerosol dose (5.4 and 3.8 cfu)
2. Data were collected for a short to moderate time frame up to

14 days post exposure
3. Blood chemistry and hematology parameters were examined
4. Cytokine/chemokine expression was reported for sera and

lung samples
5. Bacterial burden provided for select tissues (lung,

liver, spleen)
6. Examined histopathology
7. Temperatures and weights were recorded daily
8. Underscored the importance of standardization of models
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Diabetic Mouse Models Epidemiological studies have
consistently identified diabetes as a major risk factor,
with 39–57% of patients being diabetic or diagnosed
with diabetes at presentation [41–43]. Only a limited
number of studies have been conducted with either type
1 diabetic (T1D) or T2D diabetic animal models of
melioidosis. T2D models are preferable as they represent
90–95% of all diabetes patients, which also reflects the
melioidosis patient population [44]. The earliest models
were T1D models induced by streptozotocin treatment in
rats or mice [45–50]. In general, the studies reported
significant differences between diabetic and normal mice
in organ burden, cytokine levels, or gene expression, but
none reported significant differences in mortality. Most
recently, a model of melioidosis in Akita mice, which
have a point mutation in the Ins2 gene leading to β-
cell apoptosis, has shown a significant difference (> 2.5
Log10 CFU) in the LD50 between diabetic and control
animals. It is a T1D model, but characteristics of the
T2D phenotype, such as insulin resistance and changes
in cardiac structure and function, are present [51].

Type 2 diabetic models have included polygenic/diet-
induced and leptin-receptor knockout mouse models [52,
53]. The leptin-receptor knockout (db/db) is the only model
that has shown a statistically significant difference in
mortality. However, the db/db model is not representative

of human T2D in either pathogenesis or severity. The
diet-induced diabetic models are believed to be more
representative of human diabetes. Relative to control animals,
they have shown decreased expression of inflammatory
cytokine RNAs, increased inflammatory cell infiltrates,
and higher organ burdens early in infection [52, 53]. All
of the above diabetic studies (T1D and T2D) have been
conducted in male mice and rats since the females are resistant
to develop the diabetic phenotype. This contrasts with
virtually all other experimental models of melioidosis,
which use only females. The diet-induced diabetic models
are also restricted to the C57BL/6 strains (or hybrids).
The importance of dietary composition for these models,
particularly the fat to sugar/carbohydrate ratio and glycemic
index, must be carefully considered. More work is required to
generate an appropriate diabetic mouse model of melioidosis.

Hamsters and Guinea Pigs

The Syrian golden hamster, Mesocricetus auratus, has been
utilized since the 1940s as an acute model of experimental
melioidosis [23, 54–57]. Male and female hamsters are
exquisitely sensitive and uniformly susceptible to infection
with B. pseudomallei. The LD50 is typically less than
10 CFU and death occurs 2–5 days post-challenge.

Table 1 (continued)

Mouse
strain(s)

Route Bacterial strain(s) Key data and experimental
findings presented

Welkos et al. 2015 [30] BALB/c IP K96243; 1026b;
1106a; 406e;
MSHR5858;
MSHR5848;
MSHR5855;
MSHR305;
MSHR668;
HBPUB-1034a;
HBPUB-10303a

1. Long time course was examined, up to day 90 in some cases
2. Bacterial burden provided for select tissues (blood, lung,

spleen and liver)
3. Cytokine/chemokine expression was reported for sera

and spleen
4. Characterized immune cell populations with flow cytometry
5. Histopathology and gross pathology
6. Established the utility of the IP model for ranking virulence of

clinical isolates based upon LD50

7. Presented data suggesting an inverse correlation between
in vitro cytotoxicity and in vivo virulence in the cell model

employed

Bearss et al. 2017 [31•] BALB/c
C57BL/6

IP
Aero

K96243 1. Long time course was examined, up to day 90 in some cases
2. Bacterial burden provided for select tissues (blood, lung, spleen)
3. Cytokine/chemokine expression was reported for sera

and spleen
4. Characterized immune cell populations with flow cytometry
5. Histopathology
6. Delivered purposefully low doses and similar LD50 equivalent

doses
7. Comprehensive description of a common lab strain in both

mouse strains using 2 routes
8. Documented multi-nucleated giant cell (MNGC) formation

in mice following infection

IP intraperitoneal, IV intravenous, IN intranasal, SC subcutaneous, Aero aerosol
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Multiple routes of infection have been utilized, including
IP, SC, respiratory, and oral, with little difference in disease
progression. Melioidosis in hamsters is an acute fulminating
infection with considerable morbidity by 48 h, often with a
purulent ocular exudate. Recent studies by Gutierrez and
Warawa demonstrated that the body temperature of hamsters
infected with B. pseudomallei spikes approximately 24 h after
infection and then drops rapidly immediately prior to death or
euthanasia [56]. Systemic infection ultimately results in
hamsters that harbor 103–108 CFU in the blood, liver,
spleen, and lungs at disease endpoints.

The intrinsic sensitivity of hamsters to experimental
melioidosis has been exploited by researchers to isolate
B. pseudomallei from environmental sources [55, 58],
characterize non-pathogenic near-neighbor species [54,
59], and identify integral virulence determinants such as
the capsular polysaccharide, cluster 1 type VI secretion
system (T6SS-1), cluster 3 type III secretion system
(T3SS-3), quorum sensing, phospholipase C (PlcN3), and
a two-component system sensor kinase (BPSL2025)
[60–64]. Tuanyok et al. utilized a whole-genome microarray
to compare the RNA expression profile of bacteria growing in
infected hamster organs with bacteria grown in vitro and
found numerous differentially regulated B. pseudomallei
genes important for in vivo metabolism and virulence [62].

Hamsters have also been used as an acute model of
infection to confirm the attenuation of B. pseudomallei
strains subject to removal from the Federal Select Agent
Program’s select agent list. The strict rules and regulations
associatedwith select agent research apply toB. pseudomallei,
and there is a desire by the melioidosis community for strains
with attenuated virulence that can be excluded from select
agent requirements [56, 65, 66].

Guinea pigs have been used historically to detect and assess
strain virulence of B. pseudomallei [57, 67–69]; however,
their recent use as an animal model for melioidosis has been
limited. The reported susceptibility of guinea pigs following
challenge has varied between being acute (SC and IP) with all
of the challenged animal succumbing to infection within a
week [70] versus moderately susceptible with a great deal of
in variability of survival following IP, SC, ingestion, and
inhalational challenge [57]. In a study by DeShazer et al.
[71], the LD50 for guinea pigs with strain 1026b by the IP
route was 2000 CFU.

Large Animal Models

The study of melioidosis in non-rodent, vertebrate models can
be broken down into two broad categories: livestock animals
and non-human primates (NHP). These models are usedmuch
less frequently and have significant limitations relative to their
rodent counterparts in terms of biocontainment housing, but

have the advantage of being natural host models and, in the
case of NHP, having more similarity to humans. Despite the
very broad host range of B. pseudomallei [16–18, 72], studies
in wild rodents rarely found evidence of disease or even
seropositivity in rats or mice [73, 74]. In contrast,
melioidosis has been well-described in goats, sheep, and
other livestock [20, 75–89], which parallels disease in
humans with the exception that most livestock tends toward
chronic presentations of melioidosis with granulomatous
lesions [90]. Natural disease in NHPs has been reported
as well, but less frequently [3, 4, 7, 91]. Of the species
used for experimental models, natural disease (outside of
zoological gardens) has only been reported for two
rhesus macaques [18]. Both exhibited chronic or
reactivated latent disease, with diagnosis 6 months and
10 years after acquisition [3, 91].

Livestock Experimental infection of livestock has been
conducted in chickens (IM) [92], horses (SC) [93], cattle
(SC) [76, 94], pigs (IV and intratracheal) [95, 96], sheep
(SC, IM, IV, supraconjunctival, IN, and oral) [76, 83, 84],
and goats (SC, IP, and aerosol) [97–100]. The only species
with recent efforts toward the development of livestock
models of melioidosis are pigs and goats.

Natural infection in pigs is typically chronic or asymptomatic
(discovered only at slaughter) and likely follows oral
infection [20, 76, 80, 86, 87, 101]. The pattern of disease
after experimental infection generally follows the pattern
seen in other species, with a febrile response and multiple
organ involvement, but a clear affinity for the lungs and spleen
[95, 96]. Pigs appear to be resistant to acute disease in
experimental infection, even with immunosuppression,
and additionally appear capable of clearing the infection
[93, 95, 96]. Pigs do not appear to be well-suited for the
study of naturally occurring human melioidosis or
biodefense-related countermeasure assessment.

The goat, as a naturally affected species, has a comparatively
large base of the literature describing the presentation and
lesions of caprine melioidosis [20, 78–80, 82, 97–99, 102],
which compares well with human disease in terms of clinical
presentation, epizootiology [16], organ distribution, and
histopathology [34, 103]. Acute presentations are possible
in goats, but chronic disease is more common and may in
some instances self-cure with sterile lesions observed [77,
79, 98, 100]. Experimental infection of goats has been
used for developing serodiagnostics (first description of
indirect hemagglutination assay), examining the risk of
mastitic goats’ milk as a source of zoonotic infection,
and characterizing disease pathogenesis as a model of
human disease [97–100, 104, 105].

Recent aerosol and percutaneous infection studies in goats
have provided detailed characterization of the pathology,
histopathology, and pulmonary radiographic changes
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associated with caprine melioidosis [99, 100]. Clinical
signs of fever and the development of pyogranulomatous
lesions in the lungs and spleen were typical of what is seen
in humans and experimental models. Bi- to multinucleate
giant cells were observed in pulmonary pyogranulomas
following percutaneous infection [100], which have been
reported from human cases [34, 103, 106], but they are
relatively infrequently reported from animal infection
models [31•].

Livestock models and reports of natural infection provide a
valuable insight and comparative study to the field of human
melioidosis. The ability of livestock to typically develop
chronic disease, and in some cases self-cure, raises interesting
ideas of examining different, but successful immune responses
to melioidosis. However, the rarity of large animal biocon-
tainment facilities capable of housing livestock coupled
with limited immunologic reagents is significant barriers
to use of these models.

Non-human PrimateNon-human primate (NHP) models are
considered the closest approximation to human disease given
the close phylogenetic relation and comparable pathologic
findings. However, an extremely wide range of susceptibility
amongst NHP species exists [4, 57, 107]. Early investigations
by Stanton and Fletcher and Miller et al. examined inhalation/
nasal instillation, inoculation, scarification, intraperitoneal, or
oral routes of infection, showed cynomolgus macaques
(Macaca fascicularis) to be generally resistant to infection
[57, 93, 108], even though outbreaks of melioidosis have been
seen in imported cynomolgus macaques [4]. Recent NHP
models development efforts have focused primarily on aerosol
exposure models in the common marmoset (Callithrix
jacchus), rhesus macaque (Macaca mulatta), and African
green monkey (Chlorocebus aethiops) [109, 110, 111•, 112,
113]. The focus on aerogenic disease is driven by biodefense
imperatives, though the importance of natural inhalational
infection [38, 114–116] is supported to a similar extent as
percutaneous infection [116–119] by epidemiological data.

The marmoset model employs a lower order NHP that is
safer and easier to handle in biocontainment conditions
compared to old-world monkeys, while still retaining immuno-
logic and physiologic similarities to humans [111•]. Marmosets
are extremely susceptible to B. pseudomallei with LD50s
< 10 CFU and death within 57 h when exposed to 102 CFU
by aerosol [109]. Subcutaneous challenge similarly produced
uniformly fatal disease within 85 h [112]. Disease is severe,
acute, and consistent with fever, high levels of bacteremia,
and typical lesions in the lung, spleen, and liver. However, lung
lesions were notably absent in two thirds of animals infected
subcutaneously [109, 112]. Despite the high susceptibility
to B. pseudomallei, the marmoset model was able to show
differential virulence amongst bacterial strains [111•].
However, factors such as the challenge dose remain more

important in determining disease outcome or time to death
[111•]. The greatest limitation to the marmoset model is
how exquisitely sensitive is to B. pseudomallei with very
low lethal doses and short times to death. By comparison,
primary cutaneous melioidosis in humans is rarely associated
with severe disease, whereas even low doses in marmosets
produce fatal disease [112, 120]. This model would represent
a very stringent test for therapeutic antimicrobials and is likely
too severe for melioidosis vaccine testing.

A comparison of the natural history of inhalation
melioidosis (aerosol dose ~ 3500 CFU) in rhesus macaques
(RM) and African green monkeys (AGM) demonstrated that
both species developed an infection that closely resembles that
observed in acute human disease, including fever, leukocytosis,
neutrophilia, anorexia, and dyspnea. The AGM uniformly
developed a rapidly fatal acute disease and were more likely to
have systemic involvement. Although 8/10 RM succumbed to
acute disease, two survived in the study. One of these had
symptoms of chronic pneumonia. Since the AGMwas a more
consistent model at this dose of B. pseudomallei, it was
suggested that the AGM is a more appropriate model for
MCM evaluation [110].

Alternative (Non-mammal) Models

Surrogate hosts have been explored as alternatives for
B. pseudomallei challenges to reduce and replace mammals
(when possible) for identifying bacterial virulence factors and
testing therapeutic candidates. For initial characterization,
these alterative models may prove beneficial as they could
allow for large-scale screenings which would not be ethically
appropriate or practical for mammal species. Furthermore,
many of these surrogates have simple growth conditions, short
generation times, less ethical and regulatory concerns, and
reduced costs and space constraints for performing studies in
biocontainment laboratories.

Nematode (Caenorhabditis elegans) The nematode
C. elegans is a well-developed surrogate animal model for
bacterial pathogenesis studies, and it shares many similarities
to the mammalian innate immune system [121, 122]. The
initial study on B. pseudomallei and nematodes demonstrated
that this infection was an active process [123]. Further
development of this surrogate model has identified additional
B. pseudomallei virulence factors [124, 125] and potential
therapeutics [126–128].

Madagascar Hissing Cockroach (Gromphadorhina
portentosa) Insects have also proven to be a popular
alternative model to mammals as there is a high degree of
similarity in the innate immune systems [129]. Recently, the
Madagascar hissing cockroach was tested for validity to serve
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as a surrogate model for B. pseudomallei infection.
Hemocytes from infected cockroaches appeared to provide
an intracellular niche for the bacteria and to also form
multinucleated giant cells. The cockroaches were highly
susceptible to infection with the LD50 calculated to be
< 10 CFU. In addition, when comparing LD50 measurements
with severalB. pseudomalleimutant strains, a clear correlation
in virulence was observed between challenged cockroaches
and hamsters [130]. A recent study demonstrated the
therapeutic potential of the antimalarial drug chloroquine
in treating B. pseudomallei-infected cockroaches [131].

Wax Moth (Galleria mellonella) An additional insect which
has been examined as an alternative model is the larvae of the
wax moth, G. mellonella. The wax moth larvae have been
shown to be susceptible to infection with B. pseudomallei
and able to support growth within the hemocoel [132].
Additional studies have examined B. pseudomallei strains at
differing levels of virulence for mice and showed similarities
to results obtained with macrophage-like cells and wax moth
larvae [133].

Amoeba (Dictyostelium discoideum) B. pseudomallei is an
intracellular pathogen that is also able to interact with
amoeba. Due to the many similarities between amoeba
and macrophages, D. discoideum has been explored as a
model system using plaque assays to study intracellular
survival of B. pseudodmallei [134]. This system may allow
greater insight into the mechanisms of virulence of
B. pseudomallei through studies of intracellular survival
and replication.

Animal Models Applied to Pathogenesis and MCM

Animal models have been used to identify virulence factors
(potential targets for antimicrobial and vaccine development),
screen prospective vaccines, and therapeutics and evaluate the
immune response to B. pseudomallei infection. The advanced
development of a promising MCM for human use generally
requires testing in a NHP model of disease, especially where
controlled studies in humans are not ethically feasible. Only
the most promising candidates are typically tested in NHPs
due to cost and animal welfare considerations, and only a few
melioidosis MCMs have been tested in NHPs [135, 136].
Thus, lower rodent and invertebrate animal models are
invaluable resources. Their convenience and similarity in
part to the human disease encourages their use in screening
and development of novel candidate MCMs.

Numerous studies have been published over the past few
years describing the use of BALB/c and C57BL/6 mice to
identify novel B. pseudomallei virulence determinants and
characterize the relative pathogenicity of clinical and

laboratory-passaged isolates [137–145, 146•, 147]. Strain
competition studies in the mouse model of melioidosis allow
the identification and characterization of bacterial genes with
mildly attenuated phenotypes [145]. Tn-seq transposon libraries
identified 548 genes required for lung colonization and three
large gene clusters, capsule, T3SS-3, and T6SS-1, responsible
for much of the lung pathogenesis in the intubation-mediated
intratracheal (IMIT) murine model of infection [139]. In
addition to shedding light on mechanisms of pathogenesis,
these types of analyses may aid in the identification of new
bacterial targets for the development of MCM.

Recent reviews are available which describe and evaluate
candidate melioidosis vaccines and established or novel
therapeutics in animal models [148, 149, 150••, 151,
152–158]. The majority of this work has been done in
murine models. Examples of novel therapeutics include new
antibiotics, antimicrobial peptides, plant-derived compounds,
herbicides, natural toxins/venoms, oligodeoxynucleotides
(ODNs), and monoclonal antibodies (MAbs) [127,
159–168]. New regimens for current antibiotics have
also been studied. For example, Ruiz et al. reformulated
ceftazidime as a dry powder for efficient aerosol delivery to
the lungs [169]. In addition to antibacterial treatments,
therapeutics that target host pathways involved in responses
to infection, or target and stimulate immune cells, such as T
cells, have been characterized in vivo [136, 170–174].

Although some post-exposure therapeutics appeared to
prevent B. pseudomallei infection [175], most animals
ultimately become colonized and succumb to disease.
Thus, vaccine-induced active immunity may be a more
promising strategy for preventing infection. Several antigens
have been reported to stimulate immunity against infection
during the study course [148–154]. Most of these vaccines
targeted surface antigens (LPS, capsule, outer membrane
proteins, and killed whole cells). Recently, new formulations or
platforms for known vaccine targets have provided protection,
such as antigen-carrier glycoconjugates, micro- and nano-
particle vaccines, outer membrane vesicles, and killed
B. pseudomallei whole cells inactivated by alternate means
[135, 176–183]. Alternately, live attenuated B. pseudomallei
strains with auxotrophic or virulence factor gene deletions
which are significantly attenuating, and recombinant
Salmonella and B. thailandensis strains, have been leveraged
as live vaccines, with the hope that they will generate more
long-term, sterilizing immunity [184–189].

An understanding of the host response to B. pseudomallei
is critical to MCM development. Although care must be taken
in extrapolating immune responses in animal models to
human disease, some recent studies have addressed changes
in cytokine/chemokine levels in response to the organism [29,
190], the roll of Toll-like receptors (TLRs) in infection
[191–202], and the importance of neutrophils in innate
immunity [203, 204]. Comparison of mouse strains known
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to differ in susceptibility to B. pseudomallei, such as
BALB/c and C57BL/6, suggests that there is an early overt
expression of inflammatory cytokines, such as IL-1α, IL-
1β, IL-6, and TNFα, in the BALB/c mouse compared to
that seen in the more resistant C57BL/6 mouse. Similarly,
comparing cellular and humoral immune responses in a
susceptible NHP host to those of a more resistant one could
prove informative. Specific-pathogen-free and genetically
modified (knockouts or humanized) mice are available and
can be particularly useful for evaluating the immune response
and the host-pathogen relationship.

Finally, animal models can be used for other purposes
which indirectly support MCM development. These studies
(1) spurred the development of select agent exempt stains
which facilitate non-containment biosafety laboratory studies
onMCMs [184, 205–208], (2) assessed the efficacy of current
consensus antibiotic treatment regimens [175, 209–211], (3)
probed the role of antibiotic tolerant in vivo variants in
treatment failures [212–214], and (4) identified bacterial
and host markers which might serve as correlates of protection
and immunity [152, 172, 174, 215•, 216, 217]. For instance, a
conventional post-exposure treatment regimen failed to
eradicate infection in BALB/c mice under conditions of
immunosuppression or upon extended persistent infection
[209]. Also, in a treated mouse model, Cummings et al.
characterized transcriptional responses of B. pseudomallei
specific to ceftazidime exposure to identify markers of
treatment efficacy [215•]. Further, long-term and rigorous
studies (in mice and then NHPs) to identify countermeasures
with the most promise for eradicating infection or producing
sterile immunity are required to support the advanced
development of human MCM candidates for melioidosis.

Conclusions

Recently, significant advances have been made in the
development of animal models for melioidoisis. These
include traditional (rodent), large animal, and alternative
models. Head-to-head comparisons of mouse strains
with varying susceptibility to the organism, and using
different routes of infection, highlighted and confirmed
important similarities and differences between murine
models and exposure routes. Although diabetic mouse
models are relatively early in development, they are
providing some understanding of the disease process in
the segment of the human population having this major
risk factor for melioidosis. Promising large animal
models include the goat, a naturally affected species,
which compares well with human disease in terms of
clinical presentation, organ distribution, and histopathology.
However, it requires a biocontainment facility designed for
livestock. NHP models, generally considered to be the closest

approximation for human disease, vary in susceptibility to
B. pseudomallei with the marmoset being exquisitely
sensitive, and the AGM being intermediate between the
marmoset and the Rhesus macaque. The choice of NHP
may vary depending on the goal of the study, for example,
testing of therapeutics versus vaccines. Alternative models,
such as nematodes, amoebae, and insects, have been primarily
useful in the identification of virulence factors and, to a lesser
extent, screening of therapeutic candidates. They hold
potential for large-scale screening that would not be
appropriate or practical for mammalian species. All of these
models will contribute to the development of MCM and a
better understanding of melioidosis.
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