
TOPICS EXPLORING LOA-LOA, ONCHOCERCIASIS, HOOKWORM, ASCARIS, TRICHURIS (A SANCHEZ AND R FUJIWARA, SECTION EDITORS)

Human Ascariasis Increases the Allergic Response
and Allergic Symptoms

Luis Caraballo1,2 & Nathalie Acevedo1,2 & Emiro Buendía1

Published online: 30 September 2015
# Springer International Publishing AG 2015

Abstract Ascariasis is still very prevalent; one billion people
are infected all around the world. In rural areas, severe asca-
riasis impairs the immune responses to natural infections and
vaccination programs. However, in urbanized areas, improved
hygiene conditions and periodic anthelmintic treatments have
led to light forms of ascariasis, where parasite-induced immu-
nosuppressive effects are surpassed by the immunostimulating
effects of the infection. During the last years, the clinical im-
pact of this type of ascariasis on allergic diseases, especially
asthma, has been well documented, and it is currently accept-
ed that this relationship should be considered when analyzing
allergy prevalence in tropical and temperate countries. This
review focuses on the emerging evidence that supports the
stimulatory effects of ascariasis on the allergic responses and
its clinical importance. Advances on the role of type 2 innate
lymphoid cells (ILC2) in helminth immunity and allergy path-
ogenesis as well as new genetic findings supporting the links
between helminthiases and allergy are discussed. We show
that ascariasis, beyond its known effects on human health, is
able to modify the natural history of asthma, increasing Th2

responses and IgE synthesis to cross-reactive and species-
specific mite allergens, being a risk factor for asthma and
asthma severity.
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Introduction

The most common human helminthiases are caused by soil-
transmitted nematodes (Ascaris lumbricoides, Trichuris
trichiura, Ancylostoma duodenalis, Necator americanus,
Strongyloides stercoralis), filarial nematodes (Wuchereria
bancrofti, Brugia malayi,Onchocerca volvulus), and platyhel-
minth flukes (Schistosoma haematobium, Schistosoma
mansoni, Schistosoma japonicum). The immune response
elicited by these infections differs depending on the type of
parasite, lifecycle, host age, burden of co-infections
(polyparasitism), and parasite loads. However, all share as
hallmarks an increase in circulating IgE levels, peripheral
and intestinal eosinophilia, and the activation of genes and
cytokine networks related to type 2 immunity and
immunomodulation [1, 2].

A. lumbricoides induces a Th2-biased immune response,
similar to that observed in the allergic response but associated
with parasite-induced immunomodulation, a condition that
could be evolutionary related with the helminths ability of
parasitic life. Therefore, ascariasis can influence allergic dis-
eases by either stimulating or suppressing the allergic re-
sponse, probably depending on the severity of the infection,
which in turn is determined by host genetic susceptibility and
the degree of exposure. A number of epidemiologic surveys
suggest that nowadays, severe, chronic infections, with heavy
worm loads and polyparasitism are present in rural areas of the

This article is part of the Topical Collection on Topics Exploring Loa-Loa,
Onchocerciasis, Hookworm, Ascaris, Trichuris

* Luis Caraballo
lcaraballog@unicartagena.edu.co

Nathalie Acevedo
nathalie.acevedo@fundemeb.org

Emiro Buendía
ebuendiad@unicartagena.edu.co

1 Institute for Immunological Research, University of Cartagena,
Cartagena, Colombia

2 Foundation for the Development of medical and biological sciences
(Fundemeb), Cartagena, Colombia

Curr Trop Med Rep (2015) 2:224–232
DOI 10.1007/s40475-015-0058-7

http://crossmark.crossref.org/dialog/?doi=10.1007/s40475-015-0058-7&domain=pdf


tropics, while intermittent and low-intensity infections occur
mainly in urbanized areas, being A. lumbricoides and
T. trichiura the most common parasites. As a consequence,
risk or protector factors for allergy in the tropics include hel-
minthiases. During the last few years, it has become clear that
ascariasis may influence several aspects of allergy, such as
prevalence, diagnosis, severity, and prevention. Studying the
relationships between ascariasis and allergy could help to un-
derstand fundamental questions about type 2 immunity, aller-
gy mechanisms, and clinical phenotypes. Since an inverse
prevalence rates between helminthiases and allergy has been
found, future research could provide insights on the origin of
the high prevalence of allergy in urbanized zones of the tro-
pics. In this review, we analyze the evidence supporting that,
in the current relationship between ascariasis and allergy, the
most important effect of ascariasis is increasing allergic
symptoms.

The Increasing Trends of Allergy

Allergic diseases (allergy) result from the interaction between
genetic predisposition and environmental factors. Among ge-
netic predisposing factors, atopy (the tendency to react with
IgE antibodies against innocuous antigens, a condition also
known as BIgE sensitization^ or merely Bsensitization^) is
one of the most studied. However, other heritable components
are required to conform to the clinically evident phenotype.
The best known environmental factors are the allergens, in-
cluding molds, pollens, house dust mites (HDM), foods, pets,
etc. People in the tropics are permanently exposed to HDM
allergens, which are the main cause of asthma in this zone.
However, other factors and conditions, such as pollution, diet,
biodiversity, microbiome composition, and infections (viral
and parasitic) can modify the natural history of allergy.
During the few last years, the epigenetic modifications in-
duced by some of these environmental signals have been re-
vealed. Asthma, rhinitis, and atopic dermatitis are the proto-
types of allergic diseases. In addition, there are a number of
allergic reactions including those to foods, stinging insects,
and drugs that could induce anaphylaxis, a severe, life-
threatening condition. The prevalence of allergic diseases is
increasing worldwide including underdeveloped countries of
the tropics [3]. Among the numerous possible factors under-
lying this trend [4], the progressive lack of the immunomod-
ulatory effect of helminthiases is salient. These infections have
already been controlled in most industrialized countries and
are under control in urbanized zones of the tropics (Fig. 1).
Then, the relationships between helminthiases and allergy ex-
tend beyond the basic and clinical sciences to cover important
worldwide epidemiological trends. These interesting links are
partially explained by the common aspects of helminth immu-
nity mechanisms and the allergic response. A number of

recent reports on basic immunoparasitology have provided a
better understanding of the immune responses to helminth
infections (reviewed in [2]). Here, we present just a brief dis-
cussion of the role of innate lymphoid cells 2 (ILC2) on hel-
minth immunity and allergy.

The Immune Responses to Helminths and Allergens:
Emerging Roles for Innate Lymphoid Cells 2

Immunity to Ascaris involves antibodies and cellular mecha-
nisms of the innate and adaptive responses. However, sterile
immunity is not common and reinfection occurs frequently.
After ingesting an embryonated infective egg, Ascaris
lifecycle in the human host comprises larval penetration
through the gut epithelia, migration through tissues, and adult
settlement in the gut. The migration process causes tissue
damage and antigen exposure to the immune system.
Ascaris infection induces increased expression of the cyto-
kines IL-4, IL-5, IL-9, IL-10, and IL-13; synthesis of specific
antibodies to its antigens/allergens (including IgE); high titers
of polyclonal IgE; eosinophilia; and activation of mast cells
and basophils. This immune reaction is collectively known as
Th2-type immunity and is similar to that observed in allergic
inflammation. In the early stages of infection, ILC2 play an
important role, whereas M2 macrophages and lymphocytes
participate in later stages. However, together with this Th2-
skewed immune profile, Ascaris induces immunosuppressive
responses including the expansion of regulatory T and B cells
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Fig. 1 Hypothetical presentation of the effect of helminthiases control on
the prevalence of allergic diseases. Immunosuppression (IS) reaches its
maximum when helminthiases are prevalent and the burden of infections
is very high; inducing severe disease. In this setting, the prevalence of
allergic symptoms is low. Immunostimulation (IE) is higher when the
prevalence of helminthiases is lower, allowing intermittent and mild
infections that increase allergic symptoms. The hypothesis assumes that
the changes operate on a population genetically predisposed to allergy
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and production of suppressive cytokines (IL-10/TGF-β).
After repeated exposure to the parasite, several effector mech-
anisms confer adaptive immunity and contribute to destroy the
larvae during early stages of their migration (the so called
Bhepatic barrier^), or to expel the adult worms from the intes-
tine. Ascaris induced high total IgE levels but most of these
antibodies are not specific [5], resulting from a polyclonal
stimulation of B cells [6]. This irrelevant IgE binds to its
receptors on mast cells and eosinophils precluding their de-
granulation, and reducing the effector response against larvae
[7].

The discovery of the cells currently known as ILC2
emerged from experimental nematode infections [8–10].
After their first descriptions in 2010, other reports have sup-
ported the role of ILC2 in immunity to helminths. Yasuda
et al. showed that during infection by Schistosoma
venezuelensis, lung epithelial cells produce IL-33 and induce
proliferation of a type of ILC2. Their effects were independent
of adaptive immunity but dependent on the IL-33 produced by
the lung epithelium [11]. Indeed, the number of ILC2 was
greater in the resistant mice strain BALB/c infected with
Heligmosomoides polygyruswhen compared with the suscep-
tible C57BL/6 strain, thus supporting their role in anti-
helminth immunity [12]. ILC2 cells also have the capacity to
proliferate in response to helminth carbohydrate chitin [13].
Moreover, IL-33−/− mice did not develop eosinophilia and
goblet cell hyperplasia after intranasal administration of chitin
[11]. Interestingly, some helminth infections suppress immune
response by blocking the production of IL-25 and IL-33. Zaiss
et al. found thatH. polygyrus bakeri induces the production of
IL-1β by epithelial cells in vivo and in vitro, blocking the
production of IL-25, IL-33, and the proliferation of ILC2,
allowing infection chronicity [14].

ILC2 control eosinophil homeostasis in helminth infection
and macrophage differentiation to M2 phenotype [9, 10], pos-
sibly because the IL-5 and IL-13 produced by these cells in-
duce epithelial eotaxins and adhesins that promote eosinophil
trafficking into the lung and other tissues [15, 16]. ILC2,
through MHCII, collaborate with T lymphocytes that produce
IL-2 that induces ILC2 proliferation and increased immunity
[17]. Recently, these properties have also been observed in a
mice model of asthma where ILC2 significantly increased the
lung Th2 inflammatory responses to chronically administered
ovalbumin [18].

ILC2 are involved in granuloma formation by Schistosoma
eggs in the liver [19, 20]. In contrast, they produce
amphiregulin that can repair tissue damage induced by influ-
enza virus infection [21]. This cytokine seem important for
controlling helminth infection because amphiregulin-
deficient mice have more parasite burden at day 14 post in-
fection with Trichuris muris when compared with the control
wild type [22]. Another important ILC2-related cytokine is
IL-9. Turner et al. showed that IL-9 receptor-deficient mice

infected with Nippostrongylus brasiliensis have less ILC2
(Lin−Th1 1.2+), IL-13, IL-5, and amphiregulin and more egg
count and tissue damage during parasite migration [23].

In humans, Boyd et al. found increased IL-13 producing
ILC2 in peripheral blood of adult patients with filarial infec-
tion. In this study, these cells expressedGATA3, similar to had
been previously shown in mice [24]. In contrast, Nausch et al.
found d imin i shed ILC2 in per iphera l b lood of
S. haematobium infected children [25•]. Since the immune
responses to helminths and the allergic response have some
similarities, the findings about ILC2 on type 2 immunity and
helminth infection resistance have led to the study of their role
in the allergic reaction [26]. A number of publications have
shown that, as happens during helminth infection, these cells
react early producing IL-13 and IL-5 during sensitization with
various allergen extracts [27•] and recombinants allergens [28,
29] with the same dependence on IL-25 and IL-33 epithelial
cytokines [28]. ILC2 are involved in the severity of allergy in
an independent way or associated to T lymphocytes activation
[18, 27•]. Moreover, it has been shown that asthmatic individ-
uals have more ILC2 (Lin−CD127+CRTH2+) in peripheral
blood than patients with rhinitis and healthy individuals.
In vitro, these cells produced higher quantities of IL-5 and
IL-13 when cultured with IL-25 and IL-33 plus IL-2 [30]. It
can be speculated that in the tropics, allergic individuals with
an ILC2-hyperactive phenotype and concomitant helminth in-
fection might have a boosted allergic response and more se-
vere symptoms.

Immunogenetics of the IgE Responses to Ascaris
and Allergens

Since the immune response to helminthiases shares several
mechanisms with the allergic reaction, it is expected that they
also have common genetic basis. In fact, several variants have
been found associated with both helminth infections and al-
lergy. Moreover, most of researchers in the field think that
allergy is a collateral consequence of a protective response
evolutionary modeled by helminth infections. However, most
of the genes and polymorphisms associated with the IgE re-
sponse to allergens and allergic diseases have not been related
to helminth resistance. This suggests that IgE responses to
allergens probably have their own evolutionary roots. This
topic has become more complicated as it is realized that the
number of the so-called immune response genes is greater
than previously suspected. In this section, we discuss the ge-
netic factors influencing the antibody response to helminths
with emphasis on Ascaris and the scenarios in which they
could contribute to the IgE sensitization to non-parasitic
allergens.

Several facts suggest that there is an important genetic in-
fluence defining the susceptibility to helminth infections. It is

226 Curr Trop Med Rep (2015) 2:224–232



typical that worm loads are over-dispersed in the infected
communities with 20 % of the individuals harboring 80 %
of the parasites [31]. Individual predisposition to get infected
by heavy or light worm loads is maintained in treatment-
reinfection studies [32], and aggregates in families [33, 34].
Epidemiological studies revealed than in addition to exposure
and household determinants, genetic factors account for an
important proportion of the variation in worm loads [35–38].

Genetic factors have been also found to influence the levels
of protective antibodies against helminths, as shown for the
IgG levels to larval and adult worm antigens in humans in-
fected by W. bancrofti [36]. The heritability of circulating
antibody levels against helminths (particularly IgG1 and
IgG2) ranges between 70 and 80 % depending upon time
and isotype [39], and gene expression analyses have found
that many genes differentially expressed between resistant
and susceptible animals are indeed implicated in antibody
synthesis [40]. A. lumbricoides is very allergenic and, as ex-
plained earlier, induces in the host a type-2 skewed immune
profile with several features that resemble the allergic re-
sponse to non-parasitic allergens including the synthesis of
specific IgE [41]. The role of this isotype in the resistance to
Ascaris is controversial, but some studies have shown that
worm loads and the proportion of re-infected children after
treatment is significantly lower in individuals with the highest
levels of anti-Ascaris IgE antibodies [42]. In endemic popula-
tions, most of the infected individuals produce specific IgE to
Ascaris without developing allergic symptoms, suggesting
that the regulation of the antibody response to helminths is
polygenic, and genetic loci influencing the strength and spec-
ificity of the IgE response to helminths do not necessarily
confer susceptibility to allergic asthma or IgE sensitization.

Nevertheless and considering the overlap in biological
pathways implicated in the immune responses to helminths
and allergens, it has been hypothesized that some genetic

variants influencing the IgE response to helminths may also
predispose to develop IgE sensitization with non-parasitic al-
lergens [43] or even predispose to allergic diseases [44, 45].
Although the empirical evidence is limited, it can be noted that
(i) the major histocompatibility complex (MHC) participate in
determining susceptibility to helminthic infections [46]; (ii)
some genetic variants are associated to both, susceptibility to
helminthic infections and allergic sensitization, as shown for
the genes encoding for interleukin 13 (IL13), the signal trans-
ducer and activator of transcription 6 (STAT6), and
chitotriosidase; and (iii) other genetic loci regulate the anti-
body response to helminths without predisposing to allergy.

Studies in humans and other mammals support the role of
genetic factors in the predisposition to Ascaris [37, 47] but
few genes have been identified so far [43, 48–51, 52•]. A
summary of genes and genomic regions associated with the
susceptibility to human ascariasis is presented in Table 1.

Common Genes for Ascaris Response and Allergic
Phenotypes

The enhanced resistance to parasitic worms through genetic
variation has been observed in Th2 immune signaling genes
and some also contribute to allergic susceptibility. Peisong
et al. found an association between a common genetic variant
of the 3′-UTR regulatory elements of STAT6 and Ascaris egg
counts in China [49]. In addition, a cross-population compar-
ison between haplotypes in China and United Kingdom re-
vealed a negative correlation between worm burden and ex-
pected risk of asthma [43]. The 5q31 locus is another example
of a common locus for the susceptibility to helminthic infec-
tion and allergic diseases. It contains genetic variants in the
IL13 gene associated with the worm burden of Ascaris in a
Chinese population.

Table 1 A summary of genes and genomic regions associated with the susceptibility to human ascariasis

Gene Locus Genetic variant Effect Population Ref.

IL10 1q31-q32 rs3024492 Allele C of rs3024498 was negatively associated
with helminth infection

Brazil [52]

IL13 5q31 −1055 C > T In combination with a common variant in the 3′region
of STAT6 contribute to diminish Ascaris burden

China [49]

STAT6 12q13 Microsatellite in exon
15′UTR/3′UTR haplotypes

Carriers of the short allele in the microsatellite in
combination with SNPs haplotypes have lower
levels of Ascaris infection

China [49]

3′UTR SNP 4219 G/A Homozygotes GG have the lowest egg counts and
protected to carry more than 960 eggs per gram of feces

China [49]

– 13q33-34 D13S1265 D13S285 linkage with egg counts of A. lumbricoides in stool
and total IgE levels. Quantitative trait locus for
Ascaris burden

Nepal [48, 50]

TNFSF13B 13q33 G3980 > C GG homozygotes have higher levels of IgG to Ascaris.
In asthmatics; carriers of the G allele have higher
levels of IgE against the resistance marker ABA-1

Colombia [51]
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Genes encoding for human chitinases have been also iden-
tified as a potential link between ancestral responses to inver-
tebrates and the susceptibility to allergic phenotypes. In
humans, chitinases promote Th2 responses. The acidic mam-
malian chitinase (AMCase) is induced in epithelial cells and
macrophages by an IL-13-mediated pathway and is expressed
at high quantities in human asthma [53]. Genetic polymor-
phisms in chitinase genes have been associated with asthma
[54], and asthmatic children exhibited increased chitinase ac-
tivity and increased YKL-40 levels in BALF [55]. Genetic
variants in the gene encoding chitotriosidase (CHIT1) have
not only been associated with the response to filarial infection
but also with asthma [56, 57].

Experiments using different strains of mice and rats
demonstrated the MHC-restriction in the recognition of
excretory-secretory products of Ascaris and the genetic
control of the antibody response to its antigens [58–62];
however, the relationship between human MHC alleles
and the specificity of the antibody response to
A. lumbricoides is unknown.

The Ascaris Susceptibility Locus in Chromosome 13q33

Linkage studies identified a quantitative trait locus (QTL) ac-
counting for the variability in Ascaris egg counts and total IgE
levels in chromosome 13q33-34 [48]. A second linkage-based
genome scan including 1258 members of a single pedigree
identified three potential QTLs influencing susceptibility to
A. lumbricoides with genome-wide significance, localized
on chromosomes 8, 11, and 13 [50]. Of these regions, the
13q33 locus is of great interest because it contains the gene
TNFSF13B encoding for the cytokine B cell activating factor
(BAFF). We studied the role of common variants in the 13q33
locus on the IgE and IgG levels against Ascaris and the puta-
tive resistance marker ABA-1, and identified a region of
125 kb harboring two polymorphisms significantly associated
with antibody levels against Ascaris [51]. The effect of this
variant was observed in both, non-asthmatic and asthmatics
suggesting that participates in pathways implicated in anti-
body synthesis under physiological conditions and is not di-
rectly associated with allergic sensitization and/or asthma. At
this point, it is unclear if the association in LIG4 is functionally
related with this gene or resulted of the linkage disequilibrium
with other variants. Furthermore, the polymorphism
rs10508198 (3980G>C) in the TNFSF13B gene was associat-
ed to the specific IgG levels to Ascaris. The carriers of the
wild-type genotype GG have the highest levels of specific IgG
to Ascaris in both non-asthmatics and asthmatics, suggesting
that TNFSF13B may regulate the strength of the antibody
levels against Ascaris. There was no association between
markers in the 13q33 locus and the IgE levels to HDM s or
the presence of asthma [51].

The Complex Relationship Between Ascariasis
and Allergy

The first observations about ascariasis and allergy were
around the presence or increase of allergy symptoms (mainly
asthma and urticaria) associated with Ascaris infection [63,
64]. The next link was the finding that both, helminthiases
and allergy, were associated with high levels of total IgE,
which was further extended to other features of the im-
mune responses to both processes [65–68]. This has
been followed by epidemiological reports that, using
several approaches, have shown that ascariasis is a risk
factor for asthma [69–77]. However, although there is
abundant scientific literature supporting the boosting ef-
fect of ascariasis on allergic responses [5, 63–67,
69–76, 78–92, 93•, 94•, 95, 96•, 97, 98] (Table 2), a
number of questions remain regarding the mechanisms
for inducing an increased allergic response and asthma
symptoms in a condition naturally accompanied by im-
munosuppression (reviewed in [99, 100]). The answers
could be related to several factors such as the perma-
nent co-exposure to both HDM and A. lumbricoides that
induces an enhanced Th2 response, cross reactivity be-
tween Ascaris and HDM allergens, nonspecific boosting
of the allergic responses by Ascaris components, and
intermittent Ascaris infections and deworming cam-
paigns. Our recent work has focused on some of these
aspects, as follows.

Exposure to HDM Allergens and Ascaris Infections Is
Permanent in the Tropics

One of the particularities influencing allergy in the tro-
pics is the permanent exposure to HDM and helminth
infections. The mean annual temperature and humidity
of 28 °C and 85 %, respectively, favor mites’ growth
and the lifecycle of Ascaris. Children born and raised in
underdeveloped tropical countries are sensitized to both
mite and Ascaris allergens at an early age [92]. For
some sources such as Blomia tropicalis, the adult level
of sensitization is reached at the age of 3 years [92,
101]. Therefore, an interesting characteristic of allergy
in the tropics is the high rate of sensitization to HDM
allergens and the high strength of that specific IgE re-
sponse. This phenotype has been described in Asian as
well as Latin American tropical countries and could be
the result of a selective effect of perennial exposure on
the population genetically susceptible to atopy and hy-
perreactivity to Ascaris infection. This population will
be sensitized by very small amounts of allergens, an
often forgotten feature of atopy, but the strength of the
IgE response could increase with perennial exposure, as
occurs in the tropics.
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Cross Reactivity Between Mites and Ascaris Components
Has Clinical Significance

Since ascariasis and HDM exposure are very common in the
tropics, it is possible that IgE responses to both sources can be
increased by cross-reacting epitopes. We first described that
there is high cross reactivity between HDM and Ascaris,
mostly determined by tropomyosins. In this work, we also
confirmed that ABA-1 (Asc s 1), a polyprotein of Ascaris
spp., does not have cross reactivity with mite allergens. In
other words, that ABA-1 is useful for diagnosing ascariasis
in HDM-sensitized subjects [99, 102]. These investigations
were followed by the isolation and immunological character-
ization of Ascaris tropomyosin (Asc l 3) as the main cross-
reactive allergen of this nematode [103] and the finding that
Ascaris glutathione transferase (GST) apparently has less al-
lergenic activity than tropomyosin [104, 105]. Having isolated
and produced them as recombinant proteins, we were able to
evaluate the role of these and other allergens as risk factors for
asthma and asthma severity. In a nationwide study that includ-
ed 356 asthmatics and 435 controls, we found that sensitiza-
tion to Ascaris and mite tropomyosins were risk factors for
asthma in the Colombian population [93•]. This work con-
f i rmed tha t s en s i t i z a t i on to bo th Ascar i s and
Dermatophagoides pteronyssinus extracts were important risk
factors for asthma and, in addition, for the first time showed
that a molecular component of Ascaris is strongly associated
with asthma. Since there is strong cross reactivity among
mites and Ascaris tropomyosins, it is possible that primary
sensitization (being from mites or Ascaris components) had
been boosted by perennial exposure to the other cross-reacting
source. In other asthma cohort from the tropics, we also found
that not only sensitization to Ascaris extract but also to mite
and Ascaris components were associated with symptoms of
asthma severity, mainly severe dyspnea and more than four
visits to the emergency room during last year [94•]. These
studies support the role of Ascaris sensitization to species-
specific and cross-reactive allergens in asthma pathogenesis,
and, together with other recent reports [95, 96•], show that

ascariasis is an important factor modifying the IgE responses
and the natural history of asthma in the tropics.

Ascariasis Induces Nonspecific Boosting of IgE Responses
to Mite Allergens

As has been observed in experimental models, ascariasis can
boost the IgE/Th2 responses to bystander antigens [88–90].
Since it might help to explain the increasing allergy effects of
Ascaris, we have explored this aspect in human ascariasis.
Evaluating the evolution of the immune responses in children
of the FRAAT birth cohort [106], we found that Ascaris-sen-
sitized children had stronger IgE to the mite B. tropicalis. To
rule out the confounding effect of cross reactivity, we used
species-specific components and found that those reacting
with IgE to ABA-1 (a marker of nematode infection) had
increased IgE responses to Blo t 5 and Blo t 12, two species-
specific allergens of B. tropicalis [92]. This Ascaris-induced
nonspecific boosting of the IgE responses to HDM compo-
nents was also detected in a large nationwide population co-
exposed to A. lumbricoides and HDM, where IgE levels and
frequencies of sensitization to mite allergen extracts were
greater in subjects sensitized to Asc s 1. In fact, these individ-
uals had at least twice the odds of being sensitized to HDM
[93•]. Furthermore, in a cohort of asthmatic patients living in
the tropics, Ascaris-sensitized patients had significantly
higher IgE levels to the HDM allergens Der p 2 and Blo t 5
[94•]. All these findings support the idea that the Th2/IgE
hyperresponsiveness induced by Ascaris infection (as detect-
ed by IgE antibodies toAscaris extract or ABA-1) includes the
responses not only to Ascaris antigens but also to HDM aller-
gens. It is well known that ascariasis induces a polyclonal
nonspecific stimulation of B cells; therefore, it can be hypoth-
esized that the involved components also stimulate mite
allergens-memory B cells that in the tropics are in permanent
allergen-specific stimulation. It has been extensively shown
that specific IgE to HDM is the most important risk factor
for asthma in the tropics and some temperate countries.
Therefore, any condition that increases this allergic response

Table 2 List of experimental and epidemiological data supporting that ascariasis enhances IgE responses to environmental allergens and allergic
symptoms

Finding References

Natural infection is associated with a polarized Th2 cytokine response and high levels of total and anti-Ascaris IgE [5, 65, 73, 78–85]

In some individuals, natural infection induces IgE-mediated allergic respiratory and cutaneous symptoms [63, 86, 87]

In experimental human and animal models, bronchial challenges with Ascaris extract induce asthma symptoms [64, 66, 67]

Experimental ascariasis in animals enhances IgE response to bystander antigens [88–91]

Human ascariasis enhances IgE response to mite species-specific allergens [92, 93•, 94•]

Several epidemiological surveys have found that ascariasis is a risk factor for asthma and atopy [69–75, 93•, 94•, 95, 96•]

IgE responses to Ascaris allergens is more frequent and stronger in mite-sensitized asthmatic patients [76, 81, 97, 98]
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could also increase symptoms and severity of this disease.
Ascaris components and host genetic background influencing
this boosting effect are only beginning to be unraveled, and
deserve further investigations.

Conclusions

Human ascariasis, in addition to its direct harmful effects, has
other health impacts, among them boosting the Th2 allergic
responses and increasing allergy symptoms. Since it is known
that ascariasis induces some degree of immunomodulation, it
seems that in the real life, especially in urban settings where
this infection coexists with perennial mite exposure, the Th2
enhancement effects surpass the immunosuppressive influ-
ence of this helminthiasis. There is evidence suggesting that
the increased allergic responses induced by ascariasis could be
determined by any or a combination of the following: early
age exposure and sensitization to allergens from both sources
and cross reactivity between Ascaris and HDM Ascaris-in-
duced nonspecific boosting of the IgE reactivity to mite-
specific allergens
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