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Abstract West Nile virus, a mosquito-borne flavivirus, first
emerged in the Western Hemisphere in 1999. Although the
majority of infections are asymptomatic, West Nile virus
(WNV) causes significant morbidity and mortality in a minor-
ity of individuals who develop neuroinvasive disease, in par-
ticular the elderly and immunocompromised. Research in an-
imal models has demonstrated interactions betweenWNVand
the innate and adaptive immune system, some of which pro-
tect the host and others which are deleterious. Studies of dis-
ease pathogenesis in humans are less numerous, largely due to
the complexities of WNV epidemiology. Human studies that
have been done support the notion that innate and adaptive
immune responses are delicately balanced and may help or
harm the host. Further human investigations are needed to
characterize beneficial responses to WNV with the goal of
such research leading to therapeutics and effective vaccines
in order to control this emerging viral disease.
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Introduction

West Nile virus (WNV) is a mosquito-borne virus of the
Flaviviridae family. First discovered in Uganda in 1937,

WNV subsequently caused intermittent epidemics of mild
febrile illness in Africa, Middle East, Asia, and Australia.
The epidemiology of WNV changed in the mid-1990s with
recognition of outbreaks associated with high frequencies
of severe neurologic disease in Eastern Europe [1••]. WNV
emerged in New York City in 1999 and has spread through-
out the continental USA as well as to Canada, Mexico, and
parts of Central and South America [2]. Over 39,000 cases
of WNV with 1668 fatalities have been reported in the USA
between 1999 and 2013, with the highest numbers of re-
ported cases in 2003 and 2012. Neuroinvasive disease
(WNND) accounted for 44 % of all reported cases [3].
WNV exists in nature as an enzootic between Culex mos-
quitoes and avian hosts. Man and horses are believed to
serve as dead-end hosts in the virus life cycle. Human-to-
human transmission has occurred primarily via blood trans-
fusion and organ transplantation [4••].

In humans, WNV is asymptomatic in 80 % of infected
individuals. Symptomatic cases may present with an acute
self-limited febrile illness characterized by acute onset of
fever and may be associated with myalgia, fatigue, head-
ache, gastrointestinal symptoms, and rash, also known as
West Nile fever (WNF). Less than 1 % of WNV infections
result in WNND, which may manifest as meningitis, me-
ningoencephalitis, or acute flaccid paralysis. WNND can
occur in all age groups, but the elderly and immunocom-
promised are at higher risk for severe disease and long-
term neurologic sequelae resulting in 10 % mortality. Ad-
ditional co-morbid conditions that are associated with in-
creased risk for WNND include diabetes, hypertension,
and chronic kidney disease [1••]. There are currently no
specific therapeutic for WNV illness or vaccine licensed
for use in humans.

Data are limited on the mechanisms of protection and path-
ogenesis in humans, largely due to the sporadic nature of
WNV epidemics leading to significant challenges to perfor-
mance of clinical research. This review will focus on human
studies and will compare and contrast findings in humans to
those in animal model systems.
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WNV is a positive sense RNA flavivirus related to Japanese
encephalitis virus, dengue virus, and yellow fever virus. The
11-kb genome encodes a single open-reading frame of ten
polyproteins—three structural proteins (C, prM, and E) and
seven non-structural proteins (NS1, NS2a, NS2b, NS3, NS4a,
NS4b, and NS5) [5••]. Following the bite of an infected mos-
quito, tissue resident dendritic cells are believed to be the pri-
mary cellular target in humans [6]. In murine models, footpad
inoculation with WNV results in infection of keratinocytes,
spread to local lymph nodes, followed by a period of viremia,
and subsequent spread to secondary lymphoid and other pe-
ripheral organs (e.g., kidneys) followed by neuroinvasion [7,
8]. In humans, viremia tends to occur prior to the onset of
symptoms and has been identified in pre-symptomatic blood
donors [4••]. At autopsy, WNV is commonly detected in the
mid-brain, brainstem, and spinal cord but only occasionally in
cerebral cortex, hippocampus, and cerebellum [9–11]. Periph-
eral spread of WNV has been seen predominantly in severely
immunocompromised individuals [9].

Innate Immune Responses to West Nile Virus

The innate immune response is the first line of defense against
WNV infection and is essential in limiting virus dissemination
to peripheral tissues. Mouse models have been essential to
understanding the fundamental aspects of the innate immune
response to WNV. Following virus infection, recognition of
WNV by cytoplasmic and endosomal RNA sensors leads to
the induction of IFN-β and interferon-stimulated genes
(ISGs). Interferon regulatory factor 3 (IRF3) and IRF7 coor-
dinate IFN-β and IFN-α production helping to establish a
positive feedback loop [5••]. In macrophages, constitutively
expressed IRF7 allows for rapid production of systemic
IFN-α/β in WNV-infected mice [12]. In non-myeloid cells
such as neurons, IRF3 upregulation is required for production
of IFN-α and IFN-β [13]. IRF5 can also participate in the
induction of IFN in myeloid dendritic cells [14•]. In one study,
single nucleotide polymorphisms (SNPs) in human IRF3 have
been associated with symptomatic infections; however, no
correlation has yet been found with IRF5 or IRF7 and symp-
tomatic WNV infection [15•].

Cell-specific regulation of IFN-α/β production occurs dur-
ing WNV infection. TLR 3 signaling in neurons restricts
WNVreplication in the CNSwithout affecting peripheral viral
replication [16]. A similar phenotype is seen in mice deficient
in a downstream TLR signaling molecule, MyD88 [17, 18].
Mice deficient in MyD88 also had reduced trafficking of leu-
kocytes to the CNS due to reduced production of CCL5,
CXCL9, and CXCL10, which contributed to higher viral bur-
dens in the CNS [17].

Recently, research has shifted to understanding how cellular
ISGs restrict WNV viral replication and howWNVevades this
host mechanism. 2′-O Methylation of the viral mRNA cap
evades IFN-induced proteins with tetratricopeptide repeats
(IFIT) protein-mediated viral restriction [19]. Interferon-
inducible transmembrane proteins (IFITM) restrict early
WNV viral replication, while viperin restricts WNV only in
the CNS [20, 21]. In humans, SNPs in the antiviral protein
Mx1 are a risk factor for symptomatic WNV infections [15•].
Protein kinase R and RNAse L can also contribute to IFN-
mediated signaling in the periphery and CNS and are both
required for WNV clearance [22]. Genetic variation in the 2′-
5′ oligoadenylate synthetase 1 (OAS1) gene, which contributes
to RNase L-mediated degradation of viral RNA, has been
found to contribute to increased susceptibility in humans in
two of three studies [15•, 23, 24]. Inbred mouse strains are
susceptible to WNV due to a single point mutation encoding
a stop codon in the mouse ortholog, oas1b [25]. Recent genetic
analyses using systems biology approaches have identified ad-
ditional tissue-specific ISGs and previously unknown ISGs that
may also play a role in restricting WNV replication [26, 27••].

Downstream effects of other cytokines may lead to benefi-
cial or detrimental outcomes in WNV infection. Early IFN-γ
production by γ/δ T cells in the periphery of WNV-infected
mice limits viral dissemination into the CNS [28, 29]. Tumor
necrosis factor (TNF)-α production aids in the recruitment of
leukocytes to the CNS and also helps to mediate neuronal
survival by preventing caspase-3 upregulation [30, 31]. Indi-
viduals receiving anti-TNF-α therapeutic antibodies have
been found to be at high risk for developing WNND, which
is consistent with a protective role for TNF-α in WNV infec-
tion [32]. However, TNF-α and macrophage migration inhib-
itory factor (MIF) can also increase the permeability of the
blood brain barrier (BBB), thereby increasing susceptibility
to WNV disease [33, 34•]. Age-specific defects in cytokine
production may result in a decreased ability to restrict WNV
infection and dissemination. In humans, dendritic cells infect-
ed with WNV have impaired IFN signaling when obtained
from older individuals compared to younger individuals
[35]. WNV infection of macrophages from elderly individuals
has been shown to lead to increased TLR3 expression and
increased cytokine and chemokine production leading to po-
tential downstream effects on the immune response [36].

Adaptive Immune Responses to West Nile Virus

After initial WNV infection and subsequent virus restriction
by the innate immune system, the adaptive immune response
kicks in to help to prevent virus dissemination and eliminate
virus-infected tissues. Long-term memory T and B cell re-
sponses help protect against a secondary infection and are
important for the design of an effective WNV vaccine [37].
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Anti-WNV IgM and IgG antibody responses are required for
limiting viral spread and neuroinvasion [38, 39]. WNV anti-
body responses are primarily directed towards the structural
envelope (E) protein but can also be directed against the se-
creted non-structural NS1 protein [40••]. Anti-WNV E thera-
peutic and prophylactic antibodies that are directed against
domain III (DIII) of the E protein neutralize WNV particles
in mice [41]. However, in humans, responses against the DII
region predominated, with only a small fraction of the total
antibody response directed against DIII [42]. Although pas-
sive immunotherapy with anti-E antibodies following WNV
infection protected mice, recent findings showed no benefit
from high titer WNV immunoglobulin in individuals who pre-
sented with WNND [43]. In mice, anti-NS1 antibodies also
provide protection against WNV infection through non-
neutralizing mechanisms [44].

Elimination of CD4+ T cells, CD8+ T cells, or B cells from
mice result in increased susceptibility to WNV infection [38,
45, 46]. Murine and human WNV-specific CD4+ and CD8+ T
cell epitopes have been identified to assess WNV-specific T
cell responses in infected hosts [47–51, 52•]. WNV-specific
CD4+ and CD8+ T cells in mice are polyfunctional cytokine
producers that have cytolytic activity and help to reduce virus-
infected cells in tissues [47–49, 53]. WNV-specific CD4+ and
CD8+ Tcells can protect mice against a WNV challenge when
adoptively transferred into naïve mice or immunodeficient
mice [46–48]. WNV-specific CD8+ T cells also contribute to
vaccine-induced protective immunity inmice [54]. In humans,
a chimeric live-attenuated WNV vaccine was able to induce
E-specific T cell responses and generated a WNV-specific
CD8+ T cell response to an immunodominant WNV human
leukocyte antigen (HLA)-A*2-restricted epitope [55, 56]. En-
hanced protection and reduced viral burden in the CNS were
seen in HLA-A*2 transgenic mice after immunization with
this immunodominant WNV HLA-A*2 CD8+ T cell epitope
[57]. HLA class I and class II alleles have been associatedwith
asymptomatic and symptomatic WNV infections; however,
more work is needed to understand how protective and sus-
ceptibility alleles contribute to WNV disease in elderly vs.
younger individuals [58].

Since advanced age in humans is associated with increased
WNND, researchers have sought to determine whether defects
in the adaptive immune responses in the elderly contribute to
symptomatic WNV disease. In aged mice, dysfunctional
CD4+ and CD8+ T cell cytokine production, expansion, and
trafficking contributed to increasedWN viral titers in the brain
[59]. Contrary to what was seen in mice, there is little func-
tional evidence to suggest that adaptive immune responses to
WNV in the elderly contribute to disease severity. WNV-
specific memory T cell numbers and the breadth of the re-
sponses to WNVepitopes in the elderly were similar to those
seen in younger individuals [51, 60]. Monofunctional and
polyfunctional WNV-specific memory CD8+ T cells were

present in all age groups and exhibited similar phenotypes,
except a terminally differentiated phenotype was seen in
WNND [60, 61••]. This data suggests that T cell dysfunction
in the elderly may not be the sole mechanism contributing to
increased susceptibility, and other dysfunctional immune re-
sponses may contribute to disease outcomes.

CD4+ regulatory T cells (Tregs) are important immune me-
diators as they blunt effector T cell responses to pathogens,
thereby preventing unintentional immunopathology [62].
Tregs also play a critical role in modulating T cell effector
function and memory differentiation in lymph nodes and
CNS [63]. Although frequencies of Tregs in PBMCs from
WNV-infected blood donors increased over time, a lower fre-
quency of Tregs was detected in symptomatic vs. asymptom-
atic WNV+ blood donors up to 90 days after infection in an
age-independent fashion. In mice, the frequency of Treg cells
decreased over time, but similar to humans, those with more
severe disease had lower Treg frequencies. Mice lacking Treg
cells had increased mortality rates, suggesting a protective role
for Treg during WNV infection in mice [64]. Blocking inter-
leukin (IL)-10 signaling, a negative regulator of immune re-
sponses secreted by Tregs and CD4+ Tcells, increased surviv-
al after WNV infection [65]. These results suggest that regu-
lation of the adaptive immune responses is critical in deter-
mining outcomes upon WNV infection.

Innate Immune Responses to WNV Influence Adaptive
Immune Responses

Interferon (IFN)-α/β and the IRF transcription factors are also
important for the induction of adaptive immune responses to
WNV. Pinto et al. determined that inhibiting type I IFN signal-
ing early after infection greatly increased WNV-specific CD8+

T cells due to increased virus replication. Blocking IFN signal-
ing later during infection reduced cytokine production by
WNV-specific CD8+ T cells but did not alter their frequencies
[66]. IFN-α/β can also induce non-specific activation of B cells
in draining lymph nodes duringWNVinfection, demonstrating
that IFN can have widespread effects on the immune response
[67]. IFN-α/β can also help stabilize the BBB through upreg-
ulation of tight junction proteins, thereby preventing viral dis-
semination into the CNS as well as leukocyte trafficking which
may contribute to immunopathology [34•].

As described earlier, the production of IFN-α/β is regulated
by IRFs. IRF1 has both intrinsic effects through regulation of T
cell receptor signaling and proliferation of CD8+ T cells and
extrinsic effects through shaping the environment of expanding
CD8+ T cells [68]. IRFs can also have cell-specific effects on
adaptive immune responses as IRF5 signaling in the draining
lymph node in WNV-infected mice led to upregulation of che-
mokine and cytokine production, enhancing antibody genera-
tion but with no effect on T cell responses [69].
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Chemokine gradients help in the trafficking of immune
cells to the CNS during WNV infection. WNV infection of
CNS resident macrophages induces TLR7 activation and pro-
duction of IL-23, which recruits peripheral macrophages to
the CNS [18]. These infiltrating macrophages then produce
IL-1β, which promotes expression of CXCL12 and further
recruitment of CXCR4+ T cells to the endothelial barrier
[70]. Later in infection, a decline in CXCL12 expression per-
mits trafficking of T cells from the endothelial barrier into the
brain parenchyma leading to reduced viral loads and enhanced
recovery from infection [70, 71]. Secretion of CXCL10 by
WNV-infected neurons recruits CXCR3+ CD8+ T cells pref-
erentially to the cerebellum [72]. Cortical neuronal production
of IL-1β enhances effector CD8+ T cell function and further
promotes antiviral activity in neurons [73•]. In humans, de-
creased IL-1β production was seen in WNV-infected conva-
lescent macrophages isolated from patients recovered from
symptomatic WNV infection which is consistent with the
in vivo findings in mice [74].

A fine balance exists for the interplay between innate im-
mune responses and CD4+ and CD8+ T cells in mediating
immunoprotection or immunopathology. Recruitment of
CD4+ and CD8+ T cells to the CNS through chemokine-
mediated mechanisms is required for the elimination of
virus-infected cells [34•, 71, 72, 75]. Deletion of chemokine
receptor 5 (CCR5) reduces trafficking of leukocytes to the
CNS and increased virus replication in mice [76]. Individuals
encoding a deletion of 32 nucleotides in CCR5 were shown to
be at risk for symptomatic WNV infections and increased
mortality [77]. However, this association was not found in
other WNV cohorts [15•, 24]. An overactive WNV CD8+ T
cell response can result in immunopathology in the CNS, sug-
gesting that regulation of the adaptive immune response to
WNV is important for recovery from infection [78, 79].

Diabetes in humans is identified as a risk factor for severe
WNV disease and persistent WNV symptoms [1••]. Individ-
uals with diabetes have impaired T regulatory cell function
and altered expression of co-stimulatory molecules that help
regulate adaptive immune responses [80, 81]. Increased sus-
ceptibility to WNV in diabetic mice (db/db) is due to reduced
IFN-α/β production and delayed antibody and T cell re-
sponses [82]. Reduced trafficking of CD45+ lymphocytes
and CD8+ T cells, even in the presence of increased inflam-
matory molecules in the periphery and the brain, leads to
increased viral replication in the CNS in these mice [82, 83•].

As described above, IFN-α/β signaling during the early
stages of infection can influence the quality of the adaptive
immune response. Cell-specific differences in IFN responses
in older individuals could lead to tissue-specific differences in
antiviral protein responses as is seen in mice [21, 27••]. These
differences early during infection could also lead to qualita-
tively different antibody and T cell responses at later stages of
infection in the CNS. Due to limitations in study design,

human studies focus on isolated peripheral blood mononucle-
ar cells (PBMCs) from convalescent WNV individuals [35,
84]. Circulating PBMCs may not accurately reflect responses
that may be seen in tissues. These tissue-specific responses
may be playing an important role in resolving WNV infection
in the elderly as is seen in mouse models of WNV infection.

Controversies in Virus Persistence and Immune
Responses

Hamster and murine models of WNV have demonstrated virus
persistence in kidney and other tissues [85, 86]. WNV-specific
antibody and CD8+ T cell responses persist in the CNS of
WNV-infected mice for up to 16 weeks [85]. In a non-human
primate model, persistence of WNV was detected in the CNS,
kidneys, and lymph nodes [87]. Long-term follow-up studies of
WNV-infected individuals have rarely been done due to the
relatively short interval sinceWNVemergence. Several clinical
studies have demonstrated persistent symptoms, especially fa-
tigue and cognitive disorders, following WNV infection, re-
gardless of disease severity [1••, 88•]. The persistence of
WNV in humans and its potential role in immunoregulation
and symptoms remain controversial. In one study, WNV
RNAwas detected in a subset of patients with persistent symp-
toms 1–7 years post-WNV infection [89]. However, in a sepa-
rate study of WNV patients >6 years post-infection, WNV
RNA was not detected in the urine [90, 91]. A more recent
study showed that high levels of WNV RNA could be ampli-
fied in urine during acute infection and up to 30 days after
presentation [92••]. Interestingly, a high prevalence of chronic
kidney disease was reported in WNV-infected individuals after
long-term follow-up of acute illness, similar to what is seen in
the Syrian hamster model, suggesting antigen persistence and
immunopathology from WNV-specific immune cells [86, 93].
Another recent study showed that RNA can be detected in
whole blood up to 4 months after acute infection [4••].

Several studies of symptomatic vs. asymptomatic individ-
uals after WNV infection have demonstrated altered immune
responses between these groups. An increased frequency of
negative inhibitory receptors Tim3+ and PD-1 was found on
CD4+ and CD8+ T cells in symptomatic vs. asymptomatic
WNV+ blood donors, suggesting continual WNVantigen ex-
posure [94••]. An increased frequency of terminally differen-
tiated CD8+ T cells was seen in patients with WNND, which
also may be seen in continual antigen exposure during chronic
viral infection [60, 95]. In a more recent study, patients who
experienced chronic fatigue for prolonged periods of time
after WNV infection, regardless of disease severity, were
found to have elevations in serum proinflammatory cytokines,
again suggesting potential antigen persistence [88•].

In humans and mice infected with WNV, an initial IgM
antibody response is generated early in infection followed
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by a conversion to an IgG antibody response [38, 39, 96]. IgG
antibody levels either remained constant or declined over time
in WNV seropositive individuals; however, there was no dif-
ference between symptomatic and asymptomatic individuals
[84, 97, 98]. Multiple reports have described persistence of
IgM antibody in humans for a period of up to 8 years post-
infection, which again suggests persistence of WNV antigen
[97–99]. Although there are many tantalizing indicators for
viral persistence in a subset of individuals after WNV infec-
tion, further studies are warranted.

Questions To Be Answered Regarding the Pathogenesis
of WNV in Humans

Human clinical studies can be challenging under any cir-
cumstance, and prospective cohort studies of acute WNV
illness are relatively rare. The distribution of WNV is spo-
radic and focal in nature from year to year with clustering of
cases in different counties and hospitals, making subject
recruitment difficult. Approval of human studies by ethical
review boards can take months, at which point, the outbreak
has ceased and cases may not occur in the same location the
following season. Such quandaries have limited not only
studies of disease pathogenesis but also studies of therapeu-
tics and phase III clinical studies of candidate WNV vac-
cines as well.

What has been done, what should be done, and what can
be done in order to better understand WNV pathogenesis in
humans? It would be optimal to obtain blood samples as
early as possible following infection so that virus and innate
and adaptive immune responses can be studied. As viremia
occurs prior to onset of clinical symptoms, blood banks in
WNV endemic regions provide the best potential access to
asymptomatic viremic blood donors [4••]. While such co-
horts that have thus far been studied yielded samples for
characterization of antibody and T cell responses, limita-
tions include low numbers of individuals who develop sub-
sequent WNND as well as a lack of well-defined clinical
follow-up and evaluations from which to draw conclusions
about disease pathogenesis [43]. Large cohort studies of
acutely ill subjects are challenging due to the sporadic na-
ture of outbreaks and IRB issues outlined above. Studies of
hospitalized cases alone skew towards late events in
WNND, such as what has recently been reported [43]. Most
cases of WNF occur in outpatients, a subset of subjects
exceedingly difficult to identify and recruit. A series of
studies were enabled by the centralized health system in
Canada across several regions under a single IRB. Even
under these cirucmstances blood samples for research stud-
ies on disease pathogenesis could often not be obtained
until a week or two after illness onset [51, 61••]. Studies
of innate immunity in humans thus far have utilized in vitro

infection of human cells or late convalescent clinical sam-
ples for identification of biomarkers or risk factors of dis-
ease severity [35, 36, 84]. Interpretation of in vitro results to
in vivo pathogenesis should be interpreted with caution.
Similarly, interpretation of studies on late convalescent
clinical samples from WNV-immune individuals has the
possible confounder of virus persistence and/or other un-
derlying health issues, which may significantly alter im-
mune responses. Lastly, the issue of virus persistence, while
enticing, is still controversial. Autopsy studies of individ-
uals enrolled in long-term WNV cohorts would play a key
role in determining the role of persistent antigen in disease
pathogenesis. Collaborative studies among scientists and
clinicians will be vital to furthering knowledge of WNV
pathogenesis in humans.

Conclusions

In vitro and animal studies of disease pathogenesis have great-
ly added to our understanding of WNV biology and immu-
nology. By comparison, there is a relative paucity of immu-
nologic data in well-defined clinical cohorts of WNV-infected
humans. Despite the challenges, by comparing results in mice
and humans, some preliminary conclusions can be drawn: (1)
Individuals with defects in immune responses (elderly and
immunocompromised) are at high risk for WNND. (2) While
no obvious defects in antibody and CD8+ T cell responses are
seen at convalescent time points following WNV infection, it
is unknown whether altered kinetics of these responses early
in infection might still play a role in disease pathogenesis. (3)
Animal data point to a key role in innate immunity in protec-
tion from severe disease, but well-controlled clinical studies
on innate immunity during the viremic/early illness stage in
humans have yet to be done. (4) The role of virus persistence
in disease pathogenesis remains controversial, but alterations
in several immune markers suggest persistent WNV antigen.
Further clinical studies of well-characterized patients with
clinical and asymptomatic WNV infection are desperately
needed to better understand disease pathogenesis, as well as
to enable development of therapeutics and vaccines to combat
this disease.
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