Skip to main content

Advertisement

Log in

Advances in the Neurobiology of Food Addiction

  • Addictions (M Potenza and E DeVito, Section Editors)
  • Published:
Current Behavioral Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To summarize recent neurobiological evidence for (1) the addictive potential of ultra-processed foods and (2) the utility of food addiction, defined by behavioral criteria, as a clinically meaningful type of disordered eating.

Recent Findings

Ultra-processed foods appear to be capable of triggering biobehavioral mechanisms associated with addiction (e.g., dopaminergic sensitization, enhanced motivation), whereas naturally occurring foods do not appear to produce addictive-like responses. Neuroimaging studies have elucidated parallel mechanisms in food addiction and substance-use disorders, including dopaminergic dysfunction, emotion dysregulation, and impulsivity. Emerging data has also suggested biological distinctions for individuals with food addiction evident by the brain-gut-microbiome connection, hormones, and genetics.

Summary

Existing evidence has yielded convincing findings for overlapping features of ultra-processed foods and drugs of abuse. Preliminary findings from neurobiological studies of individuals with food addiction have revealed similar neural pathways triggered by food and related stimuli as observed in prior studies of persons with substance-use disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. Arlington: American Psychiatric Publishing; 2013.

    Book  Google Scholar 

  2. Gearhardt AN, Corbin WR, Brownell KD. Preliminary validation of the Yale Food Addiction Scale. Appetite. 2009;52(2):430–6. https://doi.org/10.1016/j.appet.2008.12.003.

    Article  PubMed  Google Scholar 

  3. Gearhardt AN, Corbin WR, Brownell KD. Development of the Yale Food Addiction Scale Version 2.0. Psychol Addict Behav. 2016;30(1):113–21. https://doi.org/10.1037/adb0000136.

    Article  PubMed  Google Scholar 

  4. Meule A, Muller A, Gearhardt AN, Blechert J. German version of the Yale Food Addiction Scale 20: prevalence and correlates of ‘food addiction’ in students and obese individuals. Appetite. 2017;115:54–61. https://doi.org/10.1016/j.appet.2016.10.003.

    Article  PubMed  Google Scholar 

  5. Brunault P, Courtois R, Gearhardt AN, Gaillard P, Journiac K, Cathelain S, et al. Validation of the French version of the DSM-5 Yale Food Addiction Scale in a nonclinical sample. Can J Psychiatry. 2017;62(3):199–210. https://doi.org/10.1177/0706743716673320.

    Article  PubMed  Google Scholar 

  6. Fawzi M, Fawzi M. Validation of an Arabic version of the Yale Food Addiction Scale 2.0. East Mediterr Health J. 2018;24(8):745–52. https://doi.org/10.26719/2018.24.8.745.

    Article  PubMed  Google Scholar 

  7. Granero R, Jimenez-Murcia S, Gearhardt AN, Aguera Z, Aymami N, Gomez-Pena M, et al. Validation of the Spanish version of the Yale Food Addiction Scale 2.0 (YFAS 2.0) and clinical correlates in a sample of eating disorder, gambling disorder, and healthy control participants. Front Psychiatry. 2018;9:208. https://doi.org/10.3389/fpsyt.2018.00208.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Aloi M, Rania M, Rodriguez Munoz RC, Jimenez Murcia S, Fernandez-Aranda F, De Fazio P, et al. Validation of the Italian version of the Yale Food Addiction Scale 2.0 (I-YFAS 2.0) in a sample of undergraduate students. Eat Weight Disord. 2017;22(3):527–33. https://doi.org/10.1007/s40519-017-0421-x.

    Article  PubMed  Google Scholar 

  9. Schiestl ET, Gearhardt AN. Preliminary validation of the Yale Food Addiction Scale for Children 2.0: a dimensional approach to scoring. Eur Eat Disord Rev. 2018;26(6):605–17. https://doi.org/10.1002/erv.2648.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gearhardt AN, Roberto CA, Seamans MJ, Corbin WR, Brownell KD. Preliminary validation of the Yale Food Addiction Scale for children. Eat Behav. 2013;14(4):508–12. https://doi.org/10.1016/j.eatbeh.2013.07.002.

    Article  PubMed  Google Scholar 

  11. Schulte EM, Gearhardt AN. Development of the Modified Yale Food Addiction Scale Version 2.0. Eur Eat Disord Rev. 2017;25(4):302–8. https://doi.org/10.1002/erv.2515.

    Article  PubMed  Google Scholar 

  12. •• Schulte EM, Gearhardt AN. Associations of food addiction in a sample recruited to be nationally representative of the United States. Eur Eat Disord Rev. 2018;26(2):112–9. https://doi.org/10.1002/erv.2575. This online study of 986 individuals recruited to be nationally representative of adults in the USA on demographic distribution observed a 15% prevalance of food addiction, as assessed by the Yale Food Addiction Scale 2.0.

    Article  PubMed  Google Scholar 

  13. Grant BF, Goldstein RB, Saha TD, Chou SP, Jung J, Zhang H, et al. Epidemiology of DSM-5 alcohol use disorder: results from the National Epidemiologic Survey on Alcohol and Related Conditions III. JAMA Psychiatry. 2015;72(8):757–66.

    Article  Google Scholar 

  14. Chou SP, Goldstein RB, Smith SM, Huang B, Ruan WJ, Zhang H, et al. The epidemiology of DSM-5 nicotine use disorder: results from the National Epidemiologic Survey on Alcohol and Related Conditions-III. J Clin Psychiatry. 2016;77(10):1404–12. https://doi.org/10.4088/JCP.15m10114.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gearhardt AN, White MA, Masheb RM, Morgan PT, Crosby RD, Grilo CM. An examination of the food addiction construct in obese patients with binge eating disorder. Int J Eat Disord. 2012;45(5):657–63. https://doi.org/10.1002/eat.20957.

    Article  PubMed  Google Scholar 

  16. Gearhardt AN, White MA, Masheb RM, Grilo CM. An examination of food addiction in a racially diverse sample of obese patients with binge eating disorder in primary care settings. Compr Psychiatry. 2013;54(5):500–5. https://doi.org/10.1016/j.comppsych.2012.12.009.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Carter JC, Van Wijk M, Rowsell M. Symptoms of ‘food addiction’ in binge eating disorder using the Yale Food Addiction Scale version 2.0. Appetite. 2019;133:362–9. https://doi.org/10.1016/j.appet.2018.11.032.

    Article  PubMed  Google Scholar 

  18. Davis C, Carter JC. Compulsive overeating as an addiction disorder. A review of theory and evidence. Appetite. 2009;53(1):1–8. https://doi.org/10.1016/j.appet.2009.05.018.

    Article  PubMed  Google Scholar 

  19. Ivezaj V, White MA, Grilo CM. Examining binge-eating disorder and food addiction in adults with overweight and obesity. Obesity (Silver Spring). 2016;24(10):2064–9. https://doi.org/10.1002/oby.21607.

    Article  Google Scholar 

  20. Gearhardt AN, Boswell RG, White MA. The association of “food addiction” with disordered eating and body mass index. Eat Behav. 2014;15(3):427–33. https://doi.org/10.1016/j.eatbeh.2014.05.001.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gearhardt AN, Corbin WR, Brownell KD. Food addiction: an examination of the diagnostic criteria for dependence. J Addict Med. 2009;3(1):1–7. https://doi.org/10.1097/ADM.0b013e318193c993.

    Article  PubMed  Google Scholar 

  22. Gearhardt AN, Davis C, Kuschner R, Brownell KD. The addiction potential of hyperpalatable foods. Curr Drug Abuse Rev. 2011;4(3):140–5.

    Article  Google Scholar 

  23. Hales C, Carroll M, Fryar C, Ogden C. Prevalence of obesity and severe obesity among adults: United States 2017–2018 NCHS Data Brief no 360. Hyattsville, MD, USA: National Center for Health Statistics; 2020.

    Google Scholar 

  24. World Health Organization. Fact sheet: obesity and overweight. 2020. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. Accessed April 21 2021.

  25. Herrmann MJ, Tesar AK, Beier J, Berg M, Warrings B. Grey matter alterations in obesity: a meta-analysis of whole-brain studies. Obes Rev. 2019;20(3):464–71. https://doi.org/10.1111/obr.12799.

    Article  PubMed  Google Scholar 

  26. Wang H, Wen B, Cheng J, Li H. Brain structural differences between normal and obese adults and their links with lack of perseverance, negative urgency, and sensation seeking. Sci Rep. 2017;7:40595. https://doi.org/10.1038/srep40595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Han P, Roitzsch C, Horstmann A, Possel M, Hummel T. Increased brain reward responsivity to food-related odors in obesity. Obesity (Silver Spring). 2021https://doi.org/10.1002/oby.23170

  28. Stice E, Burger K. Neural vulnerability factors for obesity. Clin Psychol Rev. 2019;68:38–53. https://doi.org/10.1016/j.cpr.2018.12.002.

    Article  PubMed  Google Scholar 

  29. Volkow ND, Wang GJ, Fowler JS, Telang F. Overlapping neuronal circuits in addiction and obesity: evidence of systems pathology. Philos Trans R Soc Lond B Biol Sci. 2008;363(1507):3191–200. https://doi.org/10.1098/rstb.2008.0107.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cameron JD, Chaput JP, Sjodin AM, Goldfield GS. Brain on fire: incentive salience, hedonic hot spots, dopamine, obesity, and other hunger games. Annu Rev Nutr. 2017;37:183–205. https://doi.org/10.1146/annurev-nutr-071816-064855.

    Article  CAS  PubMed  Google Scholar 

  31. Blum K, Thanos PK, Oscar-Berman M, Febo M, Baron D, Badgaiyan RD, et al. Dopamine in the brain: hypothesizing surfeit or deficit links to reward and addiction. J Reward Defic Syndr. 2015;1(3):95–104. https://doi.org/10.17756/jrds.2015-016.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Devoto F, Zapparoli L, Bonandrini R, Berlingeri M, Ferrulli A, Luzi L, et al. Hungry brains: a meta-analytical review of brain activation imaging studies on food perception and appetite in obese individuals. Neurosci Biobehav Rev. 2018;94:271–85. https://doi.org/10.1016/j.neubiorev.2018.07.017.

    Article  CAS  PubMed  Google Scholar 

  33. Geha PY, Aschenbrenner K, Felsted J, O’Malley SS, Small DM. Altered hypothalamic response to food in smokers. Am J Clin Nutr. 2013;97(1):15–22. https://doi.org/10.3945/ajcn.112.043307.

    Article  CAS  PubMed  Google Scholar 

  34. Demos KE, Heatherton TF, Kelley WM. Individual differences in nucleus accumbens activity to food and sexual images predict weight gain and sexual behavior. J Neurosci. 2012;32(16):5549–52. https://doi.org/10.1523/JNEUROSCI.5958-11.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stice E, Burger KS, Yokum S. Reward region responsivity predicts future weight gain and moderating effects of the TaqIA allele. J Neurosci. 2015;35(28):10316–24. https://doi.org/10.1523/JNEUROSCI.3607-14.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stice E, Yokum S. Neural vulnerability factors that increase risk for future weight gain. Psychol Bull. 2016;142(5):447.

    Article  Google Scholar 

  37. MacNiven KH, Jensen ELS, Borg N, Padula CB, Humphreys K, Knutson B. Association of neural responses to drug cues with subsequent relapse to stimulant use. JAMA Netw Open. 2018;1(8):e186466-e.

    Article  Google Scholar 

  38. Al-Khalil K, Vakamudi K, Witkiewitz K, Claus ED. Neural correlates of alcohol use disorder severity among non-treatment seeking heavy drinkers: an examination of the incentive salience and negative emotionality domains of the alcohol and addiction research domain criteria. Alcohol ClinExp Res. 2021. https://doi.org/10.1111/acer.14614.

  39. Garcia-Garcia I, Horstmann A, Jurado MA, Garolera M, Chaudhry SJ, Margulies DS, et al. Reward processing in obesity, substance addiction and non-substance addiction. Obes Rev. 2014;15(11):853–69. https://doi.org/10.1111/obr.12221.

    Article  CAS  PubMed  Google Scholar 

  40. Volkow ND, Fowler JS, Wang GJ. Role of dopamine in drug reinforcement and addiction in humans: results from imaging studies. Behav Pharmacol. 2002;13(5–6):355–66. https://doi.org/10.1097/00008877-200209000-00008.

    Article  CAS  PubMed  Google Scholar 

  41. Fetissov SO, Meguid MM, Sato T, Zhang LH. Expression of dopaminergic receptors in the hypothalamus of lean and obese Zucker rats and food intake. Am J Physiol Regul Integr Comp Physiol. 2002;283(4):R905-10. https://doi.org/10.1152/ajpregu.00092.2002.

    Article  PubMed  Google Scholar 

  42. Geiger BM, Behr GG, Frank LE, Caldera-Siu AD, Beinfeld MC, Kokkotou EG, et al. Evidence for defective mesolimbic dopamine exocytosis in obesity-prone rats. FASEB J. 2008;22(8):2740–6. https://doi.org/10.1096/fj.08-110759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang GJ, Volkow ND, Logan J, Pappas NR, Wong CT, Zhu W, et al. Brain dopamine and obesity. Lancet. 2001;357(9253):354–7. https://doi.org/10.1016/s0140-6736(00)03643-6.

    Article  CAS  PubMed  Google Scholar 

  44. de Weijer BA, van de Giessen E, van Amelsvoort TA, Boot E, Braak B, Janssen IM, et al. Lower striatal dopamine D2/3 receptor availability in obese compared with non-obese subjects. EJNMMI Res. 2011;1(1):37. https://doi.org/10.1186/2191-219X-1-37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Volkow ND, Wang GJ, Telang F, Fowler JS, Thanos PK, Logan J, et al. Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: possible contributing factors. Neuroimage. 2008;42(4):1537–43. https://doi.org/10.1016/j.neuroimage.2008.06.002.

    Article  PubMed  Google Scholar 

  46. Hietala J, West C, Syvalahti E, Nagren K, Lehikoinen P, Sonninen P, et al. Striatal D2 dopamine receptor binding characteristics in vivo in patients with alcohol dependence. Psychopharmacology (Berl). 1994;116(3):285–90. https://doi.org/10.1007/BF02245330.

    Article  CAS  PubMed  Google Scholar 

  47. Ahmed SH, Kenny PJ, Koob GF, Markou A. Neurobiological evidence for hedonic allostasis associated with escalating cocaine use. Nat Neurosci. 2002;5(7):625–6.

    Article  CAS  Google Scholar 

  48. Volkow ND, Fowler JS, Wang GJ, Hitzemann R, Logan J, Schlyer DJ, et al. Decreased dopamine D2 receptor availability is associated with reduced frontal metabolism in cocaine abusers. Synapse. 1993;14(2):169–77.

    Article  CAS  Google Scholar 

  49. Stice E, Figlewicz DP, Gosnell BA, Levine AS, Pratt WE. The contribution of brain reward circuits to the obesity epidemic. Neurosci Biobehav Rev. 2013;37(9 Pt A):2047–58. https://doi.org/10.1016/j.neubiorev.2012.12.001.

    Article  PubMed  Google Scholar 

  50. Ziauddeen H, Farooqi IS, Fletcher PC. Obesity and the brain: how convincing is the addiction model? Nat Rev Neurosci. 2012;13(4):279–86.

    Article  CAS  Google Scholar 

  51. Monteiro CA, Cannon G, Levy RB, Moubarac J, Louzada MLC, Rauber F, et al. Ultra-processed foods: what they are and how to identify them. Public Health Nutr. 2019;22(5):936–41.

    Article  Google Scholar 

  52. Schulte EM, Avena NM, Gearhardt AN. Which foods may be addictive? The roles of processing, fat content, and glycemic load. PLoS One. 2015;10(2):e0117959. https://doi.org/10.1371/journal.pone.0117959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pursey KM, Stanwell P, Callister RJ, Brain K, Collins CE, Burrows TL. Neural responses to visual food cues according to weight status: a systematic review of functional magnetic resonance imaging studies. Front Neurol. 2014;1:7. https://doi.org/10.3389/fnut.2014.00007.

    Article  Google Scholar 

  54. Stoeckel LE, Weller RE, Cook EW, Twieg DB, Knowlton RC, Cox JE. Widespread reward-system activation in obese women in response to pictures of high-calorie foods. Neuroimage. 2008;41(2):636–47. https://doi.org/10.1016/j.neuroimage.2008.02.031.

    Article  PubMed  Google Scholar 

  55. Makaronidis JM, Batterham RL. Obesity, body weight regulation and the brain: insights from fMRI. Br J Radiol. 2018;91(1089):20170910. https://doi.org/10.1259/bjr.20170910.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Balodis IM, Grilo CM, Potenza MN. Neurobiological features of binge eating disorder. CNS Spectr. 2015;20(6):557–65. https://doi.org/10.1017/S1092852915000814.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Contreras-Rodriguez O, Martin-Perez C, Vilar-Lopez R, Verdejo-Garcia A. Ventral and dorsal striatum networks in obesity: link to food craving and weight gain. Biol Psychiatry. 2017;81(9):789–96. https://doi.org/10.1016/j.biopsych.2015.11.020.

    Article  PubMed  Google Scholar 

  58. Steward T, Menchon JM, Jimenez-Murcia S, Soriano-Mas C, Fernandez-Aranda F. Neural network alterations across eating disorders: a narrative review of fMRI studies. Curr Neuropharmacol. 2018;16(8):1150–63. https://doi.org/10.2174/1570159X15666171017111532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yokum S, Ng J, Stice E. Attentional bias to food images associated with elevated weight and future weight gain: an fMRI study. Obesity (Silver Spring). 2011;19(9):1775–83. https://doi.org/10.1038/oby.2011.168.

    Article  Google Scholar 

  60. Volkow ND, Wang GJ, Fowler JS, Tomasi D, Baler R. Food and drug reward: overlapping circuits in human obesity and addiction. Curr Top Behav Neurosci. 2012;11:1–24. https://doi.org/10.1007/7854_2011_169.

    Article  CAS  PubMed  Google Scholar 

  61. Carter A, Hendrikse J, Lee N, Yucel M, Verdejo-Garcia A, Andrews ZB, et al. The neurobiology of “food addiction” and its implications for obesity treatment and policy. Annu Rev Nutr. 2016;36:105–28. https://doi.org/10.1146/annurev-nutr-071715-050909.

    Article  CAS  PubMed  Google Scholar 

  62. Johnson PM, Kenny PJ. Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat Neurosci. 2010;13(5):635–41.

    Article  CAS  Google Scholar 

  63. Avena NM, Bocarsly ME, Hoebel BG. Animal models of sugar and fat bingeing: relationship to food addiction and increased body weight. Methods Mol Biol. 2012;829:351–65. https://doi.org/10.1007/978-1-61779-458-2_23.

    Article  CAS  PubMed  Google Scholar 

  64. Avena NM, Gold JA, Kroll C, Gold MS. Further developments in the neurobiology of food and addiction: update on the state of the science. Nutr J. 2012;28(4):341–3. https://doi.org/10.1016/j.nut.2011.11.002.

    Article  Google Scholar 

  65. Avena NM, Rada P, Hoebel BG. Evidence for sugar addiction: behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci Biobehav Rev. 2008;32(1):20–39. https://doi.org/10.1016/j.neubiorev.2007.04.019.

    Article  CAS  PubMed  Google Scholar 

  66. Oswald KD, Murdaugh DL, King VL, Boggiano MM. Motivation for palatable food despite consequences in an animal model of binge eating. Int J Eat Disord. 2011;44(3):203–11. https://doi.org/10.1002/eat.20808.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Avena NM, Bocarsly ME, Rada P, Kim A, Hoebel BG. After daily bingeing on a sucrose solution, food deprivation induces anxiety and accumbens dopamine/acetylcholine imbalance. Physiol Behav. 2008;94(3):309–15.

    Article  CAS  Google Scholar 

  68. Oginsky MF, Goforth PB, Nobile CW, Lopez-Santiago LF, Ferrario CR. Eating ‘junk-food’ produces rapid and long-lasting increases in NAc CP-AMPA receptors: implications for enhanced cue-induced motivation and food addiction. Neuropsychopharmacology. 2016;41(13):2977–86. https://doi.org/10.1038/npp.2016.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. •• Brown RM, Kupchik YM, Spencer S, Garcia-Keller C, Spanswick DC, Lawrence AJ, et al. Addiction-like synaptic impairments in diet-induced obesity. Biol Psychiatry. 2017;81(9):797–806. https://doi.org/10.1016/j.biopsych.2015.11.019. (Rats given prolonged across to ultra-processed foods exhibited synaptic changes in the nucleus accumbens and the onset of addictive behavior (e.g., heightened motivation), providing support that ultra-processed foods are directly implicated in the onset of addiction-like neurobiological and behavioral changes.)

    Article  PubMed  Google Scholar 

  70. Pursey KM, Collins CE, Stanwell P, Burrows TL. Foods and dietary profiles associated with ‘food addiction’ in young adults. Addict Behav Rep. 2015;2:41–8. https://doi.org/10.1016/j.abrep.2015.05.007.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Curtis C, Davis C. A qualitative study of binge eating and obesity from an addiction perspective. J Eat Disord. 2014;22(1):19–32. https://doi.org/10.1080/10640266.2014.857515.

    Article  Google Scholar 

  72. Malika NM, Hayman LW Jr, Miller AL, Lee HJ, Lumeng JC. Low-income women’s conceptualizations of food craving and food addiction. Eat Behav. 2015;18:25–9. https://doi.org/10.1016/j.eatbeh.2015.03.005.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Schulte EM, Smeal JK, Gearhardt AN. Foods are differentially associated with subjective effect report questions of abuse liability. PLoS One. 2017;12(8): e0184220. https://doi.org/10.1371/journal.pone.0184220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Schulte EM, Sonneville KR, Gearhardt AN. Subjective experiences of highly processed food consumption in individuals with food addiction. Psychol Addict Behav. 2019;33(2):144–53. https://doi.org/10.1037/adb0000441.

    Article  PubMed  Google Scholar 

  75. Stice E, Spoor S, Bohon C, Veldhuizen MG, Small DM. Relation of reward from food intake and anticipated food intake to obesity: a functional magnetic resonance imaging study. J Abnorm Psychol. 2008;117(4):924–35. https://doi.org/10.1037/a0013600.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Stice E, Spoor S, Ng J, Zald DH. Relation of obesity to consummatory and anticipatory food reward. Physiol Behav. 2009;97(5):551–60. https://doi.org/10.1016/j.physbeh.2009.03.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. • Lennerz B, Lennerz JK. Food addiction, high-glycemic-index carbohydrates, and obesity. Clin Chem. 2018;64(1):64–71. https://doi.org/10.1373/clinchem.2017.273532. This review describes the neurobiological processes that may contribute to the elevated reward potential of high-glycemic-index carbohydrates, which include many ultra-processed foods.

    Article  CAS  PubMed  Google Scholar 

  78. DiFeliceantonio AG, Coppin G, Rigoux L, Edwin Thanarajah S, Dagher A, Tittgemeyer M et al. Supra-additive effects of combining fat and carbohydrate on food reward. Cell Metab. 2018https://doi.org/10.1016/j.cmet.2018.05.018. Individuals exhibited a supra-addictive neural response in reward regions for pictures of ultra-processed foods that contain both fat and refined carbohydrates, compared to responses for pictures of ultra-processed foods that contained either only fat or refined carbohydrates. This provides support for the combination of fat plus refined carbohydrates in ultra-processed being more rewarding that either ingredient on its own.••

  79. Hall KD, Ayuketah A, Brychta R, Cai H, Cassimatis T, Chen KY et al. Ultra-processed diets cause excess calorie intake and weight gain: an inpatient randomized controlled trial of ad libitum food intake. Cell Metab. 2019;30(1):67-77 e3. doi:https://doi.org/10.1016/j.cmet.2019.05.008. Inpatient participants given a 2-week diet of ultra-processed foods and a 2-week diet of minimally processed foods (in a randomized order) ate approximately 500 more calories per day, gained .9kg on average over the 2-week period, and exhibited increases in reward-related hunger hormones (insulin, leptin) on the ultra-processed food diet. This study provides evidence for the direct contributions that ultra-processed foods may have on influencing neurobiological and behavioral reward processes.

  80. Lennerz BS, Alsop DC, Holsen LM, Stern E, Rojas R, Ebbeling CB, et al. Effects of dietary glycemic index on brain regions related to reward and craving in men. Am J Clin Nutr. 2013;98(3):641–7. https://doi.org/10.3945/ajcn.113.064113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gearhardt AN, Yokum S, Orr PT, Stice E, Corbin WR, Brownell KD. Neural correlates of food addiction. Arch Gen Psychiatry. 2011;68(8):808–16. https://doi.org/10.1001/archgenpsychiatry.2011.32.

    Article  PubMed  PubMed Central  Google Scholar 

  82. De Ridder D, Manning P, Leong SL, Ross S, Sutherland W, Horwath C, et al. The brain, obesity and addiction: an EEG neuroimaging study. Sci Rep. 2016;6:34122. https://doi.org/10.1038/srep34122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. • Beyer F, Garcia-Garcia I, Heinrich M, Schroeter ML, Sacher J, Luck T, et al. Neuroanatomical correlates of food addiction symptoms and body mass index in the general population. Hum Brain Mapp. 2019;40(9):2747–58. https://doi.org/10.1002/hbm.24557. Individuals with elevated symptoms of food addiction exhibited alternations in the orbitofrontal cortex, a region implicated in reward apprisal, suggesting reward dysfunction as a neurobiological mechanism contributing to addictive-like eating.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Peng-Li D, Sorensen TA, Li Y, He Q. Systematically lower structural brain connectivity in individuals with elevated food addiction symptoms. Appetite. 2020;155: 104850. https://doi.org/10.1016/j.appet.2020.104850.

    Article  PubMed  Google Scholar 

  85. • Hardee JE, Phaneuf C, Cope L, Zucker R, Gearhardt A, Heitzeg M. Neural correlates of inhibitory control in youth with symptoms of food addiction. Appetite. 2020;148:104578. https://doi.org/10.1016/j.appet.2019.104578. Adolescents with increased symptoms of food addiction exhibited hypo-activation in inhibitory control regions while performing a go/no-go task, which may suggest that higher biobehavioral impulsivity contributes to addictive-like eating.

    Article  PubMed  PubMed Central  Google Scholar 

  86. •• Schulte EM, Yokum S, Jahn A, Gearhardt AN. Food cue reactivity in food addiction: a functional magnetic resonance imaging study. Physiol Behav. 2019;208:112574. https://doi.org/10.1016/j.physbeh.2019.112574. Individuals with food addiction, compared to those without, demonstrated neural activation in a region associated with reward appraisal and drug craving for ultra-processed foods and deactivation in this region for minimally processed foods, suggesting the specificity of ultra-processed foods being more implicated in food addiction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. •• Ravichandran S, Bhatt RR, Pandit B, Osadchiy V, Alaverdyan A, Vora P, et al. Alterations in reward network functional connectivity are associated with increased food addiction in obese individuals. Sci Rep. 2021;11(1):3386. https://doi.org/10.1038/s41598-021-83116-0. Persons with food addiction exhibited increased connectivity between the brainstem and orbitofrontal gyrus (associated with reward appraisal), suggesting dysregulation of the dopaminergic pathway, which may contribute to addictive-like eating.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. •• Dong TS, Mayer EA, Osadchiy V, Chang C, Katzka W, Lagishetty V, et al. A distinct brain-gut-microbiome profile exists for females with obesity and food addiction. Obesity (Silver Spring). 2020;28(8):1477–86. https://doi.org/10.1002/oby.22870. Women with food addiction demonstrated differences in gut microbiome bacteria and increased connectivity in the brain’s reward network.

    Article  CAS  Google Scholar 

  89. Gupta A, Osadchiy V, Mayer EA. Brain-gut-microbiome interactions in obesity and food addiction. Nat Rev Gastroenterol Hepatol. 2020;17(11):655–72. https://doi.org/10.1038/s41575-020-0341-5.

    Article  PubMed  PubMed Central  Google Scholar 

  90. La Fleur SE, Vanderschuren LJMJ, Luijendijk MC, Kloeze BM, Tiesjema B, Adan RAH. A reciprocal interaction between food-motivated behavior and diet-induced obesity. Int J Obes (Lond). 2007;31(8):1286–94.

    Article  Google Scholar 

  91. de Moraes RCS, Sawaya AL, Vieira ACA, Pereira JKG, de Brito Alves JL, de Luna Freire MO et al. Food addiction symptoms and metabolic changes in children and adolescents with the double burden of malnutrition. Br J Nute. 2021:1-18. doi:https://doi.org/10.1017/S0007114521000313. Individuals with higher food addiction symptoms exhibited higher body fat and increased insulin and leptin levels, which have been implicated in hunger and food reward.

  92. Davis C, Loxton NJ, Levitan RD, Kaplan AS, Carter JC, Kennedy JL. ‘Food addiction’ and its association with a dopaminergic multilocus genetic profile. Physiol Behav. 2013;118:63–9. https://doi.org/10.1016/j.physbeh.2013.05.014.

    Article  CAS  PubMed  Google Scholar 

  93. Cornelis MC, Flint A, Field AE, Kraft P, Han J, Rimm EB, et al. A genome-wide investigation of food addiction. Obesity (Silver Spring). 2016;24(6):1336–41. https://doi.org/10.1002/oby.21476.

    Article  CAS  Google Scholar 

  94. Faulconbridge LF, Ruparel K, Loughead J, Allison KC, Hesson LA, Fabricatore AN, et al. Changes in neural responsivity to highly palatable foods following roux-en-Y gastric bypass, sleeve gastrectomy, or weight stability: an fMRI study. Obesity (Silver Spring). 2016;24(5):1054–60. https://doi.org/10.1002/oby.21464.

    Article  PubMed Central  Google Scholar 

Download references

Funding

AMC was supported, in part, by the National Institute of Nursing Research of the National Institutes of Health under Award Number K23NR017209. KCA was supported, in part, by R01DK117488 and R01DK108628.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erica M. Schulte.

Ethics declarations

Human and Animal Rights

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Erica M. Schulte is now at the Center for Weight, Eating, and Lifestyle Science, Drexel University.

This article is part of the Topical Collection on Addictions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schulte, E.M., Chao, A.M. & Allison, K.C. Advances in the Neurobiology of Food Addiction. Curr Behav Neurosci Rep 8, 103–112 (2021). https://doi.org/10.1007/s40473-021-00234-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40473-021-00234-9

Keywords

Navigation