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Abstract
Purpose of Review This paper aims to review the findings on neuroimaging as a tool for facilitating individualized treatment
choice in depression.
Recent Findings Neuroimaging has allowed the exploration of neural candidates for response biomarkers. In less than two
decades, the field has expanded from small single drug studies to large multisite initiatives testing multiple interventions; from
simple analytical methods to employing artificial intelligence, with an aim of establishing models based on a variety of data, such
as neuroimaging, biological, psychological and clinical measures.
Summary Neural biomarkers of response may play an important role in treatment response prediction. It seems likely that they
will need to be considered together with other types of data in complex models in order to achieve the high accuracy and
generalizability of results necessary for clinical use.
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Introduction

Individualized treatment choice is one of the key areas of
translational research. The number and quality of studies
aimed at identifying the measures predictive of treatment re-
sponse – so called response biomarkers – has substantially
risen over the past few years. ‘Biomarkers’, defined as ‘char-
acteristics that are objectively measured and evaluated as in-
dicators of normal biological processes, pathogenic processes,
or pharmacologic responses to a therapeutic intervention’ [1],
are sought after in many disciplines of medicine – psychiatry
is no exception.

Currently, the choice of psychiatric medications is based on
general knowledge about the efficacy and safety of individual
drugs [2•], drug pharmacology, and individual preferences of

clinicians and patients. This will work for some patients, but it
also means that others will face delays in response as certain
treatments that are generally effective may not work for a
particular individual.

Depression is a prime example of how helpful response
biomarkers could be in expediting the treatment selection pro-
cess. Although effective treatments for depression exist, only
one third of patients respond to their initial medication, with
many patients needing multiple changes before significant
improvement can be seen, as highlighted by the Sequenced
Treatment Alternatives to Relieve Depression study
(STAR*D). STAR*D evaluated the effectiveness of depres-
sion treatments in a large cohort of primary and secondary
care patients, in a design that reflected the real-life clinical
practice, with changes of treatment every 3 months in case
of response failure [3]. STAR*D not only made it painfully
clear how few patients respond to their first line treatment but
also that subsequent treatments have limited success rates,
with about one third of patients not responding to any of the
interventions attempted over a 12-month period [4]. Given the
commonality of depression, with about 300 million sufferers
around the world, according to World Health Organization,
and about 1 in 5 people experiencing at least one episode in
their lifetime [5], this translates into high levels of individual
suffering with substantial societal and economic costs.
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Biomarkers could substantially shorten time to response,
by indicating which treatment an individual patient is most
likely to respond to, irrespective of the place of this treatment
in a traditional algorithm. For example, in STAR*D,
tranylcypromine was introduced as an option as late as
9 months into the process, while a biomarker might indicate
it as the best alternative for an individual patient, saving them
almost a year of waiting to experience symptomatic
improvement.

A range of treatment response biomarkers have been pro-
posed, including symptom-based, sociodemographic, genetic,
immune, endocrine, and neuroimaging markers [6]. Among
these, neural predictors may be of particular interest as dys-
functional neural processes are central to the development and
maintenance of depressive symptoms. The rapid development
of neuroimaging techniques over the past 30 years has
allowed for an assessment of the living brain in an unprece-
dented fashion, bringing about a wealth of information about
its structure (e.g. structural magnetic resonance imaging,
sMRI, diffusion tensor imaging, DTI), function (functional
magnetic resonance imaging, fMRI, positron emission tomog-
raphy, PET, electroencephalography, EEG, magnetoencepha-
lography, MEG), or biochemical processes (magnetic reso-
nance spectroscopy, MRS).

Neuroimaging in Treatment Response
Prediction: Where Are We Now?

Single Drug Studies

The search for treatment biomarkers interweaved with re-
search into the processes underlying depression and mecha-
nisms of antidepressant (AD) action. A typical drug neuroim-
aging study employed a design in which a brain scan was
performed before and after, typically, 6–12 weeks of treatment
with a single AD medication; this time period corresponded
with an expected significant clinical improvement in re-
sponders. In order to address the question of why only some
people respond to medications, pre-treatment differences in
brain function and structure between future responders and
non-responders, as well as correlations between baseline brain
activity and a change in depression severity over treatment,
were explored (e.g. [7, 8, 9, 10]). These studies have provided
valuable information on the mechanisms of action of AD
treatments and the factors that determine response to individ-
ual drugs [11]. Brain regions most consistently identified as
abnormal prior to treatment, in either function or structure,
included the amygdala, ventral striatum, thalamus, hippocam-
pus, anterior cingulate cortex (ACC), ventromedial PFC
(vmPFC), orbitofrontal cortex (OFC), and dorsolateral pre-
frontal cortex (dlPFC). More recent studies have emphasized
the role of brain networks of which these structures are a part,

rather than that of single structures [12]. Importantly, AD
treatment effects have been mapped onto the widely accepted
models of biological mechanisms of depression [13]. These
models advocate, schematically, an imbalance between over-
active ‘bottom-up’ circuitry responsible for quick automatic
response to emotionally salient information, in particular that
of a threatening nature, and a decreased ‘top-down’ cognitive
control. Both pharmacotherapy and psychotherapy appear to
normalize this aberrant neural activity and restore the balance
[11].

A different approach has been adopted in order to refine the
understanding of the mechanisms of AD action, in particular
those related to delays in symptomatic improvements that
both patients and clinicians would perceive as significant. A
new model, the cognitive neuropsychological hypothesis of
AD action, proposed that a crucial element for AD response
was an early positive shift in the processing of emotionally
salient information, preceding any significant changes in
mood. This shift would then be followed by learning new
positive associations in the social environment, over time
leading to the symptomatic improvement. A reduction in the
negative bias has indeed been observed as early as after one
dose at both behavioural and neural levels (see [14] for re-
view). Recent neuroimaging studies in depressed patients fo-
cused on the understanding of the significance of this phe-
nomenon for treatment response. One study [15] showed nor-
malization of the amygdala response to fearful versus happy
facial expressions, and another [16], normalization of mPFC
and ACC activity during self-referential processing, in de-
pressed patients receiving escitalopram for 1 week but not in
the patients receiving placebo.

A proof-of-concept study provided support for the main
point of the hypothesis that this early positive shift in emo-
tional processing was predictive of future response to AD
treatment in depressed patients [17•]. It showed that changes
in neural response to fearful versus happy facial expressions
across a number of structures, including ACC and amygdala,
could differentiate between responders and non-responders to
6 weeks of escitalopram treatment. Crucially, for the model
validation, the neural changes were seen before any signifi-
cant effect on depressive symptoms could be measured. There
is ongoing work aiming at translating this hypothesis into a
tool that would allow its practical application, for example, to
facilitate drug development through an identification of agents
with an antidepressant profile or elimination of those which
profile might suggest undesirable side effects (e.g. [18]).

Due to small sample sizes in individual studies and a high
between-study variability – addressed in more detail below –
it has been difficult to extract clear structural or functional
patterns predictive of antidepressant response that could be
consistently replicated in other populations. Meta-analyses
(e.g. [19]) and systematic reviews [11, 20••, 21] have
attempted to tackle this issue. They have identified the
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pregenual anterior cingulate cortex (pgACC) as the most reli-
able response biomarker, and the amygdala as the second best
[11], although the amygdala’s consistency as a response pre-
dictor has also been questioned [20••].

Pregenual Anterior Cingulate Cortex (pgACC):
A General Response Biomarker

At this point, probably the best supported candidate for a
neuroimaging response biomarker is pgACC, with its in-
creased activity being a predictor of good clinical response
consistently shown over the past 20 years (e.g. [10, 22, 23])
and supported by meta-analyses and systematic reviews [19,
20••]. PgACC plays a crucial role in the development of de-
pressive symptoms and antidepressant response due to its cen-
tral position between the circuits responsible for a quick auto-
matic response to emotionally salient stimuli and prefrontal
regions exerting cognitive control over them. A recent review
[12] emphasized its role at the network level and suggested
that functional connectivity from pgACC showed a particular
consistency in predicting antidepressant response.

This increased activity state may also be important for the
clinical response to rapid-acting glutamatergic drugs [24].
Intriguingly, increases in activation of pgACC within the first
few hours after administration of NMDA agents, lanicemine
and ketamine, were shown to predict improvements in mood
after 1 and 7 days [25]. It was hypothesized that this may
represent pgACC’s switching into a treatment-responsive
mode, necessary to restore the equilibrium between cognitive
and emotional networks. Interestingly, conventional antide-
pressants seem to necessitate this increased activity from the
beginning. This difference may be significant in the context of
glutamatergic agents’ ability to elicit response in patients not
responding to conventional ADs.

An association of increased pretreatment pgACC activity
with positive treatment response has been seen across a num-
ber of treatments (pharmacological interventions and CBT),
designs (e.g. task-based or task-free), scanning modalities
(e.g. sMRI, fMRI, EEG, PET), and analytical approaches.
Although this may indicate its robustness as a general re-
sponse biomarker, it also suggests that it may be less useful
in the context of the individualized treatment choice. On the
other hand, normal or lowered pre-treatment activity of the
pgACC could act as ‘the lack of response’ biomarker and help
to identify people who might require more intense therapeutic
input from the start.

From general to specific response biomarkers: direct com-
parisons of AD interventions.

Although general markers of response might have some
clinical use, the ‘holy grail’ is the identification of biomarkers
that could clearly indicate which specific drug or intervention
would best match an individual patient, i.e. would have the

highest likelihood of producing a symptomatic response in the
particular individual. Although this research journey has only
just begun, some intriguing observations have already been
made.

In this context, particularly valuable have been studies in
which two or more interventions were used in large groups of
patients, with patterns of brain structure and activity associat-
ed with response to each intervention being examined. Such a
design offered decreased variability due to similar testing con-
ditions for each treatment arm, allowed direct comparisons of
treatments and tackled problems associated with small sample
sizes (see below for a more detailed discussion of these
issues).

A number of studies addressed a general – but highly im-
portant – clinical question whether an individual patient with
depression should be treated with pharmaco- or psychothera-
py. Currently, talking therapies, and in particular cognitive-
behavioural therapy (CBT), are recommended as the first-
line treatment for mild to moderate depression and as such,
in ideal conditions, should be implemented before pharmaco-
logical treatments [26]. In practice, the access to such thera-
pies is often limited; hence a tool helping the decision of
whom to allocate the available resources would be of great
value. Also, given that not all patients with mild depression
will respond to CBT, it is important not to treat these patients
with CBT as it would cause an undue delay in response.

McGrath et al. [27•] examined this subject in a PET study,
which showed that baseline hypometabolism in the right an-
terior insula was predictive of good response to CBTand poor
response to an SSRI, escitalopram, while hypermetabolism in
this region was associated with remission to escitalopram and
poor response to CBT. This was an important finding; one
question it was unable to answer was whether the patterns of
brain metabolism were predictive of response to pharmaco-
and psychotherapy as groups of treatments or if they were
specific to the interventions used (i.e. CBT rather than psy-
chological therapies and escitalopram or SSRIs rather than
medications in general). Another study [28] showed a dif-
ferential response to CBT and antidepressant treatments
(an SSRI escitalopram and an SNRI duloxetine) based
on resting-state functional connectivity of the subgenual
cingulate cortex. A similar pattern of brain activity for
both drugs was observed, suggesting differences between
CBT and pharmacotherapy in general, rather than between
individual treatments. This paper is based on the data
from the Predictors of Remission in Depression to
Individual and Combined Treatments (PReDICT) study,
a large multicenter initiative comparing CBT, duloxetine
and escitalopram [29]. Other neuroimaging results from
PReDICT have not yet been published.

Another trial, International Study to Predict Optimized
Treatment - in Depression (iSPOT-D), aimed at comparing
response predictors to specific drugs, SSRIs escitalopram
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and sertraline, and an SNRI, venlafaxine, in 2016 depressed
patients [30]. Although neuroimaging data was restricted to
fewer than a hundred patients, interesting differences between
treatments emerged. Among other findings, pre-treatment
amygdala hyporeactivity to subliminal happiness and threat
was identified as a general predictor of treatment response,
regardless of the medication type, and pre-treatment amygdala
hyperreactivity to subliminal sadness as a differential moder-
ator of non-response to venlafaxine [31•]. This highlights a
possibility that various tasks may be needed to assess response
likelihood to different types of medications. In the similar
vein, healthy control-like activation of dlPFC during a cogni-
tive ‘go/no go’ task was a general predictor of remission,
while its hypoactivation, relative to controls, was predictive
of poor treatment outcome in general [32]. By contrast, infe-
rior parietal activation during the same task, differentiated
between SSRI and SNRI responders, with greater pretreat-
ment activation associated with remission to SSRIs and no
remission to SNRIs, while lower activation was related to
remission to SNRIs and no remission to SSRIs.

Establ ishing Moderators and Biosignatures of
Antidepressant Response for Clinical Care for Depression
(EMBARC), another large multisite trial [33], provided inter-
esting observations on sertraline and placebo response over
8 weeks of treatment, with about 300 neuroimaging datasets
available for analysis. Responders to sertraline, as compared
to placebo, were characterized by higher baseline connectivity
within the default mode network (DMN), greater between-
network connectivity of the DMN and executive control net-
works [34], an abnormal pattern of baseline pretreatment
ventro-striatal response to reward expectancy and prediction
error [35], and abnormal perfusion across a number of struc-
tures [36]. Intriguingly, some brain patterns seemed to favour
placebo over sertraline. Lower connectivity of the hippocam-
pus with the limbic and sensorimotor networks predicted bet-
ter response to placebo, while higher connectivity had good
response to sertraline [34]. In line with findings suggesting
pgACC as a general predictor of response, stronger baseline
connectivity between pgACC and rostral anterior insula, a hub
in the salience network, predicted good response to both ser-
traline and placebo [23, 37]. A calculator for predicting the
likelihood of placebo response at the individual level, based
on clinical and biological data, has been presented [38].

These are examples of studies that through their design
allow a direct comparison of therapeutic interventions in large
numbers of patients, tackling the most problematic issues de-
scribed in more detail below. An important aspect of these
studies is collection of multiple types of data, not only neuro-
imaging but other biological measures, such as genetic, pro-
teomic, immune, or endocrine data, as well as symptomatic,
behavioural, neurocognitive and sociodemographic profiles.
This presents new possibilities of in-depth analyses, taking
into account numerous factors potentially affecting response

and allowing development of more complex and more precise
response predictors.

The above studies are a good start in the process of moving
towards precision psychiatry. At this point, the numbers of
studies and directly compared treatments are still restricted
but hopefully in the future will grow sufficiently to allowmore
sophisticated comparisons, similarly to studies on the efficacy
and safety of drugs [2•].

An important Issue: Reproducibility of Results

High reproducibility and generalizability of results is an obvi-
ous pre-requisite for a conversion of research findings into
clinically useful tests. Reproducibility is unfortunately one
of the common problems not only of neuroimaging studies
in psychiatry but also of biomedical research in general. One
analysis estimated that about 85% of biomedical research is
wasted through a combination of researcher and institutional
factors [39]. Regarding neuroimaging, there are also important
methodological reasons why findings may be difficult to rep-
licate; these factors need to be taken into account if prediction
biomarkers are to make their way into the clinic.

The key issue is variability in study design [40]. The ele-
ments that may impact significantly on the outcome include
the size of the group studied; eligibility criteria and sample
characteristics, such as age, gender, duration of illness, past
treatments, severity and length of episodes; choice of treat-
ment; definition and measurement of response, and time when
it is assessed (typically 6 to 12 weeks). There is also high
variability in testing conditions, scanning parameters and an-
alytical tools and approaches.

The sample may suffer from both too low and too high
variability. Low sample sizes may result not only in inade-
quate power to reveal changes but also in restricted represen-
tations of features, which will affect generalizability of the
model to other populations. This can be aggravated by a ten-
dency, common in research, to include selected groups of
patients with as ‘clean’ a version of the particular condition
as possible, for example, depressed but otherwise healthy vol-
unteers; such samples may not be representative of the ‘real
life’ clinical populations. Contrastingly, another potential
problem is too high variability, related to the nature of the
diagnostic criteria. Psychiatry still uses traditional diagnostic
labels, based on symptoms rather than causes. While this may
be helpful for clinical management, given the lack of better
alternatives, in research, it can translate into test groups in-
cluding patients with similar symptoms but different biology,
further reducing statistical power. Recent attempts to escape
rigid symptomatic definitions of mental health disorders re-
sulted in the development of approaches – such as Research
Domain Criteria (RDoC) – integrating different types of infor-
mation, such as genetic, imaging, behavioural and self-
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reported data, into dimensions of functioning [41]. This indi-
cates a shift in thinking; however, it is rather cumbersome, and
most studies still embrace traditional diagnoses.

Social factors are an important but often neglected aspect;
for example, adverse external circumstances, such as low in-
come or unemployment, have been shown to be among the
best predictors of treatment outcomes. Their presence can
strongly affect individual response and hence findings across
different studies [42].

In task-based neuroimaging studies, unlike in cases of
structural MRI or resting state studies, an important aspect to
consider is variability of the tasks used. For example, the com-
monly used task based on watching emotional facial expres-
sions has many different versions, regarding, for example, the
types of emotions presented or whether emotions can be clear-
ly seen or masked by neutral emotional expressions. On the
one hand, this increases variability between studies. However,
it may also be what is actually needed for a personalized treat-
ment approach. As highlighted by the aforementioned studies
(e.g. [31]), different variations of the task may be required to
assess the likelihood of response to different types of interven-
tions.More data needs to be collected to explore this intriguing
and potentially practically important issue.

The Future of Neuroimaging in Treatment
Response Prediction

Multimodal Approaches

Despite initial hopes, it seems unlikely that there will be a
single consistently replicated neuroimaging biomarker that
can predict antidepressant treatment response with accuracy
high enough to warrant its translation into the clinical setting.
Accuracy of neuroimaging response biomarkers typically
stays in the range of 60–80%. In order to increase it, some
studies have attempted to combine two or more markers, with
some encouraging outcomes. For example, one of the iSPOT-
D papers [43] described two decision trees allowing identifi-
cation of treatment non-responders, one based on the volumet-
ric measurements and another one on structural connectivity
measures. Separately, they yielded accuracy of around 85%,
however, if criteria for non-response based on both decision
trees were met, accuracy rose to 100%. Crane et al. [44], in a
study of escitalopram and duloxetine, showed increased accu-
racy of 90% when performance markers on a cognitive task
and fMRI data were considered together, compared to 74%
accuracy derived from clinical data alone.

This idea has been embraced by the large multisite studies
mentioned above. Although for now reports mostly refer to
single imaging modalities, the studies were designed to ex-
plore complex interactions between individual factors neces-
sary for treatment response. To achieve this, a wealth of data is

being collected, including neuroimaging, clinical, behaviour-
al, cognitive, genetic, endocrine and inflammatory measures.
One of the challenges is the lack of current understanding of
which measures are significant, or indeed crucial, for response
prediction. Just how important such knowledge is has been
highlighted by one of the iSPOT-D papers, which showed a
higher pre-treatment dlPFC activity during a cognitive task
being associated with clinical improvement, but only in peo-
ple without history of childhood abuse [45••]. It was hypoth-
esized that this effect was due to diminished cognitive flexi-
bility related to aversive childhood experiences.

Recently, inflammation has been suggested as a potentially
important factor in treatment response and its prediction [46].
Baseline CRP levels have been shown to be associated with
differential response to SSRIs and other ADmedications, such
as nortriptyline [47••] or an SSRI-bupropion combination
[48]. These studies highlight the potential role of inflamma-
tion in treatment prediction modelling and emphasize that
personalized treatment choice may necessitate going beyond
standard AD strategies, such as an addition of anti-
inflammatory agents in patients with high inflammation.

One of the ways to approach the vital questions about the
role and weight of specific factors in response prediction is
through employment of artificial intelligence, with machine
learning as a tool.

Machine Learning

Machine learning is an approach involving patterns being ex-
tracted from existing datasets to predict outcomes in new
datasets. This may particularly well suit psychiatric research,
where large and complex datasets are still poorly understood,
and often, there is no awareness what the important ‘pieces of
the puzzle’ are. Machine learning allows for work around this
problem as it searches for regularities in the data to fit a de-
fined outcome, such as the response status, or without a de-
fined outcome, in a fully date-driven way [49].

The latter approach was employed in a largemultisite study
[50••], which included 1188 patients with depression.
Machine learning, based on distinctive patterns of resting state
connectivity in limbic and frontostriatal networks, allowed for
an identification of four diagnostic neurophysiological clus-
ters, associated with differing clinical profiles; multisite vali-
dation and out-of-sample replication in populations similar in
size showed its high (82–93%) diagnostic sensitivity and
specificity. Importantly, the clinical data alone was not able
to distinguish between the groups. The study has attracted a lot
of attention in the context of clinical applicability. Its unques-
tionable advantage has been the inclusion of high numbers of
patients. An adequate sample size is particularly important in
the context of machine learning as training the models on
small numbers of datasets leads to an exclusion of important
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pieces of information, strongly affecting generalizability of
the findings and an application of the models in new popula-
tions. Pertinent to the topic of this paper, these clusters were
associated with the level of response to transcranial magnetic
stimulation (TMS) therapy in a group of 154 depressed pa-
tients. Unfortunately, another group, aiming at replicating the
findings in a clinically more heterogeneous group of 187 pa-
tients with depression and anxiety, following the original pro-
cedures as closely as possible, failed to replicate the findings,
i.e. show relationships between brain connectivity and clinical
symptoms or identify distinct subtypes of depression [51].
This shows that even if machine learning could be potentially
a powerful tool in precision psychiatry, at this point one
should stay carefully optimistic; it is still a new instrument
and any results should be interpreted with caution.

Treatment Response in Psychiatry: Precise
and Personalized Treatment Choice

The concept of ‘precision psychiatry’ is gaining momentum,
in line with increasing knowledge about different factors that
can influence treatment response [52]. This approach focuses
on the importance of unique profiles created for a given indi-
vidual on the basis of their genetic, biological, behavioural
and environmental features, and the use of such profiles to
support choice of treatment that would best suit the specific
patient. This is still work in progress, now supported by bio-
informatics and artificial intelligence. For now, although a
personalized approach to patients is common, the ‘precision’
has not yet been achieved.

Conclusions: Is There a Future
for Neuroimaging Biomarkers in Treatment
Choice for Depression?

Neuroimaging has allowed us to gain an unprecedented in-
sight into the brain mechanisms of AD action in a relatively
short time and has greatly increased our understanding of the
neural factors that may play a role in response to antidepres-
sant treatments. It has certainly proved itself as a valuable tool
in research on treatment response biomarkers.

The question of whether neuroimaging will be used in clin-
ical settings for now remains uncertain. At this point, the ac-
curacy of prediction and replicability of findings are too low to
support its conversion into a clinical tool. Another problem is
availability of this technology and costs of scanning, when
depression is a common condition mostly treated in primary
care. At the same time, if accuracy of differentiation between
treatment responders and non-responders is high enough, po-
tential benefits may outweigh the costs of assessment. It needs
to be seen whether the positive findings described here will be

replicated in independent samples and whether they can be
translated into ‘real-life’ clinical populations.

At this point it seems unlikely that there will turn out to be a
single neuroimaging response biomarker of accuracy high
enough to warrant its practical application. Neuroimaging
findings may need to be considered together with other pre-
dictors in multimodal models, for example, by combining
different imaging modalities or neuroimaging with other types
of data, biological, social or clinical. The development of ar-
tificial intelligence and employment of machine learning gives
hope that important measures will be identified within com-
plex sets of data, leading to an identification of predictors,
moderators, andmediators of treatment response. The ultimate
goal would be establishing easy to apply clinical calculators,
incorporating multiple predictors, indicating which medica-
tion should be used in an individual patient, and leading to
the therapeutic process that will be both personalized and clin-
ically valuable.
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