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Abstract Psychosis is an abnormal mental state characterized
by disorganization, delusions and hallucinations. Animal
models have become an increasingly important research tool
in the effort to understand both the underlying pathophysiol-
ogy and treatment of psychosis. There are multiple animal
models for psychosis, with each formed by the coupling of a
manipulation and a measurement. In this manuscript we do
not address the diseases of which psychosis is a prominent
comorbidity. Instead, we summarize the current state of affairs
and future directions for animal models of psychosis. To
accomplish this, our manuscript will first discuss relevant
behavioral and electrophysiological measurements. We then
provide an overview of the different manipulations that are
combined with these measurements to produce animal
models. The strengths and limitations of each model will be
addressed in order to evaluate its cross-species comparability.
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Introduction

Psychosis is a brain disease characterized by an abnormal
mental state and a loss of contact with reality. In an effort to
produce viable treatment options for psychosis, animal
models have become increasingly important. Animal models
are extremely useful and serve as an essential tool for inves-
tigating mechanisms and treatments for a variety of human
disorders, including psychosis. In this manuscript, we sum-
marize both the current state and future research directions of
animal model approaches for studying psychosis.

Before delving into the topic of modern models of psycho-
sis, it is important to note that this article will discuss psychosis
in a holistic sense as it relates to several disorders. As such, this
article will not discussmodels limited to the pathophysiology of
schizophrenia, bipolar disorder, or any other related diseases. It
will focus purely on models related to psychosis. Furthermore,
when a model is discussed in the context of a specific disorder,
the model will only be discussed with reference to psychosis
and not to the other aspects of that disorder and model, such as
cognition and social function. Themodels of psychosis that will
be discussed in this article involve both a manipulation and a
measure. We will focus on a behavioral or physiological out-
come, coupled to the manipulation that induced the psychotic
state as the formation of a viable animal model.

Definition of Psychosis

Psychosis is a mental state characterized by a distortion of
reality. Patients diagnosed with psychosis may present with
one or more of the following symptoms: hallucinations, delu-
sions, catatonia, disordered thoughts, or impaired social cog-
nition. Psychosis is commonly seen in patients suffering from
schizophrenia, bipolar disorder and Parkinson’s disease. Fur-
thermore, some surgery patients have brief episodes of post-
operative psychosis. A study by van der Mast et al. reported
that post-operative psychosis occurred in 13.5 % of cardiac
surgery patients [1].

Definition of an Animal Model

An animal model is an approximation of a specific human
condition or disease. They are used in order to gain insight

into the etiology of the disease or to develop treatment op-
tions. A model is formed by the combination of a manipula-
tion and a measurement. The manipulation induces the state
and the measurement offers a way to qualify or quantify the
results of this induced change.

In order for an animal model to be a reliable model of a
human condition there are several forms of validity that must
be met: face validity, construct validity, predictive validity,
internal validity, and external validity. Face validity indicates
the cross-species comparability. It refers to the similarity
between the state induced in the animal model and the symp-
toms observed in humans [2]. Construct validity refers to the
accuracy of a test in measuring what it is proposed to measure
[2]. Predictive validity is the capacity of a model to predict the
criterion that is being studied. Internal validity refers to both
the reliability and replicability of a study; it tests the specificity
of models [2]. External validity is the extent to which the
results obtained using a particular animal model can be gen-
eralized to a real-world population [2].

Cross-species comparability refers to the ability of the
results of an animal model to be generalized to the human
condition that it is trying to approximate. An animal model
must exhibit a measureable similarity with the human ailment
in question in order for the model to provide any valuable
insight into a particular disease. As such, the cross-species
comparability of each measurement and manipulation will be
discussed as strengths in the relevant sections of this article.

Limitations, in reference to animal models, refer to any
inaccuracies that may occur in the approximation of a specific
condition. Despite the cross-species comparability that exists
in many of the models presented in this manuscript, there are
still many limitations to be addressed, as many of these
manipulations and measures are not completely true to the
state of psychosis they are attempting to model. These limita-
tions will be addressed as weaknesses in the relevant areas of
this manuscript.

Measurements

In this section, we will address both behavioral and electro-
physiological measurements of psychosis. These measure-
ments are used to both qualify and quantify effects of a
manipulation in an animal model. Several relevant behavioral
measurements will be discussed in this section. A comprehen-
sive list will not be presented; rather, the most important
examples will be discussed in detail.

Behavioral Measures

Behavioral measures are methods that attempt to quantify and
interpret the actions of an animal. The underlying hypotheses
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are: that the action being evaluated informs the biology related
to psychosis and/or; the animal’s behavior is informative
about some mental construct or process and/or; altering the
animal behavior using a treatment is predictive of effects of
that treatment in humans. The validity of these assumptions
will be addressed individually within each section.

PPI

PPI is a measurement commonly used in schizophrenia
models and is also useful for measurements in animal models
of psychosis. In the PPI paradigm, subjects are exposed to a
weak, often acoustic pre-stimulus followed 30–300 ms later
by a stronger startle stimulus [3]. Physical response to the
startle stimulus is measured and compared to the startle re-
sponse when no pre-stimulus is used (Fig. 1). This difference
provides a quantitative measure of motor inhibition that has
been theoretically linked to a subject’s neuronal inhibitory
mechanisms. This link is largely based on the observation that
alterations in the dopamine system, such as administration of
amphetamine, cause a reduction of PPI. Additionally, PPI
deficits observed in schizophrenia patients are correlated clin-
ically with symptoms such as thought disorder and distracti-
bility [3].

Latent Inhibition

Latent inhibition (LI) refers to a process by which non-
contingent presentation of a stimulus diminishes the ability
to enter into subsequent associations. Thus, the prior experi-
ence that a stimulus does not have a consequence makes it less
likely that the brain will form an association with that stimulus
later. LI is widely considered to relate to the cognitive

abnormalities that characterize schizophrenia because it re-
flects an organism’s ability to ignore irrelevant stimuli [4–7].
However, it also has been linked to psychosis based on the
observation that medications that effectively treat psychosis,
such as clozapine and haloperidol, restore latent inhibition
across a variety of conditions [4, 5].

Conditioned Avoidance Response

In the conditioned avoidance response paradigm, an electric
foot shock is paired with a conditioned stimulus of a tone or
light. This will elicit a learned avoidance response so the
animal can escape being shocked [8]. This link between the
unconditioned and conditioned response is facilitated by do-
pamine, although several other neurotransmitters are thought
to also play a role [9]. When this dopaminergic pathway is
disrupted, one sees a decrease in the normal, appropriate
avoidance response (i.e., the animal fails to escape). This
assay for a reduction in dopamine activity has been used to
determine the efficacy of many dopamine antagonists, includ-
ing both typical and atypical antipsychotics such as haloper-
idol and risperidone [10–12]. Although this approach has been
instructive in finding therapies that block dopamine type 2
receptors and therefore are effective for psychosis, those very
same agents actually impair a normal self-preservation func-
tion. Thus, the major limitation to this behavioral model is that
its predictive validity is at odds with normal function, as well
as lacking construct validity related to psychosis.

Stereotypy

Stereotypy is characterized as repetitive behavior and has been
noted in patients with psychosis and also in several

Fig. 1 Example of apparatus
used to measure pre-pulse
inhibition of startle in rodents
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pharmacological human and animal models of psychosis
[13–18]. Specific behaviors can vary depending on the drug
or animal used and behaviors include, but are not limited to:
repetitive licking, chewing, grooming, head movements,
sniffing, circling, or climbing [17, 19–22]. The level of ste-
reotypy can be determined through either recorded observa-
tion or the use of software programmed with predetermined
criteria [17, 18, 22]. Stereotypy thus has been used as both a
qualitative and quantitative measure in models of psychosis.
For example, quantification of stereotyped behaviors may
include rearing, as assessed using locomotor activity monitor-
ing software, or by measuring time spent in repetitive move-
ments [23]. The attenuation of these behaviors can also be
used in evaluating the antipsychotic properties of compounds
[24–26]. Alternatively, these same measures are likewise used
to model motor aspects of schizophrenia such as tardive
dyskinesia, as well as medication-induced side effects.

Hyperactivity

Hyperactivity in animal models is a behavioral measurement
that has been associated with the agitation and disorganized
behavior of psychosis [27]. Many early antipsychotics func-
tioned as dopamine agonists; therefore hyperactivity has been
hypothesized to originate from a hyper-dopaminergic state
[28]. Hyperactivity, however, remains a consistent measure-
ment even in models where dopamine release is not directly
induced. It is suggested that the hyperactivity observed in such
models is due to secondary effects on dopamine transmission
[28–30]. The maintenance of hyperactivity in models that do
not directly influence dopamine supports the idea of elevated
dopamine neurotransmission being characteristic of psycho-
sis, but not necessarily the source of psychosis [31–33].

Hyperactivity in mouse models was historically measured
through first person observation. Presently, hyperactivity is
measured through the use of computer software, yielding
greater accuracy. In the former method, experimenters would
conduct an open field test in which a grid was drawn on the
floor and the experimenter would note every time a grid line
was crossed by an animal, in order to calculate an ambulation
score for locomotor activity [34]. Locomotor activity can now
be measured using a grid of photo-beams at the bottom of a
chamber, which is combinedwith software that determines the
number of beam breaks [35, 36]. Increased locomotor activity
is often assumed to indicate a general level of hyperactivity
[35, 36].

Strengths and Weaknesses

As a whole, behavioral measurements are limited in their
ability to translate animal model measurements to humans.

This limitation is associated with several factors. The most
general limitation stems from the inability to truly interpret
the motivation or meaning of the vast majority of animal
behaviors. For example, we often ascribe a set of constructs
and/or goals to what an animal does, and why it does so.
However, there are generally multiple interpretations. Obvi-
ous examples of this anthropomorphic fallacy are not limited
to psychosis; rather, they are present across a wide variety of
studies of normal and abnormal states. For example, the
forced swim and tail suspension tests are used to evaluate
antidepressant effects. In essence, the animal (generally a
mouse) struggles to swim in a chamber filled with water, or
climb its tail when attached to the wall with tape. In both
cases, increasing the latency to stop trying is associated with
an “antidepressant therapeutic” effect. However, in both
cases, the animal’s motivation and choice to stop trying
can be seen in a diametrically different way. Since hanging
a mouse by its tail is not harmful, and mice do float, a
longer time struggling can also be seen as increasing the
latency to learn that struggling is futile and a poor use of
energy resources. That is to say, the behavior could just as
easily be used as a way to assess for compounds that impair
cognition. We will now return to the aforementioned psy-
chosis related behavioral measures in order to describe sim-
ilar pros and cons.

One of the primary advantages of PPI is its ability to
be used similarly in mice, rats, and humans, because it is
one of the few tests that is largely conserved across all
vertebrate species [37]. There is excellent stability and
high test-retest reliability of PPI across time in both
rodents and humans, facilitating the use of within-
subjects and longitudinal designs. On the other hand,
the construct validity between PPI and psychosis is quite
limited. As such, its primary value has been as a screen-
ing tool for alterations of DA function, and therefore as a
screening tool for DA antagonist medications for psycho-
sis. There are also some minor logistical limitations that
must be considered. PPI levels vary based on sex, both
in humans and in rodents, and it can be difficult to
compare within female subjects because PPI fluctuates
throughout the menstrual cycle [38]. This however may
pertain to multiple behavioral measures and is not spe-
cific to PPI.

One of the major strengths of the latent inhibition task is
that it can be applied across many mammalian species.
Several studies suggest that latent inhibition also fulfills
criteria for construct, face and predictive validity in a variety
of animal models relevant to schizophrenia [39–41]. Al-
though the construct validity pertains primarily to cognitive
deficits, the predictive validity for medication effects on
positive symptoms of psychosis is better than for negative
or cognitive symptoms [41, 42]. However, predictive valid-
ity for negative cognitive symptoms has been notoriously
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poor, as no agents to date have shown efficacy for either of
these domains in humans.

Electrophysiological Measures

Electroencephalography (EEG) was the first physiological
technique used to examine the brain by recording electric
field potentials with the capability to reflect both the normal
and abnormal electrical activity of the brain. Hans Berger, a
German neurologist, recorded the first EEG in 1924. Even-
tually, EEG evolved into an indispensable method for
studying cerebral information processing, particularly due
to the introduction of source localization techniques and the
decomposition of event-related activity into its frequency
components. Conventionally, EEG is recorded from the
scalp using electrodes affixed to specific scalp locations
and is represented as changes in potential difference. The
scalp EEG reflects the summated potentials from a large
synchronously activated population of pyramidal cells in the
cerebral cortex. These potentials are thought to originate
primarily from excitatory and inhibitory neural electric ac-
tivity, including action potential (AP) and postsynaptic
potentials [43].

Event Related Potentials

Electroencephalography provides a method to investigate
general function of the brain including its reaction to particular
stimuli that will be represented as changes in the EEG, glob-
ally known as event-related potentials (ERP) or evoked po-
tentials (EP). These event-related potentials are defined as the
oscillatory brain responses that are triggered by the occurrence
of particular stimuli (auditory, visual, or somatosensory). The-
se voltage fluctuations also allow one to measure distinct
stages in neural information processing. Moreover, ERPs
reflect sub-cortical and cortical information processing in real
time, and thus provide a useful tool for examining cognitive
mechanisms in both normal brain function and disorder-
related impairments.

EEG recordings analogous to those described above can
be obtained from a variety of rodent species. In mice, the
characteristic positive and negative deflections of the EEG
recording occur at approximately 40 % the latency of
equivalent human components [44–46]. Therefore, the
P20, N40, P80 and P120 represent ERP deflections in mice
analogous to the P50, N100, P200 and P300, respectively,
in humans (Fig. 2). Some groups have analyzed P20 and
N40 potentials as a single ERP component (termed the P20/
N40) in order to examine the effects of pharmacological,
genetic and environmental manipulations on the general
property of habituation. However, subsequent work has

suggested that these two components are subject to inde-
pendent effects by manipulations such as nicotine and ke-
tamine treatment [44, 47–52].

Mismatch Negativity

The ability to detect, and adapt to, changes in auditory
stimulus characteristics is basic as neuronal functions can
be measured with ERPs in both humans and animals. Mis-
match negativity (MMN) reflects the context-dependent in-
formation processing, required to compare a deviant incom-
ing stimulus with the neural representation already stored in
transient auditory memory [53]. When a string of tones with
a specific regularity (sequence of homogeneous tones) is
presented, the brain stores the features of this auditory
stimulation in a short-duration neural memory trace [54].
While this echoic memory is still active, each new auditory
input is compared to the existing trace for a break of
regularity (deviant tone), which generates a neuronal adap-
tation giving rise to the MMN between 100 and 225 ms in
humans [55]. MMN is most frequently elicited in an audi-
tory oddball paradigm. A sequence of repetitive standard
stimuli is randomly interrupted by a deviant oddball stimu-
lus, which may differ in stimulus characteristics such as
pitch, intensity, or duration. Generators are located in the

Fig. 2 Representative grand average auditory event related potential
recordings from human scalp, mouse surface and mouse depth electrodes.
Note that the overall pattern of event related activity is consistent across
species and locations, with a prominent P1, N1 and P2 components.
These responses are termed “obligatory” as they occur in response to a
simple tone or click in rodents, non-human primates or clinical popula-
tions. These components occur at 40 % of the human latency in mouse.
Thus, the P1 occurs at 20 ms in mouse and 50 ms in human, while the N1
and P2 occur at 40 ms and 80 ms in mouse and 100 ms and 200 ms in
human respectively. Studies over the past decade demonstrate that each
component in mouse shares psychometric and pharmacological response
properties within the corresponding human ERP component, yielding
excellent predictive validity
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auditory and frontal cortices [56, 57]. Of particular impor-
tance, MMN is evoked irrespective of attention or awareness
(e.g., present in comatose patients) [58]. In clinical neuro-
sciences, MMN has been widely used in various applica-
tions, in particular in schizophrenia research, due to its good
reproducibility and the ability to assess it without a task
[59].

P300

Probably the most extensively studied long-latency ERP com-
ponent is the P300 (also termed P3), a time-locked positive
deflection emerging 250 ms to 500 ms after attending stimu-
lus. First described by Sutton et al. in 1965, P300 is thought to
reflect an information processing cascade when attentional
and memory mechanisms are engaged [60]. Although related
to the process of sensory stimulus mismatch detection, the
P300 component represents an attention-driven memory com-
parison process, in which every incoming stimulus will be
revised to detect possible stimulus feature modifications. Ac-
cording to whether changes are present or absent, the electro-
physiological recordings will differ. If no change can be
detected, only so- called obligate evoked potentials are record-
ed (N100; P200; N200). If a new stimulus is presented and the
subject allocates attentional resources to the target, the neural
stimulus representation is altered and the consequent update
leads to the generation of P300 [60]. Similar to the MMN, the
auditory P300 is elicited in context of an oddball paradigm,
but in contrast to MMN elicitation the generation of P300
requires the test-taking person to be attentive and respond
physically or mentally to the presented target. Commonly,
subjects are instructed to either push a button following the
infrequent target or to count deviants.

Strengths and Weaknesses

EEG in general and ERPs in particular are the most readily
translatable measure across species. In contrast to behavior,
one measures the exact same phenomenon across species and
no interpretations of “meaning or intent” are required. Many
studies have demonstrated that both mouse and human ERP
components are similarly affected by certain pharmacological
treatments and stimulus manipulations [61–63]. Thus, record-
ing EEG and ERPs in preclinical studies provides the most
translational model system for physiological deficits associat-
ed with psychosis.

Although electrophysiological measurements have the
highest face and construct validity of any measure, it is less
clear how such measures relate to clinical symptoms. Evi-
dence for a link between these measures and cognition is
beginning to emerge, but the association with psychosis per

se is much weaker. Additionally, studies of the differences in
the P300 observed across various patient populations have
been highly variable [60]. Despite simplicity of the task, the
cerebral mechanisms producing an ERP remain unclear
[64–66].

Manipulations

In this section, we will discuss relevant manipulations used in
animal models of psychosis, with reference to the different
types of validity, generalizability, inconsistencies, and any
confounding variables. Molecular mechanisms will be ad-
dressed within genetic and pharmacological manipulations,
as these are the tools used to address the intra-cellular and
inter-cellular signal transduction pathways that contribute to
psychosis. As was the case with measurements, this section
will not provide a comprehensive list, but rather a discussion
of the most important manipulations.

Pharmacological Manipulations

Pharmacological models of psychosis are founded on the
current understanding of the effects of drugs on various neu-
rotransmitter systems. They rely on the observation that cer-
tain drugs induce behaviors that mimic or predict symptoms
of psychosis in humans. Both acute and chronic doses of
ketamine are widely used by investigators to disrupt glutamate
signaling in order to model psychosis-like effects. For exam-
ple, both the NMDA receptor-antagonists ketamine and PCP
can cause a dissociative state reminiscent of disorganization as
well as hallucinations. Similarly, amphetamine can cause a
psychotic state in humans and is therefore given to animals to
simulate the biological environment present in a psychotic
state. Such pharmacological manipulations will be addressed
in the following section regarding changes to specific neuro-
transmitter pathways.

Genetic Manipulations

Genetic models of psychosis are created through the disrup-
tion of a molecular genetic pathway that has been linked
through association studies to a variety of psychotic states.
A host of genetic manipulations have been combined with
specific outcome measures to assess the extent to which
alteration of a gene or signaling pathway is related to various
behaviors and physiological phenomena. For example, alter-
ations of NMDA receptor expression in mice leads to a
number of behavioral and physiological changes noted above
that are considered relevant to psychosis [62].
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Genetic models noted represent both candidate gene and
candidate pathway approaches. The former focus on genes
that have been identified primarily through human associa-
tion studies with a specific disease, e.g., schizophrenia. The
latter is likely a more informative approach, and represents
efforts to use genetic manipulations to dissect signaling
pathways that contribute to the physiology of psychosis
across a multitude of etiologies. This latter approach offers
greater generalizability and is also likely more meaningful
with respect to therapeutic development. We will not pro-
vide a comprehensive list of candidate gene models for
specific disorders as these are discussed in detail elsewhere
[67].

Developmental Manipulations

Developmental models of psychosis are founded upon a
manipulation during the ontogeny of the animal that affects
a developmental outcome, inducing a set of psychosis-
related behaviors and physiological changes. The manipula-
tion induces a change that models the state of the human
disease in the animal. Prenatal exposure to the cell division
inhibitor methlazoxymethanol acetate (MAM) is one exam-
ple of a developmental animal model of psychosis. Exposure
to MAM at embryonic day 17 produces a pattern of brain
atrophy in adult animals similar to that seen in human
schizophrenia (i.e., cortical and hippocampal atrophy), in-
creasing the face validity for a disease in which psychosis
occurs [68]. However, these neural changes overlap with
dysfunctions across a wide range of behavioral and cogni-
tive domains affected in humans with schizophrenia, includ-
ing measures sensitive to mesolimbic dopamine function and
cognitive performance. Thus, MAM treated animals display
impaired long-term memory, working memory and attention-
al flexibility, as well as increased responsiveness to mea-
sures related to psychosis following amphetamine as adults
[69–73].

Lesion models of psychosis, though very limited, are a
form of developmental model. This is the case because the
lesion tends to be conducted early in development and
affects a developmental course. In essence, a part of the
animal’s brain is lesioned in order to have the desired effect.
Neonatal ventral hippocampal lesion (NHVL) is the most
prominent example of inducing psychosis-related measures
in rats. NVHL in rodents during early life has been shown to
produce many of the behavioral measures related to psy-
chotic symptoms in adulthood [74]. Relevant features of this
model include amphetamine-induced hyperactivity and def-
icits in pre-pulse inhibition. These changes occur coincident
with schizophrenia-like cellular and neuroanatomical chang-
es, including reductions in parvalbumin expressing GABA-
ergic interneurons; exaggerated response to glutamate

agonist and antagonists, suggestive of a hypoglutamatergic
state. Importantly, most of these changes occur only when
the lesion is induced during the neonatal period, and do not
occur in adult animals given similar lesions of the ventral
h ippocampus ; sugges t ing that i t i s the a l te red
neurodevelopmental environment that is the source of the
changes observed in the model.

Environmental Manipulations

Environmental manipulations relevant to models of psychosis
include any change to the living conditions of the animal that
induce a set of behavioral or physiological measures related to
psychosis. Similar to developmental manipulations, environ-
mental conditions that can be linked to psychosis are relatively
limited as compared to either pharmacological or genetic ones.
However, we will address isolation rearing and stresses as two
forms of environmental manipulations that have been relative-
ly well characterized.

Isolation rearing during developmentally critical periods,
such as infancy and adolescence, can serve as a stressor that
can induce behaviors associated with psychosis [75–77]. The
behavioral profile of mice and rats reared in isolation includes
hyperactivity in response to novelty, and reduced pre-pulse
inhibition. These however are not specific to psychosis, as
social deficits, reduced conditioned response, impaired novel
object recognition, and elevated aggression are also seen [75,
76, 78–84]. This behavioral profile could be the result of
alterations to the HPA axis stress response, and studies have
suggested that these alterations to the HPA axis are likely to be
mediated by an elevated production of NADPH oxidase-2 in
response to the stress of social isolation [85–87]. Isolation
rearing has also been shown to alter the signal transduction of
glutamate, dopamine, and serotonin, three transmitters whose
dysfunction has been implicated in psychosis [87–91]. In
some instances this environmental model has been combined
with a genetic model or pharmacological model to produce
more robust results [77, 92].

A prolonged period of restraint has also been used to
induce PPI deficits in mice [93]. Furthermore, adult mice
prenatally exposed to stress through the restraint of their
pregnant mother exhibited a constellation of psychosis-
related and non-psychosis related alterations including hyper-
activity, reduced pre-pulse inhibition, social deficits, and im-
paired fear conditioning [94]. Other studies have modeled
prenatal stress by exposing a pregnant mouse or rat to a
variable stress paradigm in which the pregnant female is
exposed to a range of stressors including restraint, a cold
environment, food deprivation, forced swimming, 24 hours
of light, an overcrowded cage, and foot shock over an a
extended period of time [95–97]. The adult offspring that were
prenatally exposed to this variable stress paradigm exhibit
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increased AMPH-induced locomotor activity, reduced pre-
pulse inhibition, as well as a host of non-psychosis related
behavioral and molecular phenotypes [95–97].

Strengths and Weaknesses

The major strength of the environmental approach is that it has
one of the highest levels of translational validity from an
etiological perspective. This is based on the current under-
standing that events that increase stress, and/or directly alter
developmental processes lead to persistent psychotic states.
The best evidence for this approach comes from epidemiolog-
ical data showing small, but statistically significant and reli-
able, increases of psychotic illnesses among populations that
experience early life and prenatal stressors, ranging from in-
fection, to famine, death of the father during pregnancy, and
war in general [98–101]. There is even stronger evidence that
exposure tomarijuana prior to and during adolescence can alter
the normal developmental trajectory and lead to a permanent
state of psychosis, reminiscent of schizophrenia [102, 103]. A
major weakness of this approach stems from the nonspecific
nature of the insults making it harder to link them to a singular
mechanism of action. Both the pharmacological and environ-
mental approaches are more translationally valid than genetic
ones, which have offered limited insight into the mechanisms
of psychosis after decades of intense effort and investment.
Indeed, recent efforts now focus on the task of making sense of
the enormous constellation of genetic data that has come out of
the previous era of association and candidate gene approaches.
Thus, pharmacological models offer the most power presently
because they combine the strengths of translational validity
and mechanistic clarity. However, genetic factors almost cer-
tainly modulate the effects of environmental changes, includ-
ing exposure to drugs, and will therefore remain a necessary
component of preclinical models.

Manipulations to Neurotransmitter Systems

This section will review theories of psychosis developed
around specific neurotransmitters across pharmacological, en-
vironmental and genetic approaches.

Dopamine

Theory

Many of the models used in the study of psychosis have been
based on the dopamine theory of psychosis, which postulates
that psychosis arises from the deregulation of the dopamine
system. The theory initially arose from the observation that

many of the first antipsychotic medications antagonized do-
pamine receptors [104]. This deregulation could arise from the
over-release of the transmitter, limited reuptake, or over-
expression of specific dopamine receptors. This theory has
been supported by studies in which humans with both pre-
existing, and no pre-existing psychosis, exhibit symptoms
associated with psychoses after receiving a dopamine agonist
[105, 106]. For instance, the indirect dopamine agonist, am-
phetamine, produces a psychotic state in healthy individuals
and exacerbates the symptoms of psychosis in patients [107,
108]. An excess of dopaminergic signaling is hypothesized to
cause the positive symptoms of psychosis, particularly those
associated with schizophrenia.

Pharmacological

Amphetamine

Amphetamine has been proposed to constitute a model of
positive psychosis in general. Featherstone et al. summarize
the effectiveness of amphetamine-induced models of schizo-
phrenia as measured by PPI, locomotion and latent inhibition
outcomes [71]. Sensitization of amphetamine can induce def-
icits in latent inhibition and PPI and in some doses causes
increased locomotion [71]. Most studies use an escalating
dose regimen in order to avoid the neurotoxic effects that
could result from an initial high dose of amphetamine [71].
Studies have shown that this gradual increase does not pro-
duce neurotoxic effects when a high dose is reached, and
therefore remains as a pharmacological modulator, rather than
a lesion approach. Amphetamine-induced alterations of the
auditory processing abnormalities common to psychotic con-
ditions are well characterized in rodents. It has been consis-
tently reported that amphetamine significantly disturbs ERP
amplitude and habituation, in particular diminishing N40 and
P80 components [109–112]. Furthermore, normal habituation
in rats is disrupted following amphetamine administration.
Amphetamine decreases N40 amplitude (the rat correlate of
the human N100) and abolishes suppression of the neural
response to the second stimulus, resembling the habituation
disturbances seen in acutely psychotic, un-medicated patients
[113].

Methylphenidate

Exposure to methylphenidate elicits increased locomotive
responses as well as focused stereotypies, including repetitive
head movements and oral behaviors [114]. These symptoms
are also comparable to those seen in amphetamine-induced
models of psychosis, as noted above. One key difference
between methylphenidate-induced and amphetamine-
induced models is that the former does not also elicit observ-
able effects on serotonergic pathways.
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Apomorphine

Apomorphine is a non-selective dopamine agonist that is
presently used in the treatment of Parkinson’s disease. Of
note, psychosis is among the known side effects of this agent,
supporting the link between increased dopamine activity and
psychosis [115]. Apomorphine has also been used in pharma-
cological studies to evaluate the success of drugs such as
haloperidol and risperidone as antipsychotics [116, 117]. Spe-
cifically, apomorphine induces emesis in dogs through its
dopamine agonist properties in the gastrointestinal system
and therefore has been used as a behavioral measure of dopa-
mine function [116]. This model was instrumental in screen-
ing compounds that were able to reduce emesis in dogs as
potential candidates to reduce psychosis in humans [116, 117].
Although emesis in dogs has very poor construct or face
validity for psychosis in humans, its use as a means to assess
drugs as in vivo dopamine antagonists was instrumental in
developing what remains the only effective treatment ap-
proach for psychosis, namely dopamine receptor type 2 (DR
D2) antagonists.

Genetic

Dominant-Negative DISC1 Transgenic Mice

Disrupted in Schizophrenia 1 (DISC1) has been identified as a
susceptibility gene to schizophrenia [118–120]. Dominant-
Negative DISC1 transgenic mice express an altered form of
DISC1 under the alpha CaMKII promoter [118]. The mice are
characterized by several behavior abnormalities characteristic
of psychosis including hyperactivity and disturbance of
sensory-motor gating [118]. As a result, DISC1 has emerged
as offering a potentially important molecular link in the etiol-
ogy of psychosis and other related mental conditions, such as
schizophrenia [120].

COMT Transgenic Mice

The Catechol-O-methyltransferase (COMT) is a key regula-
tory enzyme that degrades dopamine and thus controls dopa-
mine availability [121, 122]. In humans, a single nucleotide
polymorphism leads to the substitution of a Valine in place of
a Methionine at the 158/108 locus [123]. This modification
causes a two-fold increase of COMT activity, thereby reduc-
ing dopamine levels [124]. Studies in mice with alterations in
COMT activity are consistent with human data showing de-
creased ERP amplitude as well as reduced theta and gamma
power among people with psychosis [125, 126]. Specifically,
COMT-Val transgenic mice displayed increased N40 latency
and decreased P80 amplitude as well as reduced baseline theta
and gamma power, indicating that COMTactivity specifically

alters long-latency components of the event-related response.
More recent studies have demonstrated that the effect of
COMT in schizophrenia is modified by epistatic interactions
with several other genes, such that only a particular subset of
genotypes results in dysfunction [127–132].

Gsα Transgenic Mice

Gsα transgenic mice express an isoform of the G-protein
subunit Gsα that is constitutively active due to a point muta-
tion (Q227L) that prevents hydrolysis of bound GTP [133,
134]. Expression of the transgene is driven by the CaMKIIα-
promoter, which restricts expression to postnatal forebrain
neurons. Specifically, in situ hybridization studies indicate
that the transgene is expressed in striatum, hippocampus and
cortex but not cerebellum, thalamus or brainstem [134]. Pre-
vious studies indicate that Gsα transgenic mice have de-
creased amplitude of cortically generated N40, consistent with
forebrain transgene expression and a schizophrenia
endophenotype. As such, this transgenic model of sensory
encoding deficits provides a foundation for identifying bio-
chemical contributions to sensory processing impairments
associated with schizophrenia and psychosis.

Dysbindin-1 Mutant Mice

DTNBP1 is a well-replicated vulnerability gene for both
schizophrenia and glutamatergic dysfunction. DTNBP1 en-
codes the dystrobrevin-binding protein 1 (dysbindin-1)
[135–137]. Reduction in dysbindin-1 expression has been
found in the schizophrenia population, indicating that reduced
dysbindin-1 protein levels may be a disease trait of schizo-
phrenia [136, 138, 139]. Studies in mice with a loss of func-
tion mutation in the gene have confirmed that dysbindin-1 is
involved in both glutamatergic and dopaminergic transmis-
sion in the hippocampal formation, and demonstrated that
reduced working memory is replicated in the mouse model
[140–143]. Thus, these anatomical and physiological data
indicate that disruptions of dysbindin-1 may play a direct role
in abnormal hippocampal circuit behavior [135, 138, 141,
143–146]. Several studies have evaluated the selective rela-
tionship between dysbindin polymorphisms and psychotic
symptoms among people with psychiatric disorders. While
one study reported an association with psychosis, the other
found only a selective relationship with non-psychotic symp-
toms [147, 148].

Strengths and Weaknesses

The dopamine hypothesis of psychosis has remained the
strongest and most supported theory over the past 60 years.
Evidence supports that increased dopamine signaling is nec-
essary and sufficient to create psychotic states in humans. The
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bulk of data indicating that a DA signaling deficit is necessary
for psychosis relates to the ability to stop psychotic symptoms
in schizophrenia using DA antagonists. Similarly, these same
compounds (e.g., dopamine antagonists), are highly effective
in reducing or eliminating psychotic symptoms across a host
of other medical conditions, including post anesthesia deliri-
um, psychotic depression, and epilepsy-related psychosis, just
to name a few. Indeed, DA antagonists remain a highly
effective treatment for psychosis, regardless of the etiology
or primary pathophysiology of the causative state or disorder.
Complementary evidence from drug abuse with compounds
that augment or mimic DA (e.g., cocaine and amphetamine),
as well as treatment of affective (e.g. bupropion) and motor
disorders (e.g., ropinirole) with dopamine agonists, also indi-
cate that increased DA availability is sufficient to cause psy-
chotic symptoms.

Glutamate

Theory

Glutamate is the major excitatory (agonist) neurotransmitter in
the human brain. NMDAR antagonists as models of psychosis
became of great interest because these antagonists cover the
complete spectrum of schizophrenia symptoms: positive
(paranoia, agitation, and auditory hallucinations); negative
(apathy, thought disorder, social withdrawal); and cognitive
symptoms (impaired working memory) [149]. NMDA recep-
tor antagonizing drugs have also been reported to induce
psychosis-like alteration of event-related potentials, such as
reduced P300 and MMN amplitude [150, 151]. In line with
human studies, animals treated with NMDAR antagonists
exhibit similar electrophysiological alterations, coincident
with behavioral changes related to psychosis. Taken together,
these aspects prompted researchers to increasingly employ
pharmacological NMDAR blockade as a disease model
[152]. Thus, the following section describes glutamatergic
theories of psychosis based on using ketamine, PCP, and
MK801 in humans, non-human primates and rodents.

Pharmacological

Ketamine

Schizophrenia patients treated with ketamine experience an
exacerbation of positive and negative systems, suggesting that
NMDAR antagonists affect a brain system that is already
vulnerable in psychosis [153]. Similar to healthy humans,
animals treated with ketamine exhibit behavioral and electro-
physiological features that closely resemble psychosis. For
example, acute ketamine administration decreases the ampli-
tude of the mouse and rat N40 and P80, mimicking psychosis-

like abnormalities on those components in humans [44, 50,
112]. Furthermore, mice undergoing 14 days of daily keta-
mine administration showed lasting effects, such as decreased
N40 amplitude [50]. Reduced ability to detect changes in the
auditory environment, as measured by EEG, is a further
characteristic of psychosis that results from ketamine in ro-
dents. While some studies have reported that ketamine dis-
rupts cortically generated ERPs, others observed no signifi-
cant effects [154–156].

MK 801

MK-801 (Dizocilpine) is a noncompetitive NMDA antago-
nist, like ketamine and phencyclidine, which has been used to
induce phenotypes consistent with other animal models of
psychosis. One of the most characteristic phenotypes ob-
served with this pharmacological model has been deemed
“popping” and denotes the incidents of explosive jumping in
mice [157, 158]. MK-801 induced dose-dependent stereoty-
pies in rodents have included repetitive head weaving (lateral
head movements), rolling, sniffing, piloerection, rearing,
backpedaling and circling [23, 159–161]. Another study con-
cluded that MK-801 treated rats with the circling stereotypy
demonstrate face validity with that seen in human psychotic
patients [162]. Furthermore, MK-801 treated animals have
also shown an increase in locomotor activity and a reduction
in sensory ERPs as seen in other models of psychosis [159,
163–165]. Importantly, exposure to NMDAR antagonists
leads to increased baseline EEG power in the gamma range
(above 30 Hz), and a concomitant decrease in the power of
evoked gamma oscillations [166, 167]. This modulation of
both resting and evoked gamma power is analogous with the
reduced gamma signal-to-noise ratio, and the shift from low
frequency to high frequency activity observed in schizophre-
nia [167].

Phencyclidine

Phencyclidine (PCP) is another non-competitive NMDA re-
ceptor antagonist used in creating a pharmacological animal
model of psychosis. Similar to previous models discussed,
PCP has been shown to induce hyperactivity and reduced pre-
pulse inhibitions in animals [168–170]. As an NMDAR an-
tagonist, PCP induces stereotypies that are similar to those
seen in the MK-801 pharmacological model and include:
sniffing, rearing, gagging, weaving, backpedaling, grooming,
stereotyped searching, circling, and repetitive head move-
ments [171–173]. Studies have also found that PCP inhibits
the event related P1 and N1 potentials [174]. Mice have also
demonstrated an increase in resting gamma power after an
injection of PCP [175].
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Genetic

Disturbance of the NRG1 Signaling Pathway

NRG-1 and ErbB2/B4 have both been identified as suscepti-
bility genes for schizophrenia. The NRG-1 gene encodes for
the ligand Neuregulin, and the ErbB2/B4 genes encode recep-
tors for this ligand. While the neuronal cell layers of ErbB2/
B4 knockout mice appear to develop normally, these muta-
tions cause reduced dendritic spine maturation and reduced
transport of glutamate receptors to the neuronal membrane
[176]. Disturbance in the NRG-1 gene also has been associ-
ated with NMDA receptor hypo-function [177–180]. One
study of these transgenic mice utilized auditory ERPs as an
electrophysiological measurement [181]. This study used the
NRG1 transgenic model in which all three major types of
NRG1 have a partial deletion of the EGF-like domain. These
NRG1 heterozygote mice displayed disrupted mismatch neg-
ativity similar to that observed in psychosis. As such, trans-
genic models have played a crucial role in determining the
function of these gene products, particularly due to the limited
availability and usefulness of postmortem human tissues.

NR1 Hypomorphic Mice

NR1 is an obligatory subunit of the NMDA receptor, and
therefore reduction of this protein broadly effects NMDAR
mediated glutamate transmission. NR1 hypomorphic mice
express from 5 % to 10 % of the normal NR1 protein [182].
Several studies have reported behavioral abnormalities in
these mice that are also found in both schizophrenia and
psychosis. Since then, NR1 hypomorphic mice have been
considered as a translation model for these conditions. Of
note, NMDAR-hypofunction is thought to contribute to so-
cial, cognitive, and gamma (30–80 Hz) oscillatory abnormal-
ities, phenotypes common to these disorders. However,
circuit-level mechanisms underlying such deficits remain
unclear.

Strengths and Weaknesses

The glutamate hypothesis of schizophrenia has become in-
creasingly popular, largely with respect to treatment-resistant
negative and cognitive symptoms. However, these treatment
resistant domains are less pertinent to consideration of psy-
chosis per se. Therefore, wewill limit the following discussion
to the so-called positive symptoms, broadly defined, of psy-
chosis. The strongest evidence that alterations in glutamate
signaling can contribute to psychosis comes from the effects
of NMDA antagonist drugs of abuse in humans. Specifically,
ketamine (Special K) or phencyclidine (angel dust) abuse can
result in a lasting state of disorientation and bizarre behaviors
that resemble illness related psychosis. Animal models using

NMDA antagonists also provide some support for the role of
altered glutamate signaling in the psychotic process. However,
this is largely limited to hyperactivity following low doses of
NMDAR antagonists. Alternatively, there has been virtually
no evidence that medications that alter glutamate signaling
have any effectiveness for treating psychosis.

GABA

Theory

Most recently, the role of alterations in Gamma Aminobutyric
Acid (GABA) signaling has been considered as a contributing
factor in schizophrenia. There are several lines of evidence to
support this hypothesis. First, a series of anatomical post
mortem studies in schizophrenia have demonstrated alter-
ations in the number of GABAergic cells. Additionally, mul-
tiple studies have shown that people with schizophrenia have
elevated resting (i.e., baseline or default network) brain activ-
ity, suggesting a disinhibition phenotype. Furthermore, studies
in non-human preclinical models demonstrate that exposure to
glutamate antagonists also causes increased network activity.
This in turn has been proposed to be due to a selective effect of
the NMDAR antagonist drugs on glutamate receptors on
GABAergic interneurons. Taken together, these data led to a
hypothesis that there is reduced GABA-mediated inhibitory
tone, due to a reduction of excitatory drive to interneurons.

Genetic

GAT1 Knockout Mice

A recent study found that GABA transporter 1 (GAT1) knock-
out mice exhibited behavioral phenotype associated with psy-
chosis. These knockout mice displayed hyperactivity, in-
creased sensitivity to psychotomimetic drugs, exaggerated
responses to novel objects, impaired novel object recognition,
and reduced pre-pulse and latent inhibition [183].

Strengths and Weaknesses

As noted above, much of the evidence relating GABA to
psychosis is based on a constellation of anatomical data in
schizophrenia, and interpretation of physiological data. How-
ever, there is little if any direct evidence for this hypothesized
mechanism, beyond the initial anatomical data. Recent stud-
ies, investigating the effects of reduced NMDA receptor ex-
pression directly on either GABAergic cells or on excitatory
pyramidal cells, suggest that the disinhibition model may not
be correct. Specifically, reducing NMDAR mediated gluta-
mate signaling on excitatory pyramidal cells leads to increased
network excitability, reminiscent of either schizophrenia or
exposure to NMDA antagonists. Thus, it now appears that
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directly altering the excitatory inputs on pyramidal
(glutamatergic) neurons causes those very neurons to increase
their firing rate. This in turn appears to be due to alterations in
inherent membrane properties [184]. As such, the
longstanding assumptions about disinhibition via GABAergic
cells over the previous decade may not be valid [185].

Serotonin

Theory

The potential role of altered serotonin signaling in psychosis
stems from the observation that several hallucinogenic com-
pounds, such as Psilocybin (the active compound in mush-
rooms), mescaline (the active compound in peyote), and
Lysergic Acid Diethylamide (LSD), bind to and activate var-
ious forms of serotonin receptors. While such observations
suggest that selective activations of serotonin systems are
capable of inducing psychosis, several of these compounds
are also thought to activate dopamine receptors.

Pharmacological

Few specific pharmacological manipulations of the serotonin
pathway exist. Pharmacological models of psychosis using
solely compounds that modulate 5HT receptors are less ubiq-
uitous than the previously discussed pharmacological models.
DOI (2,5-dimethoxy-4-iodoamphetamine) is a 5HT 2A recep-
tor agonist that has been used to induce head twitching inmice
as a model with predictive validity for psychosis and halluci-
nation [158]. LSD, DMT (Dimethyltryptamine), mescaline,
and psilocybin are also 5HT 2A receptor agonists that have
been able to produce positive symptoms of psychosis in
humans [186–189]. However, there is not an abundance of
studies that have used these compounds to produce animal
models of psychosis. One study found that chronic adminis-
tration of LSD at low doses induced behaviors such as hyper-
activity and social deficits [35]. DMT has also caused deficits
in mismatch negativity generation [156]. Due to the effects of
these compounds on human subjects and the affinity of certain
antipsychotics to 5HT receptors, dysfunction in 5HTsignaling
has been implicated alongside glutamate and dopamine
[190–196].

Genetic

5-HT 1A Receptor Knockout Mice

5-HT 1A receptor knockout mice have exhibited relatively
increased AMPH-induced locomotor activity. However, this
manipulation demonstrated no change in pre-pulse inhibition

and a reduction in the effect of the hallucinogen 5-MeO-DMT,
making it less fitting as a model psychosis [197].

Alteration to the Serotonin Transporter Gene

The STin2 polymorphism of the serotonin transporter gene
(SERT) has been associated with psychosis in humans, while
SERT knockout mice have been recognized as a model of
impaired emotional control [198, 199]. Impaired SERT func-
tion would theoretically result in elevated serotonin in the
synaptic cleft and could possibly produce psychotic symp-
toms similar to those observed with 5HT 2A agonist [187,
200]. Future studies should explore whether this SERT knock-
out model could be related to psychosis.

Strengths and Weaknesses

As noted above, several lines of research suggest that primary
alterations of serotonergic systems can create a psychotic state
in humans, or produce animal behaviors that are associated
with psychosis in humans. The greatest limitation to the link
between serotonin systems and endogenous psychosis in
humans comes from the lack of effectiveness of serotoninergic
agents in treating the symptoms. For example, multiple agents
have been created based on the hypothesis that adding activity
at serotonin receptors would improve antipsychotic efficacy.
However, this has been clearly disproven, as none of these
agents are different (at least not better) than dopamine antag-
onists that lack serotonergic activity.

Future Directions and Conclusion

Recent years have seen an explosion of effort focused on
the non-psychotic symptoms in schizophrenia and related
disorders. Yet, there is little understanding of the basic
mechanism of psychosis, as well as how those mechanisms
relate to other illness domains. There are numerous animal
models of psychosis that currently exist and the challenge
remains to find common, overlapping mechanisms of psy-
chosis pathophysiology that result from a wide array of
etiologies.
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