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Abstract
Purpose of Review To describe experimental liver injury models used in regenerative medicine, cell therapy strategies to
repopulate damaged livers and the efficacy of liver bioengineering.
Recent Findings Several animal models have been developed to study different liver conditions. Multiple strategies and modified
protocols of cell delivery have been also reported. Furthermore, using bioengineered liver scaffolds has shown promising results
that could help in generating a highly functional cell delivery system and/or a whole transplantable liver.
Summary To optimize the most effective strategies for liver cell therapy, further studies are required to compare among the
performed strategies in the literature and/or innovate a novel modifying technique to overcome the potential limitations. Coating
of cells with polymers, decellularized scaffolds, or microbeads could be the most appropriate solution to improve cellular
efficacy. Besides, overcoming the problems of liver bioengineering may offer a radical treatment for end-stage liver diseases.

Keywords Cell therapy . Regenerative medicine . Liver damage . Bioengineering

Experimental Liver Injury Models Used
in Regenerative Medicine

Different cell therapies and bioartificial livers have been
attempted and used not only for advanced cirrhosis but also
for acute and acute-on-chronic liver failure, inborn errors of
metabolism, chronic cholestatic and autoimmune diseases,
and non-alcoholic fatty liver disease (NAFLD) [1•, 2, 3].

Hepatocyte transplantation represents the proof of concept
of liver cell therapy [4]. Sources of liver regenerativemedicine
that have already been applied in the clinical setting include
human hepatic stem cells (hHpSCs), human biliary tree stem
cells (hBTSCs), mesenchymal stem cells (MSCs), and mac-
rophages. A recent multicenter phase-II open-label controlled
trial of hematopoietic stem cells that administered repeat au-
tologous infusions of G-CSF-mobilized CD133+ cells to pa-
tients with advanced cirrhosis (versus conservative manage-
ment or treatment with G-CSF alone) found no impact on liver
function or fibrosis [5]. Tissues are highly informative, espe-
cially when clinical results are weak or absent [6]. In fact,
studies have shown that the role of mesenchymal-derived cells
does not depend on repopulation, but on the production of
factors and cytokines with multiple effects [7, 8].

Clinical studies on liver regenerative medicine highlight
the importance of solid preclinical evidence in this field.
Moreover, preclinical studies should be tailored to address
the questions raised by the clinical trials; e.g., the assessment
of factors originating from outside the liver, such as from the
gut (e.g., intestinal permeability, dysbiosis), sarcopenic mus-
cles, or inflamed adipose tissue [6]. Importantly, liver repop-
ulation and the proliferation and differentiation of transplanted
cells should be investigated systematically in tissue over dif-
ferent long-term timepoints. Different experimental models
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should be evaluated to investigate specific etiopathogenetic
features that may influence cell therapy outcomes. For exam-
ple, models of liver fibrosis are the best candidates to study
intrahepatic factors associated with the interactions and effects
of exogenous cell transplantation, while NAFLD/
nonalcoholic steatohepatitis (NASH) models may reveal po-
tential systemic factors that influence the effects of exogenous
cells transplanted into the liver [6]. In the future, the in-depth
study of stem/progenitor cell therapy effects could reveal anti-
inflammatory, antioxidant, and immunomodulatory effects
that are now only studied in macrophages [8].

This review aims to provide an informative and helpful tool
for designing preclinical investigations into liver regenerative
medicine, including cell therapy and liver bioengineering.
Although this is not a systematic review, experimental liver
injury models already used in the setting of experimental liver
cell therapy and other suitable models tested in rodents have
been analyzed and reported, so key features can easily be
appreciated, e.g., injury modality, time from injury to rescue
treatment, serum tests, and histologic features (Table 1).

Acute Liver Failure models

Acute liver failure (ALF) is a condition that can arise from a
broad spectrum of causes. It is characterized by the loss of
hepatic, metabolic, and immunological functions [9, 10].

The administration of acetaminophen (APAP) to mice is
the most common ALF model since the APAP doses that
cause toxicity are similar in mice and humans (≥150 mg/kg)
[11–13]. Liu et al. recently reported a study in which BALB/c
mice treated with APAPwere used as a model. They observed
an effect of intravenously administered human umbilical cord-
derived mesenchymal stromal cells (hUCMSCs) through their
ability to reduce hepatic necrosis/apoptosis and enhance liver
regeneration [14].

A useful tool to study TNFα-mediated apoptotic signaling
mechanisms [15, 16] and inflammatory-mediated liver injury
[15, 17] is the D-galactosamine/endotoxin (Gal/ET) model. D-
Galactosamine inhibits protein synthesis by depleting uridine
triphosphate pools, causing early generation of reactive oxy-
gen species and finally apoptosis [18, 19], while lipopolysac-
charides increase the release of proinflammatory cytokines
(TNFα) [20]. Zhang et al. used this common ALF model by
injecting lipopolysaccharides and D-GalN aminoglycan into
mice [21] and observed a therapeutic effect of TNFα
pretreated umbilical cord mesenchymal stem cell-
derived exosomes (T-Exo). They demonstrated that T-
Exo ameliorates conditions of ALF by inhibiting the
act ivat ion of the NOD-like receptor protein 3
(NLRP3)-related inflammatory pathway [22].

A relevant limitation in MSC transplantation therapy is its
poor efficacy in liver colonization and viability [23]. In this

context, Ma et al. used a carbon tetrachloride (CCl4) ALF
model in nude mice to study the effect of genetically
modified MSCs expressing CXC receptor 4 (CXCR4).
Their work showed greater colonization of the failing
liver by CXCR4-MSCs, leading to reduced mortality
and improved liver regeneration [24].

Chronic Liver Disease Models

Chronic liver injury is associated with fibrosis leading to cir-
rhosis, a disease characterized by high levels of proinflamma-
tory cytokines [25, 26], an abnormal lobular architecture, and
the formation of intrahepatic vascular shunts [27]. It has been
demonstrated that carbon tetrachloride (CCl4) given at low
doses (0.5–0.8 mL/kg) causes persistent liver injury in rats
with inflammation and fibrosis [28, 35] (Fig. 1). Recent stud-
ies clearly demonstrate that bone marrow mesenchymal stem
cell microvesicles (BM-MSC-MVs) and MSC small extracel-
lular microvesicles (MSC-sEVs) possess anti-fibrotic, anti-in-
flammatory, and pro-angiogenic properties that can promote
the resolution of CCl4-induced liver fibrosis in rats [29, 40].

Liver Regeneration Following Surgical Partial
Hepatectomy

Intense regeneration follows a partial hepatectomy involving a
70% resection in rats and pigs [30–33]. Makino et al.
established 90% hepatectomy as the safety limit for murine
hepatectomy and as a model for liver regeneration [34].
Eguchi et al. proposed an alternative model in rats involving
resection of the two anterior lobes (68%) and ligation of the
right liver lobes (24%), stimulating cytokine release following
ischemic/reperfusion injury [36].

Several ALF models, such as those using hepatectomy or
drug toxicity, have a high mortality rate in the acute phase
[37–39], rendering them not perfectly suitable for regenera-
tion studies. Inomata et al. standardized a new treatment using
retrorsine (RS) together with partial hepatectomy (PH) in pigs
to overcome these limitations. In 2019, Tsuchida et al. studied
the engraftment of rat liver organoids derived from fetal livers
in an RS/PH rat model. Organoids were injected through the
portal vein, which led to liver regeneration and reduced
ductular reaction. Remarkably, no translocation to other or-
gans was observed [41].

Genetic Models of Inborn Metabolic Errors

Several genetic disorders can lead to liver failure, so it is
important to use appropriate animal models mimicking human
conditions. Hickey et al. developed the first genetically
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engineered large animal model of a metabolic liver disorder
by knocking out fumarylacetoacetate hydrolase (FAH) in pig
fibroblasts recapitulating human hereditary tyrosinemia type I
(HT1), which results in hepatic failure, cirrhosis, and hepato-
cellular carcinoma (HCC) in early childhood [42].
Amelioration of this preclinical model involved the

administration of 2-(2-nitro-4-trifluoromethylbenzoyl)-
1,3 cyclohexanedione (NTBC) throughout the pig’s
pregnancy [43].

In the injured liver of FAH-deficient mice, intrasplenic in-
jection of induced hepatic stem cells derived from mouse em-
bryonic fibroblasts (MEFs) led to differentiation into both

Fig. 1 a Chronic CCl4
administration determinates
damage of liver cells and
centrilobular congestion with
infiltration of inflammatory cells
(arrowheads, inset in the lower
right corner). The collagen
deposition and bridging fibrosis
were evident in liver tissue
(arrows). bDDC diet induces bile
thrombi formation (arrowheads,
inset in the lower right corner) and
the appearance of extensive
KRT19+ ductular reaction
(arrows). c MDR−/− mice are
characterized by periportal
damage (arrowheads) and the
development of portal (i.e.,
biliary) fibrosis (arrows). H&E,
hematoxylin & eosin; KRT19,
keratin 19
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hepatocytic and cholangiocytic lineages. Induced hepatic stem
cells also engraft as cholangiocytes into the bile ducts of mice
with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-in-
duced bile ductular injury [44].

The Gunn rat is a natural model for bilirubin encephalopa-
thy because it inherently lacks all glucuronidation activity
catalyzed by the UDP glucuronosyltransferase 1 (UGT1) iso-
form [45]. For this reason, these rodents are used as models to
study type I Crigler-Najjar (CN) syndrome [46]. In this con-
text, several studies have investigated the effect of human-
induced pluripotent stem cells (iPSCs) in cell therapy. In
2015, it was demonstrated that iPSCs reprogrammed from
human skin fibroblasts could differentiate into hepatocyte-
like cells (iHeps). These cells were transplanted into the livers
of Gunn rats and induced a 30-60% decline in serum bilirubin.
Moreover, the excretion of bilirubin glucuronides indicated
that transplanted iHeps expressed UGT1A1 activity [47].

Another genetic rat model is the Long-Evans
Cinnamon rat, whose mutation mimics human Wilson’s
disease in terms of excessive copper accumulation in
the liver, low levels of serum ceruloplasmin, and low
excretion of copper into the bile [48].

Cholestasis and Cholangiopathy Models

Cholestasis refers to impairment in bile formation or excre-
tion. This can be due to defects in intrahepatic bile production
or transmembrane bile transport, or to mechanical bile flow
obstruction. Cholangiocytes are hepatic cells that regulate the
fluidity and alkalinity of bile through the secretion of
osmolytes, such as Cl− and HCO3

−. Primary damage to the
biliary epithelium causes several chronic cholestatic disorders
(cholangiopathies), which are always observed with
coexisting cholangiocyte death and proliferation and various
degrees of portal inflammation and fibrosis.

The most common experimental rodent model of
intrahepatic cholestasis involves the hepatotoxicant molecule
known as α-Naphthylisothiocyanate (ANIT) [49, 50].
Recently, FVB.129P2-Abcb4tm1Bor mice (FVB.Mdr2−/−)
were used as a model for human primary sclerosing
cholangitis (PSC) (Fig. 1). These rodents are characterized
by the complete inability of the liver to secrete phospholipids
into the bile, which results in the spontaneous development of
progressive chronic biliary injury and fibrosis [51]. In this
context, extracellular vesicles (EVs) isolated from human
MSCs have been proposed as a possible effective therapeutic
strategy to treat PSC patients [51]. Another mouse model of
cholangitis can be obtained by injecting 2-octynoic acid
coupled with bovine serum albumin (2OA-BSA) [52]. Fan
et al. used this model to prove that human umbilical cord-
derived MSCs (UC-MSCs) injected intravenously could ame-
liorate liver inflammation [52].

3,5-Diethoxycarbonyl-1,4-dihydrocollidine (DDC) supple-
mented diet is an oral (ad libitum) hepatotoxic diet given in
mice for 4–8 weeks which determines the formation of
intraductal porphyrin plugs, intense ductular reaction, and ex-
trahepatic biliary tree alterations mimicking cholestatic liver
diseases and sclerosing cholangitis [1•]. Both chronic inflam-
mation and fibrosis characterize liver parenchyma and bile
ducts in this model used for drug discovery and omic studies
[1•] (Fig. 1).

Autoimmune Hepatitis Models

Autoimmune hepatitis (AIH) is a chronic inflammatory dis-
ease of the liver characterized by the loss of self-tolerance
leading to the appearance of autoantibodies and dysfunction
[53]. The first AIH animal models involved the induction of
transient hepatitis by immunizing rabbits or mice with com-
plete Freund’s adjuvant [54–56]. Other models included en-
dotoxin and plant lectin-induced hepatitis. Tiegs and col-
leagues first demonstrated that 20 mg/kg concanavalin A
(ConA) induces T cell-mediated liver damage that is mainly
dependent on CD4+ T cells in mice [57]. More recent tech-
niques involve the application of genetic engineering technol-
ogy [58]. Knocking out specific genes allows ConAmodels to
mimic specific AIH subtypes [53, 59]. The most important
considerations about these models are (1) the ConA model is
a very severe model of liver injury that can lead to high mor-
tality due to severe hemorrhage; and (2) it is difficult to find
the antigen of autoantibodies, which is a limitation of the
gene-engineered AIH model.

Cell-based therapies are a promising tool for the treatment
of AIH. It has recently been highlighted that peptide-major
histocompatibility complex class II (pMHCII)-based
nanomedicines displaying different cellular epitopes amelio-
rate AIH conditions without the suppression of host immunity
[60].

Routes and Strategies Adopted to Repopulate
the Liver and Biliary Tree Through Cell
Therapy

Other factors could influence transplanted cell effectiveness in
treating diseased livers, including cell delivery routes and re-
population strategies. These factors alter cellular engraftment
and functionality. Therefore, several cell therapy protocols in
experimental models were studied to maximize the therapeu-
tic effect of transplanted cells by reducing potential complica-
tions [61–64].

In general, cell delivery to the liver could be performed in
multiple ways due to its good anatomical accessibility. The
vascular route is the most widely used, and cell delivery has
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been performed mainly by injecting cells into the portal vein,
hepatic artery, or splenic artery [65–67]. Less relevant ap-
proaches involve cell delivery to the liver parenchyma via
injection into the intraperitoneal cavity, or through percutane-
ous tissue [65, 68]. Although intravenous injection is relative-
ly safe for cell delivery, it is not considered a perfect route
because it carries the risk of emboli formation, which could
lead to liver infarction, cell damage, or poor cell engraftment
due to vascular shear stress [69, 70]. However, the study by
[71••] showed that perfusing cells in a 3D-spheroid form via
the intraportal vein could improve cell localization in treated
livers, with superior therapeutic benefits in a mouse model.
The hepatic artery could provide a better alternative cell de-
livery route in the presence of portal hypertension-related
chronic liver disease [69, 72]. Intrahepatic/parenchymal cell
injection is a promising cell delivery strategy, but some com-
plications possibly related to this approach include the risk of
injuring parenchymal tissue and blocking the hepatic vascular
system or pulmonary capillaries [65].

Developing new modified cell delivery protocols is neces-
sary to achieve more desirable liver cell therapy effects.
Intrasplenic injection of hyaluronan-coated hBTSCs in severe
combined immunodeficient (SCID) mice showed better cellu-
lar engraftment and differentiation into mature hepatocytes
[73••]. A recent study by Hwang et al. (2019) coated human
adipose-derived stem cells with lipid-conjugated heparin be-
fore injecting them via the tail vein into the APAP-induced
ALF mouse model and found that this coating method could
enhance cell therapy effect on liver damage [74]. The study by
Laing et al. found that multipotent adult progenitor cells could
be delivered to the donor’s liver in vitro via normothermic
machine perfusion before liver transplantation to provide the
liver with anti-inflammatory and superior immunomodulatory
properties [75].

Other strategies to obtain cell therapy effects in liver dis-
ease models that do not involve cell transplantation have been
tested. These strategies could be performed using cell-free
products or derived extracellular nanovesicles, either alone
[76] or in combination with transplantable material. A study
by Mardpour et al. (2019) tested the intraperitoneal injection
of a mixture of polyethylene glycol (PEG) macromeres and
MSC-derived extravesicles (MSC-EVs) as a delivery strategy
to extend the beneficial effects of cell-free products for a lon-
ger time [77]. More research is still needed regarding the ef-
fects of different coating materials in the delivery system.

Ongoing studies are needed to compare the different
cell delivery approaches in liver disease models with
cells of different properties and sizes. Based on the fact
that cells can easily be coated or capsulated with natural
or synthetic constructs, studies are also needed to eval-
uate the combination of transplanted cells with different
promising materials, scaffolds, or microbeads in order to
improve liver cell therapy outcome.

Bioengineered Liver Scaffolds and Their
Transplantation

Bioengineered liver scaffolds aim to generate a highly
functional cell delivery system and/or a whole trans-
plantable liver. End-stage liver disease (ESLD) requires
radical treatment via liver transplantation in order to save
patient lives. However, due to donor shortages and long
ESLD patient waiting lists, transplantation surgery may
not be available to most patients and it is challenging to
find an alternative way to provide transplantable liver
scaffolds [78, 79].

Different sources and types of liver scaffolds have
been studied in the literature [80–86] (Fig. 2). The most
promising and interesting source of liver scaffolds is na-
tive hepatic tissue [87–89]. Decellularization of the na-
tive livers of lab animals, pigs, and humans has been
tested to determine the most suitable and applicable
way to generate transplantable bioengineered liver scaf-
folds [85, 90–92]. Lab animal liver decellularization was
studied as a preliminary step to evaluate the gentlest
decellularization protocol by characterizing their bio-
chemical components and structural properties as com-
pared with native tissues before testing in larger animals
or human tissue [90] (Fig. 2). Pig livers are considered
the most readily available source of transplantable scaf-
folds for preclinical studies and further clinical applica-
tions [93–95]. It is worth mentioning that either one liver
lobe of an adult pig or the whole liver of a piglet could
be suitable for further transplantation [94, 95]. Human
liver decellularization is also being investigated as a way
to use human livers unable to be transplanted due to the
presence of ischemia or other liver diseases. Therefore,
decellularization is a good alternative option to increase
the number of suitable liver scaffolds that could be
recellularized and transplanted [82, 96].

Various decellularization protocols have been de-
scribed for generating a cellular hepatic scaffold.
Washing out of cells is mainly performed using chemical
detergents such as sodium dodecyl sulfate (SDS) and
Triton-X-100, endonuclease enzymes such as DNases,
or different combinations of chemicals and enzymes with
agitation for liver slices, or by either continuous or
pressure-controlled whole liver perfusions [82, 85, 90,
92, 97–99]. Decellularization under oscillating pressure
has shown better results in terms of perfusion homogene-
ity and acellular tissue integrity [85, 92, 98, 100]. The
main aim of optimizing different decellularization
methods is to obtain a balance between the micro/
ultrastructure and remaining DNA level in decellularized
tissue [90].

However, many complications are related to the
decellularization process, including the loss of some native
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critical components and bioactive molecules. Many stud-
ies have investigated how to improve the structural prop-
erties of acellular scaffolds through conjugation with
crosslinking agents or extracellular matrix (ECM) parti-
cles or by improving their functionality with modifying
agents that could increase cellular attachment and
hemocompatibility, such as CD31, REDV peptide, fibro-
nectin, heparin, and gelatin [80, 84, 93, 101–105]. One
study used mice and pig livers that were partially hepa-
tectomized and maintained a few days in vivo before
being harvested and decellularized to generate hepatic
acellular scaffolds in an active regenerative state. These
ac t ive scaf fo lds could be more func t iona l and
hemocompatible, with fewer limitations than scaffolds
obtained from intact native livers [106].

The native liver-derived ECM can be used as an intact
scaffold for further orthotropic or heterotopic transplantation
[102, 107, 108]. There are different forms of acellular ECM,
including hydrogel, powder, and sheet tissue papers. These
forms are fabricated using digested ECM, homogenized
ECM, or ECM ink, respectively. These ECM forms could
be used for cell delivery, but they have relevant limitations,
mainly due to the additional loss of biochemical components
during the digestion and fabrication processes [97, 109–116].

Conversely, natural polymers such as collagen and synthet-
ic biodegradable materials have also been studied alone or in
combination to generate cell-supporting and functional hepat-
ic scaffolds or cell delivery systems [117–122]. However,
these scaffolds could not provide cells with all the bioactive
molecules required for their growth as compared with
decellularized ECM, which is why synthetic materials were
mixed with ECM powder or solubilized ECM to make them
more biocompatible and functional. However, many factors

regarding the physical and mechanical properties of the syn-
thetic scaffolds should be optimized in order to be approved
for clinical application [110, 123].

Cell seeding of acellular hepatic scaffolds was performed
mainly via cell perfusion into vascular systems and/or the
common bile ducts when using whole decellularized hepatic
scaffolds that had intact inlets and outlets, or by direct multiple
parenchymal injections, while cells could be laid onto the top
surface of hepatic decellularized slices [82, 84, 124–127].

Different cell types could be used for repopulating
decellularized livers, including primary hepatocytes, iPSC-
derived hepatocyte-like cells, stem cells, or mesenchymal
stromal cells for recellularization of the parenchymal areas,
and endothelial progenitor cells or human umbilical vein en-
dothelial cells (HUVEC) for reendothelization [85, 128–132].
However, optimization of the recellularization process is still a
challenge when more than one cell type per scaffold is used.

Recellularized scaffolds could be transplanted after
culturing in a bioreactor in vitro for cell differentiation
and maturation [131, 133, 134]. The transplantation of
recellularized hepatic scaffolds was performed experi-
mentally and preclinically to evaluate biocompatibility
and in vivo functionality. Different ways to transplant
the recellularized liver constructs were studied to opti-
mize the most effective minimally invasive technique to
restore recipient liver function or compensate for the
loss of function [61, 82, 87, 103, 135].

To conclude, the most important considerations in gener-
ating highly functional cell delivery systems and trans-
plantable hepatic scaffolds include minimizing the dele-
terious effects of the decellularization process, modify-
ing the acellular scaffolds to overcome existing limita-
tions, and appropriately selecting cells.

Fig. 2 Possible liver tissue
engineering strategies for treating
end-stage liver disease
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