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Abstract
Purpose of review Innovations in information technology, initiatives by local governments to share administrative data, 
and growing inventories of data available from commercial data aggregators have immensely expanded the information 
available to describe neighborhood environments, supporting an approach to research we call Urban Health Informatics. This 
review evaluates the application of machine learning to this new wealth of data for studies of the effects of neighborhood 
environments on health.
Recent findings Prominent machine learning applications in this field include automated image analysis of archived 
imagery such as Google Street View images, variable selection methods to identify neighborhood environment factors that 
predict health outcomes from large pools of exposure variables, and spatial interpolation methods to estimate neighborhood 
conditions across large geographic areas.
Summary In each domain, we highlight successes and cautions in the application of machine learning, particularly 
highlighting legal issues in applying machine learning approaches to Google’s geo-spatial data.

Keywords Machine learning · Neighborhood environments · Google Street View · Spatial interpolation · Neighborhood-
wide association studies · Urban health informatics

Introduction

Neighborhood health research seeks to explain how 
neighborhood characteristics such as built features, social 
and economic conditions, and chemical and particulate 
pollutant concentrations affect residents’ health. In addition 
to public health and medicine, urban sociologists, planners, 
and architects contribute to the field. The methods used for 
study design and data analysis draw from sociology and 

environmental epidemiology. Findings from this body of 
research have influenced policymakers, architects, planners, 
and commercial entities, including supporting city policies 
that encourage health-promoting businesses like grocery stores 
and that establish urban design, architecture, and planning 
guidelines [1–3].

Defining and measuring neighborhood features presents 
challenges for neighborhood health effects research. Physical 
and social characteristics of neighborhoods vary widely 
and at multiple geographic scales in ways that make them 
difficult to characterize [4]. But innovations in information 
technology, the greater willingness of local governments to 
share administrative data, and a growing awareness of the 
types of data that can be purchased from commercial data 
aggregators have meant that the information available to 
characterize neighborhoods has expanded immensely over 
the past 20 years. These data have been linked to health data 
from surveys, health surveillance systems, schools, medical 
records, and epidemiologic studies [5–9]. We refer to urban 
health informatics as the use of information technology to tap 
into, organize, cross-link, and analyze the massive data stream 
produced by, and about, urban centers, to understand the 
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health of residents [10]. Given the expanding data available 
for research, the field of neighborhood health research has 
started to use increasingly complex techniques to process 
these data more efficiently and accurately to characterize and 
identify exposures that affect health and health behaviors. 
Many of these techniques are drawn from machine learning, 
which we define here as the use of algorithms to uncover 
patterns in data that are then used without human intervention 
to make predictions about other data.

This review describes and evaluates three domains of 
urban health informatics in which innovative machine 
learning approaches have recently been applied (see 
Table  1). The first is automated image analysis of 
archived imagery such as Google Street View images. 
The second involves variable selection methods to 
identify neighborhood environment factors that predict 
health outcomes from large pools of exposure data 
with candidate variables. The third application uses 
spatial interpolation methods to estimate neighborhood 
conditions across large areas, using data collected at a 
limited number of sites.

Automated Image Analysis of Archived Imagery

The basis for much of the research on neighborhood health 
effects is derived from a method known as systematic social 
observation (SSO), also called neighborhood auditing [11, 
12]. The method involves developing standard protocols to 
evaluate physical and social conditions (e.g., abandoned 
buildings, graffiti, and trash on the streets) on a systematic 
sample of locations (often street blocks or intersections) 
[11, 12]. The method was originally implemented by trained 
auditors visiting locations in person. In some cases, this 
involved auditing study participants’ neighborhoods when 
team members visited their homes to conduct face-to-face 
interviews or collect environmental samples, and in others, 
it involved auditing locations selected by the researchers to 
ensure geographic coverage of an area of research interest 
[11, 13].

SSO audit instruments have been developed and validated 
for measuring pedestrian safety features, pedestrian infra-
structure, neighborhood physical disorder, advertising for 
alcohol and tobacco, and food environments. However, the 
in-person SSO approach has several limitations, including 
the time and expense for researchers to travel to the sampled 
locations, ensuring the physical safety of auditors, and com-
munity acceptance of researchers observing neighborhoods 
[14].

To address these problems, researchers developed virtual 
systematic social observations (VSSOs) [14, 15]. Instead 
of sending raters to physically inspect the block, VSSOs 
have trained auditors to use Google Street View’s archived 
imagery to collect observational data from streets or inter-
sections [14, 16, 17]. Other implementations of VSSOs 
include collecting data from archives of images from public 
webcams [18]. Several existing in-person SSO protocols 
have been adapted for use in the virtual environment, and 
web-based tools have been developed to manage VSSO 
studies, notably the Computer-Aided Neighborhood Visual 
Assessment System (CANVAS) [19]. This approach has 
been shown to require much less time and expense than 
in-person audits while equivalently measuring the physical 
environment and offers the possibility of rating much larger 
geographic expanses, including national samples [16, 17, 
19]. The strengths and weaknesses of VSSO have been pre-
viously discussed extensively [14–16].

Several groups have sought to expand the VSSO approach 
by replacing trained human observers with machine learn-
ing tools that automatically identify features in downloaded 
Google Street View images (see Fig. 1). This approach typi-
cally requires mass downloading of Street View images in 
order to efficiently process the images on high-performance 
computational clusters. There have been notable successes 
in training machines to quantify trees and green space and to 
identify traffic control signs, crosswalks, single-lane roads, 
and utility wires in Street View panoramas [20–26]. Recent 
work has also used health data from surveys to train a gen-
erative adversarial networks (GAN) machine learning model 
to identify health-related features in Street View images 

Table 1  Summary of machine learning applications

Application Uses Issues

Automated image analysis Accelerate virtual systematic social observation (VSSO) 
methods. Increase the density of sampled locations 
and expand the geographic coverage of VSSO studies

Legal issues with Google’s terms of use for Google Maps 
and Street View

Variable selection Application of GWAS and EWAS-style studies to large 
pools of neighborhood-level variables

Choosing from the array of possible selection algorithms: 
results from different algorithms may disagree

Spatial interpolation Characterize neighborhood conditions over large areas 
using data from a sample of locations

Researchers using “off-the-shelf” existing data versus 
researchers setting their own sampling plan for collect-
ing data: need to account for uncertainty in the estima-
tion of the neighborhood-level data
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[27]. They found that respondents’ self-reported physical 
function using the PF-10 was associated with urban green-
ery, including tree height and building height identified in 
the images by the GAN model [27]. Another approach has 
been to have raters provide an evaluation of a single dimen-
sion, for example, safety, and then use the raters’ ratings to 
train machine algorithms to evaluate safety on other blocks 
[28]. Machine-learning-based approaches to identifying and 
quantifying key features of the built environment from Street 
View imagery have the potential to fully automate the con-
duct of VSSO and radically speed up the creation of data on 
neighborhood conditions.

We caution that machine learning approaches may 
ultimately incur legal challenges. As of January 2022—and 
since at least February 2018—Google’s overall terms of use 
and those of their Google Maps product (including “Geo 
Guidelines” included in the Google Maps terms) prohibit 
downloading and storing imagery, recreating panoramic 
views from downloaded image tiles, and the use of “…
applications to analyze and extract information from the 
Street View imagery” (see Fig. 1). [29, 30] The creation of 
measures of trees from Google Maps products is specifically 
given as an example of prohibited uses [29]. The terms of 
use also prohibit the use of Google Maps-derived data 
in point-in-polygon analyses, a geographic information 
systems technique commonly used in neighborhood health 
effects research. The Geo Guidelines explicitly state that 
nonprofit and academic uses are not exempt from the terms: 
“these restrictions apply to all academic, nonprofit, and 
commercial projects,” and further that they will not grant 
exceptions: “If your use is not allowed, we are not able to 
grant exceptions, so please do not submit a request.”[30] 
These prohibitions are not based on copyright, for which 
researchers might invoke the concept of fair use, but based 

on the contract a user agrees to follow (an “end user’s 
licensing agreement”) by accessing Google Maps. [31] The 
enforceability of such contracts is an area of active litigation 
and, as such, is unclear; researchers who conduct this type 
of research and the journals that publish the resulting papers 
incur some legal risk so long as the law remains unsettled 
[8, 32].

Variable Selection Approaches to Analyzing “Big 
Data”

A second area of innovation regarding machine learning 
and neighborhood health research involves variable selec-
tion in prediction models using “hypothesis-free” analyses. 
Vast amounts of data can be processed and linked together 
using geographic information systems (GIS), including 
census data, business listing data (e.g., the National Estab-
lishment Times Series), social media data, online search 
data, and administrative data from local, state, and federal 
governments (e.g., tax, licensing, inspection, maintenance, 
and enforcement data) to measure neighborhood condi-
tions [33–35]. When all of these data sources are compiled 
together, the GIS becomes a high-throughput data-gen-
erating platform that can produce thousands of variables 
describing the environment of a neighborhood.

While the quantity and richness of these data are very 
attractive to researchers, the variables are often highly 
correlated, causing multicollinearity issues in multivariable 
data analyses that limit the ability to isolate the effects of 
individual variables using hypothesis-based approaches to 
data analysis (see Fig. 2). As in other fields that have faced 
these issues, like with the -omic arrays used to study genomics 
and proteomics, and studies of exposures to complex chemical 
mixtures, researchers studying neighborhood health effects 

Fig. 1  A common workflow 
for machine learning applied 
to Google Street View Images 
and its relationship to activities 
prohibited by Google’s terms of 
use [26]
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have turned to machine learning and variable selection 
approaches to identify neighborhood environment variables 
associated with health outcomes [36–38]. Using genome-
wide association studies (GWAS) [39] and environment-wide 
association studies (EWAS) [40] as a template, neighborhood 
health researchers have begun implementing neighborhood 
environment-wide association studies (NE-WAS) [41–44]. 
These studies use computer algorithms to identify 
neighborhood environment variables most strongly associated 
with health outcomes of interest [41]. Examples of this are 
efforts to identify neighborhood-level variables that predict 
prostate cancer aggressiveness, physical activity levels among 
older adults, COVID-19 mortality, neighborhood-based 
walking, and violent crime [41, 42, 44–46].

How best to conduct NE-WAS analyses remains unclear. 
For any of the ‘-WAS approaches, including NE-WAS, 
there are numerous algorithms for simultaneously analyz-
ing large quantities of predictor variables, and research-
ers debate which of these algorithms identifies relation-
ships of greatest scientific interest [36–38, 47–50]. Simple 
approaches include calculating an odds ratio and p-value for 
each predictor variable independently and applying a mul-
tiple comparisons correction to the threshold for declaring 
statistical significance [41, 42]. Other approaches, which are 
vastly more computationally complex, include reducing the 
number of dimensions (e.g., through principal components, 
latent classes, k-means clustering, etc.) and variable selec-
tion steps (e.g., LASSO or stepwise regression) [38, 47, 48, 
50]. These approaches often sub-set the full dataset into 
training and validation subsets and then use cross-validation 
to select tuning parameters from the training subset, validate 
the parameters on the validation subset, and then apply the 
parameters to the entire dataset [38, 47, 48, 50].

These complex analytic techniques, developed by com-
puter data scientists, make principled use of patterns in the 

data to build robust classification and prediction models. 
However, their successful use in neighborhood research has 
been more limited. One reason for this is that algorithms 
designed to select the variables that together best predict an 
outcome do not, in general, select a subset of distinct vari-
ables that are most causally relevant [51]. Moreover, because 
neighborhood predictors are frequently strongly correlated 
with each other (e.g., % of households living in poverty is 
highly correlated with median household income), naive 
application of variable selection algorithms (e.g., with no 
pre-selection of variables to ensure measures cover only a 
subset of domains) results in highly unstable selections—
minor tweaks to the dataset result in a very different selec-
tion of variables [52].

To address a similar issue of highly correlated predictor 
variables in GWAS studies, an initial process of “pruning” 
is often used to remove from a dataset the data for one or 
the other of two genetic loci with SNPs that show high link-
age disequilibrium (high correlation) [53–55]. Typically, in 
pruning GWAS data sets, the data for the loci with the high-
est minor allele frequency (MAF) is kept in the dataset, and 
the loci with the lowest MAF are removed from the dataset 
[53–55]. Because neighborhood-level variables are com-
monly continuously distributed, there is not an exact anal-
ogy to MAF to guide pruning decisions in NE-WAS studies. 
However, considerations related to the effects of measure-
ment error on bias in neighborhood health effects studies 
can be used to guide decisions regarding which variables to 
prune. Measurement error in underlying data (e.g., personal 
income data collected in the American Community Survey) 
that are aggregated up to create neighborhood-level meas-
ures (e.g., % of the population living in poverty or median 
household income or per capita income) causes systematic 
bias away from the null in neighborhood health effects stud-
ies when the neighborhood level variable is expressed as a 

Fig. 2  Schematic diagram of 
a neighborhood environment-
wide association study as 
applied to selecting variables 
that predict physical activity 
levels in older adults [41]
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proportion (e.g., % of the population living in poverty) but 
not for variables expressed a continuous scales (e.g., median 
household income) [56]. Thus, for variable pruning in NE-
WAS studies, within sets of highly correlated variables, we 
recommend removing variables expressed as proportions.

Spatial Interpolation to Estimate Neighborhood 
Conditions

Spatial interpolation is another area where machine 
learning approaches have been applied to neighborhood 
health research, including in studies of air pollution, of 
neighborhood physical disorders, and sidewalk conditions 
[4, 57–59]. Spatial interpolation models such as kriging 
and land use regression estimate neighborhood conditions 
at all locations across a geographic area using measured 
data from only a sample of locations in the region [4, 57, 
60–63]. The estimates are based on the measured values 
at the sampled locations, distances to sampled points, and 
the spatial correlation between measured values at sampled 
points. The estimation models often also include external 
data measured at all locations in the target geographic area 
(e.g., home prices or distance to roads). Spatial interpolation 
can use machine learning techniques, including automated 
variable selection techniques that can select predictors and 
functional forms included in a final model from a class of 
candidate predictors and leave-one-out cross-validation that 
“tunes” the interpolation model [64].

Spatial interpolation can be implemented using several 
approaches. One such approach is land use regression, which 
is commonly used in air pollution studies. This method uses 
data on relevant land use features (e.g., industrial zoning, 
road density, vehicle traffic, and pollution point sources) 
to create a regression model predicting pollution levels 
measured at air monitoring stations [60, 61, 65]. This 
regression model is then used to estimate air pollution at all 
other locations in the target area [60].

Another spatial interpolation approach is ordinary krig-
ing, which uses the spatial correlation between the variable 
values at each sampled location (e.g., particulate matter 
measured at air monitors) to estimate values at all non-
sampled locations in the geographic area of interest [4, 57]. 
Universal kriging is an extension of ordinary kriging that 
uses additional external data that can be measured at all 
locations in the geographic area to supplement the informa-
tion represented by the spatial correlations [66]. Universal 
kriging can be viewed as jointly modeling ordinary kriging 
and land-use regression [60]. In a study of particulate matter 
air pollution, for example, relevant external data might be 
vehicle traffic volume. In our work using universal kriging 
to estimate neighborhood physical disorder in four US cit-
ies, we found that using a measure of housing vacancy in 
universal kriging improved estimation over ordinary kriging 

for Philadelphia and Detroit. [66] More complex approaches 
apply automated techniques to a suite of candidate variables 
to improve these models, either by algorithmically select-
ing specific environment variables to include in a model or 
by applying dimensionality reduction techniques to identify 
underlying factors that maximize the predictive value of 
external data [64, 67]. These complex approaches are more 
commonly used to characterize exposures to environmental 
pollutants than neighborhood built or social environment 
factors, but they present a promising direction for new meth-
ods to describe neighborhood conditions.

There are several considerations to be acknowledged 
when using spatial interpolation techniques. When data are 
available from a series of locations “off the shelf” (often the 
case for air monitoring data but can also be true for other 
administrative data), the spatial distribution of these loca-
tions is often not optimized for making interpolation esti-
mates at non-sampled locations [57]. In these off-the-shelf 
scenarios, the estimates can have greater uncertainty than 
would be seen if the sampling were designed to optimize 
spatial interpolation. In air pollution studies, the air moni-
toring stations set up for administrative purposes are often 
located in such a way that there is higher uncertainty for the 
interpolated estimates near the borders of a city or region 
[57]. Spatial interpolation works best when the sample of 
locations where data will be collected is chosen to optimize 
spatial interpolation algorithms [60, 65]. There are consid-
erations when researchers choose sample locations to col-
lect data from; should the sample be based on population 
distribution of land area [4]? When chosen sampled loca-
tions to reflect population distribution in an area, the result-
ing sample will on average represent the population but not 
necessarily geography and land uses [4]. For example, non-
inhabited but relevant areas like industrial plants or parks 
would be excluded from a sample of locations selected based 
on population distribution.

When interpolated neighborhood exposure values are 
used in a regression analysis predicting some health out-
comes, the uncertainty in the neighborhood measurements 
should be included in analyses of health outcomes. Not 
doing so will lead to underestimating the uncertainty of 
parameter estimates measuring the association between the 
neighborhood exposure and the health outcome. A solu-
tion to this issue uses a framework very similar to multiple 
imputations for missing data [4, 58]. Instead of a single 
value being estimated for each neighborhood location of 
interest, multiple values for each location are estimated 
from the interpolation model to represent the uncertainty 
in the estimation process [4, 58]. These multiple exposure 
data sets are then each analyzed to predict the health out-
come and the estimated effect size and its corresponding 
standard error from each data set are combined to create 
a pooled estimated effect size and standard error. As in 
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multiple imputations, the pooled standard error from ana-
lyzes of multiple estimated data sets better expresses the 
uncertainty in the observed association between exposure 
and outcome [68].

Conclusion

Revolutions in information technology, the greater will-
ingness of local governments to share their administra-
tive data, and a growing awareness of the types of data 
that can be purchased from commercial data aggregators 
mean that the information available to characterize neigh-
borhoods has expanded immensely over the past 20 years. 
As data availability has expanded, researchers studying 
neighborhood health effects have started to utilize machine 
learning approaches to measure and identify neighborhood 
features that influence health. Spatial interpolation meth-
ods, particularly for estimating air pollution, have the most 
established track record for the use of machine learning in 
characterizing neighborhood environments. While GWAS 
have been employed for over twenty years in genetic epi-
demiology, similar variable selection approaches have just 
begun to be implemented with neighborhood-level data. In 
other fields that grapple with large quantities of intercor-
related predictor variables, such as -omics and the study 
of chemical mixtures, there is debate over which variable 
selection algorithms are most appropriate. Lessons learned 
from these other fields are likely to be applicable to neigh-
borhood-level data.

Of the machine learning approaches that have been used, it 
is the application of automated image analysis that has perhaps 
most captured the imagination of researchers. Unfortunately, 
the terms of use for Google Street View, the data source 
most commonly used for VSSOs, expressly prohibit the 
use of machine learning to identify features in Street View 
images. We hope that ongoing litigation will clarify the 
enforceability of terms of use and that companies that create 
these valuable spatial data sets will make them available for 
health research. Yelp, for example, has a special program for 
academic researchers who wish to use their data[69]. Until 
then, journals and Institutional Review Boards should pay 
attention to the use of data acquired without appropriate 
licenses or in ways contrary to the terms of use.
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