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Abstract
Purpose of Review  Survival analyses are common and essential in medical research. Most readers are familiar with Kaplan–
Meier curves and Cox models; however, very few are familiar with multistate models. Although multistate models were intro-
duced in 1965, they only recently receive more attention in the medical research community. The current review introduces 
common terminologies and quantities that can be estimated from multistate models. Examples from published literature are 
used to illustrate the utility of multistate models.
Recent Findings  A figure of states and transitions is a useful depiction of a multistate model. Clinically meaningful quantities 
that can be estimated from a multistate model include the probability in a state at a given time, the average time in a state, 
and the expected number of visits to a state; all of which describe the absolute risks of an event. Relative risk can also be 
estimated using multistate hazard models.
Summary  Multistate models provide a more general and flexible framework that extends beyond the Kaplan-Meier 
estimator and Cox models. Multistate models allow simultaneous analyses of multiple disease pathways to provide 
insights into the natural history of complex diseases. We strongly encourage the use of multistate models when ana-
lyzing time-to-event data.
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Introduction

Time-to-event data (also known as survival and failure 
time data) are commonly collected in multiple disciplines 
including medicine, epidemiology, environmental health, 
engineering, operations research, and physics. These data 
provide information on whether the events of interest (e.g., 
death, dementia, disease recurrence) occurred and when 
those events occur for each subject. Classical analysis meth-
ods for time-to-event data are the Kaplan–Meier estimator 
and Cox proportional hazard models [1, 2]. These methods 
are adequate in studies where there is only one type of event 
of primary interest.

When there are multiple events of interest, the afore-
mentioned methods may not provide a full picture of the 
relationship. In these situations, methods that can eluci-
date the underlying relationship between the covariates, 
the intermediate outcomes, and the outcomes of interest 
are needed. Multistate models, first mentioned by Cox 
and Miller in 1965, provide a flexible and broader frame-
work to extend familiar methods [3]. The fundamental 
theory for multistate models was established using the 
counting process methodology [4•]. Detailed guidance 
has appeared more recently along with practical software 
[5–7].

This paper provides a brief introduction of multistate 
models and highlights their utility using examples from 
published papers on this topic. Specifically, we will 
introduce terminology of multistate models, demonstrate 
the construction of a state space, and describe important 
quantities that can be estimated from a multistate model. 
We will wrap up the paper with annotated references of 
selected publications on multistate models for readers 
who are interested in deeper knowledge on this topic.

This article is part of the Topical Collection on Epidemiologic 
Methods
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Multistate Model–Terminology and State 
Space

A multistate model is a framework that uses continuous 
time processes to describe and model subjects’ experi-
ences over a time course [4•, 8]. All multistate models 
consist of two essential components: the state(s) and 
the transition(s). “State” is the time-varying/longitu-
dinal status of a subject at a given time. “Transition” 
is a directional movement from one state to another. A 
state can be transient or terminal. A state is considered 
transient if a transition from that state to another state 
is possible; whereas a state is considered terminal (also 
called absorbing) if transition from that state to another 
state is not possible—i.e., once a subject enters a ter-
minal state, s/he is assumed to remain permanently in 
that state. An absorbing state can be biological, such 
as death, or it can be due to research interest, e.g., in a 
competing risk model, all states (other than the initial 
state) are absorbing.

A “state space” is a graphic depiction of the possible 
states and transitions of a multistate model. It is an essen-
tial visualization tool when planning design and analysis of 
time-to-event data. Figure 1 shows a collection of four state 
space. Figure 1a is the simple survival model, Fig. 1b cor-
responds to a competing risks model, Fig. 1c is an illness-
death model, and Fig. 1d is a more complex model showing 
comorbidity progression associated with nonalcoholic fatty 
liver disease (NAFLD) which will be used as an example 
later in this manuscript. In each figure, boxes are the states 
and arrows represent potential transitions between states. A 
state with both input and output will be transient, a terminal 
(or absorbing) state is one that has no further transitions.

Because multistate models are flexible and can accom-
modate a wide range of scenarios, it is important to con-
struct multistate models that have the appropriate level of 
complexity to address the scientific question(s) of interest 
and yet simple enough for clinical interpretation and for the 
model to be reliably estimated. Specifically, when construct-
ing a multistate model, include only the states and/or transi-
tions that are necessary to answer the research questions. 
Not all possible states and transitions need to be included. 
For example, in a study where patients can experience both 
relapse and death, the following models can be considered 
depending on the goals of the study:

a.	 If the primary focus is on death regardless of disease 
relapse, then the simple survival model (Fig. 1a) may 
suffice;

b.	 If the focus is on the risk of relapse or death (without 
relapse), then a competing risks model (Fig. 1b) would 
be appropriate; or

c.	 If the primary goals focus on the progression from com-
plete remission to relapse to death, then an illness-death 
model (Fig. 1c) may be needed.

In another example, Allen et al. were interested in the 
natural history of NAFLD and the progressive burden of 
0, 1, 2, or 3 metabolic comorbidities (MC) with death as 
a competing risk (Fig. 1d) [9]. However, if they were only 
interested in the disease process from having no comorbid-
ity (Health) to having at least one metabolic comorbidity 
(combining one, two, and three comorbidities into one sin-
gle state, i.e., illness) and death, then the simple illness-
death model (Fig. 1c) would suffice. On the other hand, if 
they were interested in the disease process from having no 
comorbidity to specific comorbidities then to death, a more 
complex state space can accommodate the research need 
(Supplemental Fig. 1); however, the analysis results may 
be more difficult to interpret and some transitions may have 
very few patients.

Another point to consider when constructing a multistate 
model is when the number of subjects experiencing a certain 
transition is very low (e.g., ≤ 5), that transition may not be 
modeled reliably.

Multistate Model – Statistical Analysis

In this section, we illustrate analyses of time-to-event data 
using multistate models starting with descriptive summary 
using the non-parametric Aalen-Johansen estimator followed 
by advanced modeling of the hazard rates using Cox-type 
models.

The Probability of Being in a State at a Given Time

The simplest estimate, and the one we will almost always 
start with, is the probability of being in any given state at 
a given time t, which can be represented as a vector p(t) 
with one element per state. Just as the survival probability 
at a given time in a mortality model (Fig. 1a) can be esti-
mated using the Kaplan–Meier estimator, the probability of 
being in a certain state at a given time in a multistate model 
can be estimated using the non-parametric Aalen-Johansen 
estimator, the multistate analog to the Kaplan–Meier (both 
the Kaplan–Meier estimator and the cumulative incidence 
are special cases of the Aalen-Johansen estimator) [1, 10]. 
The Aalen-Johansen estimates of the states in a multistate 
model can be plotted over time in a similar manner to the 
Kaplan–Meier curves. These curves show the likelihood of 
a subject being in one of the states over time.

We illustrate the Aalen-Johansen estimate using the 
Myeloid data example from the survival package of R [6, 
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11, 12•]. Patients with newly diagnosed acute myeloid 
leukemia (AML) were randomized to receive an experi-
mental or a current standard of care (SoC) for induction 
chemotherapy. If the chemotherapy is effective, the disease 
burden is expected to reduce to a very low, undetectable 
level (termed complete response, CR). Patients may then 
go on to receive a hematopoietic stem cell transplant (SCT) 
to achieve long lasting remission. Unfortunately, there is 
no long-term cure to the disease. Figure 2a shows the state 
space of a conceptual model of the Myeloid data example. 
The actual observed patterns; however, are more complex 
(Supplemental Table 1); there are, for instance,106 patients 
who received SCT without achieving CR.

Figure 2b–e show four separate sets of Aalen-Johansen 
curves for the Myeloid data. As overall survival was the 
primary endpoint of this study, we first looked at the 
curves depicting the overall mortality by treatment arms 
(Fig. 2b), which shows that the experimental treatment (B) 
has a lower overall mortality rate compared to SoC. To 
understand the impact of treatments on disease burden, 

we examined the curves in Fig. 2c which show the prob-
ability of complete response (CR) and death before CR as 
competing risks. The CR curves show a nearly identical CR 
rate over the first 2 months, with addition late CRs in arm 
B while the mortality without CR curves begin to separate 
after 5 months since randomization, showing a lower rate 
of death without CR in the experimental arm (B), sug-
gesting that there might be a direct connection between 
the experimental treatment and the occurrence of late CR 
events. One question of interest in this study was whether 
the CR was likely to sustain. Figure 2d shows the curves 
for the CR state from an illness-death model with three 
states: diagnosed with AML, CR, and relapse/death where 
CR was treated as a transient state (i.e., patients experi-
enced CR can transition to relapse/death); overlaid with the 
CR curves from the prior competing risks model (Fig. 2c) 
where CR was treated as an absorbing state. We see that 
those achieved CR in both arms appear to have similar 
durability, which gives yet another hint that the late CRs 
of arm B may be “as good as” earlier CRs. Figure 2e shows 

Fig. 1   A collection of state 
space. a. Two-state mortal-
ity model, b. Competing risks 
model, c. Illness-death model, 
d. A state space for progress-
ing from 0 to 3 metabolic 
comorbidities and death. MC: 
Metabolic comorbidities

a

d.

b.

c
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the evolution of all 4 states over time. It shows for instance 
that relapse is quickly transient, i.e., there is never a large 
fraction of patients in that state at a given time.

Note that the curve for participants remaining in the 
“Diagnosed with AML” state is omitted from the figure 
because it is simply one minus the total probabilities from 
all other states at a given time which is low and is not of 
interest in this example. Analogous to the Kaplan–Meier 
estimates, the Aalen-Johansen estimates are unadjusted, i.e., 
they do not account for other covariates.

Multistate Aalen-Johansen curves provide a useful tool 
for understanding the evolution of patients through a set 
of states and it should be the first step for any multistate 
analysis. Plots such as Fig. 2e that show all the states can be 
overwhelming, especially if curves for all states are included 
by covariates, e.g., imagining Fig. 2e that would include 4 
Treatment*Sex curves for each state, one of the challenges is 
how to best display results using colors, line types, multiple 
panels, etc.

Absolute Risk: Other Measures

From the Aalen-Johansen estimates, two other clinically rel-
evant measures can be obtained: the average time spent in 
a given state (also known as the mean time-in-state or the 
sojourn time) and the expected number of visits to a given 
state (sometimes known as the lifetime risk).

Mean time-in-state is estimated by calculating the area 
under the probability-in-state curves generated from the 
Aalen-Johansen estimates. Returning to the study by Allen 
et al., using this approach they found that the mean lifetime 
of subjects with nonalcoholic fatty liver disease (without cir-
rhosis) was 4 years shorter than their age- and sex-matched 
controls [9]. They further found that these patients spent 
about 75% of their remaining life in comorbid condition.

In situations where it is not possible to follow all sub-
jects until their terminal event due to limited resources or 
where the events of interest are expected to occur quickly 
and the research questions focus on this shorter period, the 

aa b

d

c. 

e. 

Fig. 2   The Myeloid data example. a. State space in consideration for 
the Myeloid dataset, b. Overall mortality by treatment arms, c. CR 
and death without CR as competing risks, d. Ever in CR (compet-
ing risks) vs. Sustained CR (illness-death model), e. Myeloid dataset, 

all four states.  Diagnosed with AML: Time of Randomization;  CR: 
Complete Response;  SCT: Stem-Cell Transplant;  A: Control Arm 
(solid line); B: Experimental Arm (dashed line)
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time-in-state can be estimated restricted to a shorter time, 
i.e., termed restricted mean time in state. In the case of the 
simple survival model (Fig. 1a), the restricted mean time in 
state is more commonly known as the restricted mean sur-
vival time (RMST). Le-Rademacher et al. used a multistate 
model on a clinical trial dataset enrolling patients with AML 
to model transitions among four states (diagnosed with AML 
(i.e., time of randomization), first complete remission, dis-
ease relapse, and death) [13]. In this trial setting, since most 
of the events are expected to occur within 48 months from 
randomization, the focus of the time spent in each state was 
restricted to 48 months from randomization. Therefore, the 
interpretation of the time spent in a state in this example is 
the average amount of time a patient spent in that state in the 
first 48 months after randomization. They found that patients 
treated with the experimental therapy stayed in first complete 
remission 3–8 months (depending on their biomarker) longer 
than those receiving placebo. In patients with low ratio inter-
nal tandem duplication biomarker, the experimental treat-
ment also prolonged the time alive in relapse by 2.3 months 
compared to placebo. The experimental treatment was also 
associated with a longer life expectancy of around 3 months 
over the 48 months study window. This analysis provides 
more granular understanding of the treatment effect through 
various intermediate events that occurred between randomi-
zation and death, complementing the results of the clini-
cal trial primary analysis [14]. Time spent in a state is well 
defined and interpretable even when a state can be visited 
multiple times or visited in various order.

In more complex multistate models, certain transient 
states can be visited multiple times. For example, in the 
model with state space illustrated in Fig. 2a, a patient can 
experience multiple remissions (first, second, or third), mul-
tiple relapses, and can even receive more than one trans-
plant. The expected number of times a subject visits a certain 
state (in this example, the expected number of remissions or 
expected number of relapses etc.) can be estimated.

If a state can only be visited once, such as dementia, car-
diovascular disease, and arthritis, then this quantity is also 
referred to as the remaining lifetime risk of the condition 
which can be interpreted as the probability of acquiring the 
condition in the future for those currently condition-free. 
Jack et al. investigated the association between amyloid 
level, sex, APOE genotype, and incident dementia and mor-
tality among individuals without dementia [15]. They found 
that the remaining lifetime risk of dementia, i.e., the risk 
of dementia given that the individual is not demented at a 
certain age, varied considerably across groups of subjects 
defined by APOE genotype, sex, and amyloid level. Among 
patients with characteristics most likely to develop Alzhei-
mer’s disease, women have a higher remaining lifetime risk 
than men. Specifically, remaining lifetime risk of dementia 
at age 65 for females with APOE ε4 and moderate amyloid 

levels was 58% (95% confidence interval [CI] 52–65%) 
compared to males with the same APOE and amyloid 
status where their lifetime risk is 44% (95% CI 35–53%). 
Among those with APOE ε4 and high levels of amyloid, the 
remaining lifetime risk at age 65, increases to 74% (95% CI 
65–84%) for women compared to 62% (95% CI 52–73%) for 
men. The remaining lifetime risks at 65 reflect how likely 
individuals will experience dementia in the remainder of 
their lifetime given that they are dementia-free at age 65. 
In this example, although the rates of dementia were not 
necessarily higher in women compared to men, women have 
a higher remaining lifetime risk because women live longer 
than men, on average. The remaining lifetime risks provide 
a complementary perspective to the hazard ratios which rep-
resent the ratio of the rates of dementia in individuals with 
an exposure relative to a reference group. Both measures are 
meaningful and are complimentary to each other. Using both 
provide a fuller picture of the disease process.

Cox‑Type Regression for Multistate Models

The risk measures obtained from the non-parametric Aalen-
Johansen estimates as discussed above are unadjusted for 
other covariates. In settings where adjustment for potential 
confounders are needed, a Cox-type regression analysis for 
multistate data can be conducted to simultaneously model 
the association between the treatment or exposures and all 
transitions of interest. Please note that, traditional Cox pro-
portional hazards model, ignoring the intermediate events 
of a multistate model, produces a single “average” rela-
tive risk of the terminal event. The work by Allen et al. in 
nonalcoholic fatty liver disease incidence and its impact on 
metabolic comorbidity burden and death show an example 
of the insights that can be obtained by fitting a Cox regres-
sion for a multistate model [9]. Because NAFLD and meta-
bolic comorbidities (i.e., diabetes mellitus, hypertension, 
and hyperlipidemia) have intertwined pathophysiology, the 
independent impact of NAFLD on death may vary with 
the number of metabolic comorbidities a subject developed 
through the course of the disease. Allen et al. identified the 
association of NAFLD and an increased risk of developing 
metabolic comorbidities after adjusting for age and sex; and 
that the independent association of NAFLD and mortality 
decreases as the number of metabolic conditions increases 
[9]. Specifically, for subjects with no metabolic comor-
bidities, NAFLD was associated with a twofold increase 
in mortality risk (Relative Risk: 2.16, 95% CI: 1.41–3.31); 
whereas for subjects with three metabolic comorbidities, 
the association between NAFLD and mortality reduced to 
a relative risk 1.08 (95% CI: 0.89–1.30). These insights 
would not be easily untangled using traditional survival 
analysis approaches.

187Current Epidemiology Reports (2022) 9:183–189



1 3

It is worth noting that, when applying multistate model to 
competing risks data, the transition intensity (i.e., the hazard 
of transition from a state to another) is indeed the cause-
specific hazard. The sub-distribution hazard, developed by 
Fine and Gray, does not have a simple direct relationship 
with the measures described above for multistate model [16].

Conclusions

Multistate models provide a flexible framework for analy-
sis of time-to-event data. Multistate models encompass a 
wide range of models from the simplest 2-state mortality 
model to more complex models that include multiple states 
with repeated visits. However, multistate models are less 
known than other survival analysis methods including the 
Kaplan–Meier estimator and the Cox proportional hazards 
models. In this manuscript, we introduced common termi-
nologies and quantities that can be estimated using multi-
state models. Examples were included to illustrate and high-
light the utility of multistate model.

In any study with time-to-event data, a sketch of a 
state space including the events and the transitions that 
gave rise to the data is a useful starting point. The state 
space can then be refined to represent a multistate model 
that appropriately address the scientific question of inter-
est. When consider a multistate model, it is important to 
balance between the model’s complexity and its’ inter-
pretation. A multistate model should only include the 
states and the transitions necessary to answer the scien-
tific questions of interest; additionally, each transition 
needs to include a sufficient number of patients to allow 
reliable estimation of the model.

Readers may have noticed that different time scales were 
used in our examples. Le-Rademacher et al. used the time 
“since randomization” while Jack et al. and Allen et al. both 
used “age” as the time scale. The time scale to use depends 
on the research questions and the intended interpretation. 
Since data in Le-Rademacher et al. is from a clinical trial 
where patients started treatment soon after randomization 
and the question of interest for the trial was the effect of trial 
treatments on clinical outcomes, randomization represents 
a natural and appropriate starting time for this study. On the 
other hand, both Jack et al. and Allen et al. evaluated the 
natural history and progression of age-related conditions, 
age serves as an appropriate time scale which provides a 
natural interpretation of the analysis results, i.e., the prob-
ability of being in a certain state at a certain age, how long 
the participants will stay in the state given other covariates, 
and remaining lifetime risk of a condition, such as dementia. 
Choosing the appropriate time scale is an important consid-
eration for multistate models.

Using counting process, multistate models can easily 
accommodate data with left truncation [4•]. Both Jack 
et al. and Allen et al. used “age” as the time scale which 
are examples of multistate models with left truncated 
data. Additionally, since multistate analytical methods 
are extensions of classical survival analysis methods 
based on counting process, statistical measures from 
multistate models have similar interpretations and limi-
tations as their counterparts in classical survival analysis 
[17•, 18•, 19•]. Specifically, the challenges of using the 
hazard ratio from traditional Cox model in causal infer-
ence apply to the hazard ratio derived from Cox-type 
regression model from multistate model. Quantities of 
absolute risks such as time spent in a state and probabil-
ity of being in a state may be more appropriate for causal 
inference [20, 21].

Multistate models is an analytical approach that may shed 
light on complex disease process. However, they are still 
susceptible to potential collider stratification bias and con-
founding effect as other analytical approaches. Care must 
be taken to minimize these potential issues, especially for 
observational studies.
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