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Abstract
Purposeof Review Epidemiologic research on the health effects of social policies is growing rapidly because of the potentially 
large impact of these policies on population health and health equity. We describe key methodological challenges faced in 
this nascent field and promising tools to enhance the validity of future studies.
Recent Findings In epidemiologic studies of social policies, causal identification is most commonly pursued through con-
founder-control but use of instrument-based approaches is increasing. Researchers face challenges measuring relevant policy 
exposures; addressing confounding and positivity violations arising from co-occurring policies and time-varying confounders; 
deriving precise effect estimates; and quantifying and accounting for interference. Promising tools to address these challenges 
can enhance both internal validity (randomization, front door criterion for causal identification, new estimators that address 
interference and practical positivity violations) and external validity (data-driven methods for evaluating heterogeneous 
treatment effects; methods for transporting and generalizing effect estimates to new populations).
Summary Common threats to validity in epidemiologic research play out in distinctive ways in research on the health effects 
of social policies. This is an active area of methodologic development, with ongoing advances to support causal inferences 
and produce policy-relevant findings. Researchers must navigate the tension between research questions of greatest interest 
and research questions that can be answered most accurately and precisely with the data at hand. Additional work is needed 
to facilitate integration of modern epidemiologic methods with econometric tools for policy evaluation and to increase the 
size and measurement quality of datasets.
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Introduction

Policies influencing social determinants of health are prom-
ising tools to improve population health and reduce health 
inequities. Legal rules established at any government juris-
diction (e.g., federal, state, city) can influence the distribu-
tion of social or behavioral determinants of health. Social 
policies include laws affecting education, income, immi-
gration, labor, human rights, and employment, as well as 

those that regulate products such as alcohol, tobacco, and 
firearms [1•, 2•]. Such social policies may have broader 
impacts than policies regulating medical care or health care 
financing [3–5]. Although social policies have the potential 
to enhance health equity, they can also sustain or propagate 
oppression and inequity. Rigorous evaluation of these poli-
cies is thus increasingly recognized as an important domain 
for epidemiologic research.

Research on the health effects of social policies draws on 
both epidemiology and social science. Substantive knowl-
edge about social policies and methodologies for policy 
evaluation are often better represented in economics and 
sociology than epidemiology. Research on drivers of popu-
lation health is the essence of epidemiology. This conver-
gence brings new methodological challenges, and growing 
interdisciplinary methodological work is helping to bridge 
the language, methods, and evidence across these disciplines 
[6–8, 9•, 10–12].
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Like all research aiming to draw causal inferences, studies 
on the health effects of social policies require strong assump-
tions and must address potential violations of conditional 
exchangeability, positivity, and consistency, among others 
(Box 1) [9•, 13]. However, policy studies face unique chal-
lenges to these assumptions. Randomization is frequently 
not feasible or ethical for policy evaluations, and researchers 
often seek to evaluate policies that have already been imple-
mented in a non-randomized fashion. The small number of 
jurisdictions included in most policy studies (e.g., there are 
only 50 US states) often causes positivity violations. Inter-
ference is expected because people are influenced by the 
policies in jurisdictions neighboring their own, and because 
policies change social norms. Therefore, policy research rou-
tinely requires innovating on traditional epidemiologic tools 
to accommodate violations of the conventional assumptions, 
for example by modifying the target parameter and corre-
sponding research question [14]. Yet not all studies on the 
health effects of social policies are designed and executed 
with careful attention to such methodological issues [1•]. 
Without appropriate consideration of the study design, sta-
tistical analysis, and interpretation, policy evaluations can 
be useless, or even harmful.

We begin this review by summarizing common 
approaches to studying the health effects of social policies. 
The subsequent sections elaborate how the assumptions for 
causal inference play out and are challenged for epidemio-
logic research on the health effects of social policies. Inter-
woven are promising methodologic frontiers in social policy 
research and tools for enhancing study validity.

Box 1. Definitions of key causal concepts

1. Potential outcome: The outcome that an individual (or other unit 
of analysis, such as family or neighborhood) would experience if 
his/her treatment (or exposure) takes any particular value. Each 
individual is conceptualized as having a potential outcome for each 
possible treatment value. Potential outcomes are sometimes referred 
to as counterfactual outcomes

2. Exchangeability: The assumption of no confounding, i.e., the 
assumption that which treatment an individual receives is unrelated 
to her potential outcomes if given any particular treatment. This 
assumption is violated for example if people who are likely to have 
good outcomes regardless of treatment are more likely to actu-
ally be treated. In the context of instrumental variables analysis, 
exchangeability is the assumption that the instrument does not have 
shared causes with the outcome

3. Conditional exchangeability: The assumption that exchange-
ability is fulfilled after controlling for a set of measured covariates. 
When this assumption is met, we say that the set of covariates—
known as a sufficient set—fulfills the backdoor criterion with 
respect to the treatment and outcome

4. Positivity: All subgroups of individuals defined by covariate 
stratum (e.g., every combination of possible covariate values) must 
have a nonzero chance of experiencing every possible exposure 
level. Put another way, within every covariate subgroup, all expo-
sure values of interest must be possible

5. Consistency: The assumption that an individual’s potential out-
come setting treatment to a particular value is that person’s actual 
outcome if s/he actually has that particular value of treatment. This 
could be violated if the outcome might depend on how treatment 
was delivered or some other variation in the meaning or content 
of the treatment. Some researchers consider consistency a truism 
rather than an assumption

The informal definitions presented in this box are quoted from Mat-
thay et al. 2019 [9•]

Common Approaches

The analytic approach is driven by both substantive inter-
ests and methodologic constraints. We distinguish between 
research evaluating the health effects of social policies by con-
trolling confounders (Fig. 1a) and research that uses policies as 
instruments to quantify the effect of a social resource regulated 
by the policy (Fig. 1b) [9•]. For example, we might evaluate 
the effect of the earned income tax credit (EITC) policy on 
smoking prevalence [15], or we might instead use state-to-state 
variation in EITC benefit generosity to estimate how the extra 
income delivered by EITC affects health [16]. Both types of 
study are relevant to understanding policy effects. Evaluat-
ing the effects of a policy is useful for example to anticipate 
the effect of adopting a similar policy in the future. Using the 
policy as an instrument to evaluate the effects of the social 
resource regulated by the policy (i.e., defining that resource 
as the endogenous variable in an instrumental variable analy-
sis) can strengthen causal evidence on social determinants of 
health and generate evidence to predict the impact of alter-
native interventions on those social resources. For example, 
EITC is one of the many possible policies to increase income 
for low-income families; one could also increase income by 
altering the minimum wage or enhancing Temporary Assis-
tance to Needy Families benefits. Establishing the health ben-
efits of extra income will help anticipate the consequences of 
these other income-support policies.

Figure 1 summarizes common confounder-control and 
instrument-based methods. All confounder-control methods 
are all premised on the assumption that the factors that deter-
mine policy exposure and also influence heath (or proxies 
for these factors) are fully measured and accounted for in the 
statistical analysis. For example, average education, income, 
or attitudes of community residents all affect health and may 
influence the likelihood a policy is adopted. Researchers often 
attempt to measure and control for each of these variables. 
In contrast, instrument-based methods require the assumption 
that the instrument (e.g., the policy adoption indicator) is unre-
lated to the health outcome that people in the sample would 
have experienced under alternative values of the policy expo-
sure. Although instrument-based methods in health research 
more commonly evaluate the effect of a resource delivered by 
the policy, they may also evaluate a policy as the exposure.
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Instrument-based methods are commonly called quasi-
experiments because the variation in the exposure that is 
induced by the instrument is thought to be like-random or 
arbitrary. Instrument-based methods are commonly per-
ceived as having greater internal validity, because they cir-
cumvent the need to correctly identify, measure, and control 
for a set of covariates sufficient to control all confounding 
[9•]. However, data from quasi-experimental settings can 
be statistically analyzed using either confounder-control or 
instrument-based methods, depending on the substantive 
question. The internal validity of the design derives from 
the quasi-experimental context, not from the analytic choice.

Since the publication of foundational work on the causal 
interpretation of instrument-based methods [19], IV has 
emerged as a hallmark of applied econometrics. In epidemio-
logic research involving social policies, confounder-control 

methods are more common, but uptake of instrument-based 
methods is increasing (Fig. 2) [20]. For both instrument-based 
and confounder-control methods, meeting the required assump-
tions for conditional exchangeability is challenging. Not every 
policy change is a valid instrument for a measured exposure 
variable. Multiple policies may change simultaneously. Places 
that adopt a policy may differ in important and unmeasured 
ways from places that do not adopt the policy. Thus, policy 
studies are most compelling when the source of quasi-experi-
mental variation is plausibly like-random or arbitrary (Table 1).

What effects are measured and among whom? 
Measurement, consistency, and spillover

In research on the health effects of social policies, identi-
fying and measuring relevant policy exposures is a major 

Exposure:

Social policy

(e.g., EITC)

Required assumptions for using the backdoor criterion to

evaluate causality:

Conditional on measured covariates, the distribution of

the health outcome in the group exposed to the social

policy would have been the same as the distribution of the

health outcome in the group unexposed to the social

policy, had the group exposed to the social policy instead

been unexposed, and vice versa

Common methods

Multiple regression models; propensity score matching or

weighting; differences-in-differences; variants of

differences-in-differences including two-way fixed effects

and synthetic controls

Backdoor Criterion

(confounder-control)

Outcome:

Health

(e.g., child

development)

Instrumental Variable

Confounders

Exposure:

Resource

(e.g., income)

Required assumptions for using an instrumental variable to

evaluate causality:

Conditional on the measured covariates:

1. the instrument is associated with the exposure

2. the instrument does not affect the outcome except

through its potential effect on the exposure

3. the instrument and the outcome do not share

unmeasured causes

Common methods

Instrumental variables (IV); fuzzy regression discontinuity;

differences-in-differences, if the instrument is defined as an

indicator for the jurisdictions and times with the policy

Outcome:

Health

(e.g., child

development

Confounders

Instrument:

Social policy

(e.g., EITC)

a) b)

Fig. 1  Directed acyclic graphs and required assumptions for evalu-
ating causation via the backdoor criterion versus an instrumental 
variable approach Legend: Social policy research may evaluate the 
effects of the policy per se. These research questions are typically 
approached by controlling for confounders that influence policy adop-
tion and health or by controlling for fixed effects for places that adopt 
the policy at different times (Fig. 1a). Alternatively, policies may be 
used as instruments to estimate the effect of the resource regulated 
by the policy, such as income, on health (Fig.  1b). Either approach 
requires strong assumptions to support causal inferences. For instru-
mental variable approaches, the three assumptions listed are required 
for evaluating causality, but causal identification also usually relies 
on a fourth assumption of monotonicity—that is, that the instrument 
does not affect the likelihood of exposure in opposite directions for 

different people in the sample. This figure provides intuitive informal 
definitions of the required assumptions for evaluating causality. There 
are many different ways to state the formal required assumptions, 
and we refer the reader to Hernán and Robins [13], Pearl [17], and 
Glymour and Swanson [18] for different variations. In particular, one 
alternative way to state the assumptions is using potential outcomes 
language. For the backdoor criterion, the required assumption to 
evaluate causality can be phrased as: Conditional on measured covari-
ates, the potential health outcome is unrelated to the actual level of 
the social policy exposure. Likewise, the required assumption for 
using an instrumental variable to evaluate causality is: Conditional 
on measured covariates, the instrument is unrelated to the potential 
health outcomes that people in the sample would experience under 
alternative values of the exposure.
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challenge. Policies are made up of diverse provisions and 
come in many forms, including statutes, ordinances, regu-
lations, case law, ballot initiatives, and referenda [61•]. 
Specifying the types of policies assessed in a given study 
is critical to ensure replicability and clarify the scope. 
Complex overlays of city, county, state, federal, and inter-
national jurisdictions mean that establishing the legal 
framework—i.e., what can be regulated and by whom—is 
non-trivial [61•]. Understanding these complexities usually 
requires collaboration with legal experts [61•, 62]. Legal 
text must be translated into numeric codes for quantitative 
research. Determining which aspects of policies matter for 
health, and thus which ones should be measured is a chal-
lenge [61•]. Furthermore, written policies may not corre-
spond to what is actually being implemented or enforced 
[63, 64]. Legal Epidemiology resources are available to 
guide this process and maximize rigor and replicability. 
Efforts are growing to support theory-based policy tax-
onomies [65•, 66], legal databases that are systematically 
coded and regularly updated (e.g., Law Atlas Policy Sur-
veillance Program, Alcohol Policy Information System), 
and quantification of policy enforcement [63, 64]. Quali-
tative work is essential to fully understand how policies 
operate and affect individuals.

Most policy evaluations use binary indicators of policy 
enactment, but more nuanced and multi-valued measures 
may better address threats to positivity and conditional 
exchangeability [67•]. Alternatives to binary measures 
include the proportion of the population eligible for or 
receiving a policy benefit [68]; the generosity of benefits 
[33]; the size of a tax, subsidy, or penalty [33, 69, 70]; the 
magnitude of uptake of a newly permitted activity (e.g., the 
number of new cannabis dispensaries) [71, 72]; or the degree 
of enforcement [73]. If it is not possible to identify the effect 
of a single policy, the joint effects of policies adopted as a 
bundle [74, 75] or the effect of the policy environment as 
measured by overall policy stringency or comprehensiveness 
[34, 35, 76] may be identifiable.

Analyses involving distinct exposure measures estimate 
different parameters and therefore answer different research 
questions. Researchers should consider what information 
will be most useful for developing new policies. Policymak-
ing is notoriously messy and unpredictable, so the precise 
policy implemented in the past may not be politically achiev-
able in the future. Research to understand the effects of spe-
cific policy features, and evaluations that can offer broader 
theoretical insights, are often more informative than research 
to understand a single, narrowly defined policy instantiation.

Fig. 2  Number of publications mentioning quasi-experimental 
methods in the title or abstract in selected Epidemiology journals, 
1990–2021 Legend: Data generated from PubMed search “Results 
by Year” feature using search term: (("instrumental variable"[Title/
Abstract] OR "quasi-experiment"[Title/Abstract] OR "natural 
experiment"[Title/Abstract] OR "difference-in-difference"[Title/
Abstract] OR "differences-in-differences"[Title/Abstract] OR "syn-
thetic control"[Title/Abstract] OR "panel fixed effects"[Title/

Abstract] OR "two-way fixed effects"[Title/Abstract] OR "regres-
sion discontinuity"[Title/Abstract])) AND ("American Jour-
nal of Epidemiology"[Journal] OR "Epidemiology"[Journal] 
OR "International Journal of Epidemiology"[Journal] OR "Jour-
nal of Epidemiology and Community Health"[Journal] OR 
"Annals of Epidemiology"[Journal] OR "European Journal of 
Epidemiology"[Journal])
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Conflicting evidence on the effects of a policy may result 
from differing exposure measures. These can be conceptu-
alized as due to violations of the consistency assumption 
[77]. Varying approaches to implementing similar policies 
in different places can result in different policy impacts. For 
example, studies of cannabis legalization often use a binary 
indicator of legalization, but health impact depends on 
whether the legalization policy enables retail sales [78–80]. 
For IV studies of the effects of a resource delivered by a 
policy, it is important to consider whether the consistency 
assumption holds with respect to the resource variable—
for example, would the health benefit of extra income from 
EITC be similar to the health benefit from extra income due 
to minimum wage increases.

To avoid consistency violations, all of the relevant provi-
sions and components of implementation must be correctly 
identified and measured—a particularly challenging task 
when it is not yet known what matters. Consistency is also 
problematic for policy measures that are composites, sums, 
or scores. Policy analyses often treat a one-unit increase in 
the score as having the same effect regardless which policy 
was added or the baseline level of the score [34, 81], yet not 
all policies are equally effective for all outcomes. When con-
sistency violations occur, the evidence delivered by a policy 

study will not clearly indicate what needs to be done (or not 
done) to replicate the study’s findings, and policy decisions 
motivated by this evidence may not yield the desired results.

Social policies often have different effects for different 
population subgroups—i.e., heterogeneous treatment effects 
(HTEs) [82•]. For example, tobacco clean air policies espe-
cially benefit people with low levels of education [83] while 
paid family leave policies may improve breastfeeding out-
comes primarily for high-income mothers [31]. HTEs are 
important to quantify for several reasons. Policies that dis-
proportionately benefit the vulnerable can reduce health ineq-
uities, whereas the reverse can exacerbate inequities. Quanti-
fying HTEs also supports research to anticipate whether the 
effect of an intervention will differ if implemented in a new 
population with a different composition. For example, recent 
extensions of methods for generalizing or transporting effect 
estimates can account for differences in the socioeconomic 
status, demographics, clinical profiles, or other characteris-
tics in new settings [84•, 85–88]. On its own, understand-
ing policy effects for specific subgroups (e.g., those receiv-
ing the intervention) may be a goal of the research [89, 90]. 
Alternatively, HTE research can indicate who is most likely 
to have the largest benefit from a given resource, a priority for 
decision-makers with limited resources.

Table 1  Potential sources of quasi-experimental variation for studies of social policies

Source of arbitrary or like-random variation Examples

Lotteries Wartime draft lottery [21], housing vouchers [22], school vouchers [23], 
randomized refugee dispersal [24]

Discontinuities based on dates of policy adoption or implementation Minimum unit pricing on alcohol purchases [25], lowering the blood 
alcohol content limit for drivers [26], sugar-sweetened beverage taxes 
[27]

Region and time variation in policy adoption or implementation Electoral cycles [28], immigration laws [29], motor vehicle safety laws 
[30], paid family leave laws [31]

Timing of delivery of benefits of a policy Tax credits and short-term health outcomes in months on tax disburse-
ments (February, March, April) [15], monthly Supplemental Nutrition 
Assistance Program disbursements and health outcomes in first half 
versus second half of the month [32]

Policy intensity, restrictiveness, or generosity Earned income tax credit benefit generosity [16], unemployment benefit 
generosity [33], firearm law restrictiveness [34], alcohol law restric-
tiveness [35], minimum wage level [36], beer excise tax [37]

Physical proximity to a jurisdiction with a policy or a resource deliv-
ered by a policy

Proximity to educational institutions [38], proximity to borders of states 
with cannabis legalization [39, 40], proximity to cardiac care centers 
[41]

Cutoffs or discontinuities in eligibility for resources delivered by a 
policy based on age, income level, or similar factors

Handgun purchase age minimums [42], education policy changes 
(affected versus unaffected cohorts) [43, 44], Supplemental Nutri-
tion Assistance Program (participants versus non-participants) [32, 
45], cash transfers (recipient versus non-recipient) [46, 47], Deferred 
Action for Childhood Arrivals (eligible versus ineligible) [48]

Biological chance Month or quarter of birth [49, 50], family size or sibling composition 
[51, 52], genetic variants (Mendelian Randomization) [53, 54]

People who move residence across jurisdictions Longitudinal studies of the impact of the built environment among mov-
ers and non-movers [55, 56]

Assignment to service providers or officials Clinicians who have different preferences for treatment modalities [57, 
58], judges who have different propensities for leniency [59, 60]
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We distinguish methods for evaluating HTEs based on 
a priori specified characteristics from data-driven methods 
which more agnostically search for groups with heteroge-
neous responses to the policy [82•]. Heterogeneity across 
pre-specified characteristics (e.g., race/ethnicity, age) is 
usually quantified via stratification or interaction terms in 
statistical models, and the chosen dimensions can be guided 
by theory or evidence [82•]. Data-driven methods can be 
used to evaluate whether there is any heterogeneity across 
any characteristics (e.g., across all possible combinations 
of covariates), to partition the participants into subgroups 
that have different policy responses, to identify the most-
affected subgroup, or to identify optimal policy combina-
tions [67•, 91–95]. Data-driven HTE methods are one of the 
many emerging applications of machine learning in policy 
research, but they remain rare in applied health-related pol-
icy studies [67•, 82•].

Existing guidance on how HTEs should be evaluated, 
reported, and interpreted has been limited to randomized 
trials and clinical applications [96–100]. Policy studies 
involving HTEs require additional guidelines. Testing for 
policy effects in multiple population subgroups increases the 
risk of spurious findings, especially when considering sub-
groups defined by multiple covariates simultaneously. How 
this risk should be weighed against the knowledge gained 
and which methods are most appropriate for limiting spuri-
ous findings in policy contexts are not established. Precision 
concerns are exacerbated when examining HTEs. Given the 
limited resources, HTE evaluation should be prioritized for 
policies, settings, and population subgroups for which HTEs 
are likely to be substantial enough to alter recommendations 
for policy or practice. Yet few detailed empirical studies or 
theoretical frameworks are available to guide prioritization. 
Tools to robustly evaluate HTEs in small sample sizes are 
also needed.

In policy studies, unexpected, inconsistent, and null 
results are common. The Moving to Opportunity hous-
ing experiment benefitted girls and harmed boys, at least 
for some outcomes [22]. “Ban the box” policies, designed 
to reduce racial disparities in employment by preventing 
employers from conducting criminal background checks at 
certain stages of hiring, paradoxically exacerbated inequali-
ties for low-skilled workers [101]. Identifying the causes 
of discrepant results can be challenging because the data 
sources, measures, statistical methods, and settings of pol-
icy studies are so diverse [1•]. Implementation science and 
qualitative research can enhance social policy research by 
unveiling what went wrong or what needs to be done differ-
ently (e.g., solutions to differential uptake). Policy research 
is often disconnected from community engagement efforts, 
but such research will be stronger and more pertinent if 
researchers build in strategies to involve and solicit feedback 

from communities affected by the policies and health out-
comes under study.

Spillover or interference violates the independence 
assumption of standard statistical approaches in social policy 
research and can lead to anticonservative standard errors and 
spurious associations. Policies may change health not only 
for the people to whom the policies directly apply but also 
for family members, neighbors, or other social contacts—for 
example, because the health outcome is contagious, respon-
sive to social norms (e.g., smoking), or social in nature (e.g., 
violent injury). Neighboring jurisdictions with differing laws 
may motivate individuals to cross borders to avoid or pur-
sue specific policies. For example, cross-border influences 
have been investigated for policies regulating firearms [102, 
103], tobacco [104], and sugar-sweetened beverages [105]. 
Policies operating at lower levels of aggregation (e.g. cit-
ies versus countries) may be more susceptible to spillover, 
because individuals with differing policy exposures are more 
likely interact or cross borders. Spillover and interference 
can magnify the effects of social policies (e.g., via conta-
gion) or attenuate effects (e.g., crossing borders to avoid the 
policy). Either phenomenon threatens accurate estimation 
of causal effects.

Potential solutions include spatiotemporal modeling, 
complex systems modeling, social network analyses, and 
estimating novel parameters. Researchers have used Bayes-
ian spatiotemporal analyses with conditional autoregressive 
random effects to account for spatial autocorrelation in stud-
ies of local alcohol and cannabis policies [106, 107] and 
agent-based models have been used to evaluate the impact of 
past and potential alcohol and opioid policies (see Appendix 
for more on complex systems modeling) [108, 109]. Esti-
mating parameters that explicitly incorporate dependencies 
between jurisdictions or groups in their definition [110] or 
that allow for policy exposures to be assigned stochastically 
rather than deterministically [111] can also help address 
challenges to spillover and interference. Additionally, novel 
econometric work is advancing methods for assessing causal 
effects in social networks (e.g., coworkers, classrooms, or 
neighbors) [112, 113].

Generalizing study results to new populations is almost 
always a goal of epidemiologic research. Advances in theory 
and statistics increasingly support methods to generalize or 
transport effect estimates [84•, 85–88]. Given that social 
policy effects likely differ across population subgroups, a 
given policy may have very different impacts in one popula-
tion versus another. Methods for transport and generaliza-
tion allow researchers to predict the impact of a policy in 
a population that is different in composition from the one 
initially studied. Despite the relevance of these methods to 
policy studies, transportability estimators have almost exclu-
sively been applied to research based in randomized trials. 
All studies involve tradeoffs between internal and external 
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validity, and no single study can achieve the optimal degree 
of internal and external validity [9•, 114•]. Even with imper-
fect internal validity, observational and quasi-experimental 
studies aiming to generalize estimates of policy effects to 
new populations can be valuable.

Statistical considerations and data needs

Policies often have small effects on individuals [115•]. 
Although small effects can matter immensely when applied 
to an entire population [116], many social policy studies 
lack sufficient sample sizes to precisely estimate these effects 
[117•]. Underpowered studies risk concluding that a health-
promoting or harmful policy has no effect. For this reason, 
large-scale administrative health data such as vital statistics 
or Medicare billing records are commonly used for policy 
studies. Electronic health records (EHR) and other clinical 
information systems are increasingly viable possibilities for 
policy analysis. The Affordable Care Act accelerated uptake 
of EHRs and incentivized adoption of a common data frame-
work, although the lack of population representativeness in 
such datasets has not been fully addressed.

Administrative data tend to have less detailed, lower qual-
ity measurements, and rarely contain information on both 
social policy exposures and health outcomes. Therefore, 
health-related social policy evaluations often require link-
ages across multiple data sources or sacrificing measurement 
quality. Residential address can be used to link individual-
level health outcomes to relevant policy jurisdictions. Resi-
dential history information even permits linkage across life 
course periods. Few datasets offer comprehensive residential 
histories, but incorporating or linking residential histories 
into existing datasets would enhance policy research.

Given the limitations of administrative data, potential 
strategies to improve precision and measurement qual-
ity include taking detailed measurements on random sub-
samples of large datasets [118]; incorporating measures of 
social program participation into existing large-scale health 
data collection [119]; incorporating improved health meas-
ures into large-scale generalized datasets (e.g., American 
Community Survey); and supporting big data initiatives 
that harmonize multiple individual-level, geographically 
detailed administrative datasets [120]. Additionally, Bayes-
ian statistical methods are rare in policy studies [1•], but 
these methods can enhance precision by drawing on prior 
knowledge about policy effects and bounding the range of 
plausible effect estimates.

If the sample size is not fixed, power calculations can 
help ensure that a study is designed to achieve sufficient 
precision. In practice, power calculations are uncommon 
for policy studies with existing data, and in retrospect may 
have very low power [117•, 121, 122]. Over-reliance on 
null-hypothesis significance testing is a pernicious problem 

in policy analyses. Interpreting the confidence interval for 
the estimated effect is essential to avoid concluding that an 
underpowered study demonstrates that the policy has no 
important effects. If the confidence interval for the policy 
effect crosses the null but includes values that would be of 
substantial benefit or harm when applied at a population 
level, the study is underpowered.

Internal validity, conditional exchangeability, 
and positivity

Confounding bias arises from systematic differences 
between jurisdictions with different levels of policy expo-
sure (e.g., states that did and did not adopt a given policy). 
The social, political, and economic forces that shape poli-
cies also affect many health outcomes. Confounding can be 
severe and intractable—for example, when the confounders 
and the policy are too closely aligned to be disentangled. 
Strong confounders of policies include other policies and 
jurisdiction-level political orientations, especially for polar-
izing issues such as firearms, abortion, or immigration [2•]. 
For example, the restrictiveness of state firearm policies is 
strongly determined by state political orientations, and states 
with stricter policies tend to have many policy restrictions, 
making it difficult or impossible to disentangle the effect on 
any one policy from the others [2•, 123]. Quantitative bias 
analysis, negative control exposures and outcomes, and other 
robustness checks are valuable yet underutilized tools for 
assessing the likely direction and magnitude of confounding 
bias in social policies studies (see Appendix for detail). For 
these tools, a high priority is to standardize their inclusion 
in policy studies. Potential checks should be articulated even 
when they cannot be fielded in a particular dataset.

Most policy studies involve longitudinal data structures 
and the possibility of time-varying confounding. Time-var-
ying confounding can occur when prior levels of a policy 
exposure affect downstream confounders which in turn affect 
subsequent policies and health outcomes. For example, US 
state prescription drug monitoring programs (PDMP) 
adopted in response to the overdose crisis may have affected 
illicit opioid market dynamics by decreasing access to pre-
scription opioids and increasing demand for illicit opioids 
[124, 125]. This pattern may prompt further changes to state 
opioid policies to reduce use of illicit opioids in an attempt 
to reduce overdose deaths. For studies evaluating the effects 
of opioid policies over time, illicit opioid market dynamics 
partially mediate the PDMP-overdose relationship, but con-
found the relationship between late-stage opioid policies and 
overdose. Bias therefore results from both typical regression 
adjustment for illicit opioid market dynamics or failure to 
adjust for illicit opioid market dynamics. Other examples of 
potential time-varying confounders include participation in 
social programs (e.g., SNAP, WIC, EITC, etc.), receipt of 
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physical or mental health services, smoking status, alcohol 
use, exposure to air pollution, access to green space, resi-
dence in public housing, and diet quality.

Multiple methods have been developed to address time-
varying confounding including inverse probability weighted 
estimation of marginal structural models, g-estimation of 
structural nested models, the longitudinal g-formula, and 
longitudinal targeted minimum loss-based estimation 
[126–128]. However, these methods are rarely used in 
applied studies, including to evaluate social policies [129]. 
Barriers to uptake of these methods include uncertainty 
about how to integrate them with IV or DID analyses of 
quasi-experiments and data requirements (large sample 
sizes, repeated observations on units over time).

Multiple related policies are often adopted or implemented 
in the same jurisdiction simultaneously or in quick succession, 
a problem known as co-occurring policies [1•, 2•]. Many 
study designs exploit variation in the timing and locations 
of policy changes across jurisdictions to isolate the causal 
effects of a policy. Co-occurring policies that all affect the 
outcome of interest pose a conundrum for such designs: left 
uncontrolled, co-occurring policies confound one another, but 
controlling for co-occurring policies can reduce effective sam-
ple size and lead to positivity violations. Positivity violations 
can lead to bias, imprecision, and undefined estimates [1•, 
2•]. This challenge is pervasive across numerous social policy 
domains and often results in very imprecise effect estimates 
[2•]. Potential solutions to co-occurring policy problems 
include explicitly assessing threats to positivity, restricting to 
population subgroups among whom the policies can be dis-
entangled, using more nuanced measures of policy exposure, 
defining clusters of policies as the exposure(s) of interest, or 
using stringency or generosity scores to characterize the over-
all policy environment [1•, 14].

Randomization of policies is often considered unethical or 
impractical due to limited resources or political urgency, but 
experiments of public social interventions are often feasible. 
A recent systematic review identified 38 US social policies 
that were evaluated with randomized designs and examined 
health outcomes [117•]. Public and political support for 
social experiments may have waned in recent decades [130]. 
Epidemiologists have a role to play in advocating for the 
practicality, ethics, and benefits of randomization for science 
and public health. While legitimate ethical concerns exist, 
adoption and maintenance of potentially harmful policies and 
failure to randomize given the opportunity are also unethical.

New social policies can rarely be implemented instan-
taneously among all potential beneficiaries, and the need 
for gradual scale-up creates ethical opportunities to rand-
omize at either the place-level (e.g., randomized stepped 
wedge designs [131]) or the individual-level (e.g., waitlist 
controls [132], lotteries [22]). The evaluation of California’s 
Armed and Prohibited Persons System constitutes one of the 

largest-known cluster-randomized trials of a public policy 
[133•]. This initiative aimed to recover firearms from peo-
ple who purchased them legally but later became prohibited 
from owning them. Collaboration between academic inves-
tigators and the California Department of Justice facilitated 
a randomized rollout of the program to the 1000 + communi-
ties who received intervention earlier or later.

Virtually all current efforts at inferring the causal effects 
of social policies on health can be characterized as either con-
founder-control or instrument-based methods [9•]. However, 
Pearl’s transdisciplinary causal inference framework recog-
nizes a third approach to causal identification: the front door 
criterion. This rarely used approach is premised on enumerat-
ing and measuring all the causal pathways by which an expo-
sure affects an outcome (Fig. 3). If there are no unmeasured 
confounders of the exposure-mediator or mediator-outcome 
relationships, then an unbiased estimate of the causal effect of 
the exposure on the outcome can be quantified. Importantly, 
applications of the front-door criterion do not require the inves-
tigator to identify, measure, and appropriately adjust for con-
founders of the exposure-outcome relationship (i.e., backdoor 
adjustment). Thus, in social policy contexts where accurate and 
comprehensive confounder-control is challenging, and valid 
instruments are unavailable, but the mechanisms by which a 
policy affects health can reasonably be hypothesized and meas-
ured, the front door criterion shows great promise.

Glynn and Kashin demonstrated a compelling applica-
tion of the front door criterion to estimate the effect of the 
often-studied Job Training Partnership Act (JTPA) program 
[134, 135] on subsequent earnings by leveraging program 
adherence as the mediator [136•]. Using data on participants 
and observational population-based controls, the authors 
evaluated varying specifications of front door and backdoor 
adjustment in comparison with results from the original 
JTPA randomized trial. While estimates from backdoor 
adjustment were sensitive to the choice of adjustment vari-
ables and often failed to replicate the trial results, the front 
door estimates consistently replicated trial results irrespec-
tive of the choice of adjustment variables. This study adds 
to a small but growing literature suggesting that front door 
approaches may be more robust to violations of the condi-
tional exchangeability assumption than backdoor approaches 
[136•, 137, 138]. Similar applications can be conceptual-
ized for social policies when the exposure is eligibility for 
resources and the mediator is program uptake or adherence.

Estimation methods that move beyond traditional regres-
sion coefficients also show promise in addressing threats to 
validity. For policy domains with political polarization, 
in which certain jurisdictions are unlikely to ever adopt a 
policy, defining the causal effect of interest not as an all-or-
nothing contrast (e.g., all states adopt the policy versus no 
states adopt the policy) but rather as a temporal shift (e.g., 
what if all states adopting the policy delayed adoption by 
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2 years) can result in a definition of positivity that is more 
achievable [139, 140•]. Recent advances in econometrics 
showed that the standard two-way fixed effects design—
involving panel data on multiple jurisdictions over time and 
indicator variables for each jurisdiction, each time step, and 
exposure to the policy—can be substantially biased when: 
(1) the timing of policy implementation is staggered across 
jurisdictions; and (2) the effect of the policy within a juris-
diction changes over time [141•]. Both of these criteria are 
common for social policies and health. Multiple new estima-
tors were developed to address this bias, but they have not 
yet been widely adopted in applied research [141•].

Conclusions

Rigorous research on the health effects of social policies 
can be highly relevant to public decision-making. Thus, 
epidemiologic research in this field is likely to grow. In 

the existing literature, study designs, data sources, policy 
domains, health outcomes, and populations of interest vary 
widely. Study quality also varies, and the strongest studies 
are those involving careful selection of the research ques-
tion and precise attention to which populations represent the 
counterfactual outcomes, i.e., which populations are being 
used to approximate the outcomes the population exposed 
to the policy would have experienced if the policy had not 
been implemented. The estimand most plausibly identifiable 
with the data at hand is often not the estimand of greatest 
substantive interest. Navigating this tension—between the 
question of greatest interest and the question that can actu-
ally be answered—is a central focus of designing rigorous 
policy studies.

Numerous methodological tools are underutilized and are 
poised to enhance the rigor of research on the health effects 
of social policies as these methods become more accessible. 
Methodological development to integrate epidemiologic and 
econometric methods, and to increase the size and meas-
urement quality of datasets will also improve study quality. 
Growing focus on evaluating heterogeneity in policy effects 
and anticipating the health effects of policies in new popula-
tions will expand the relevance of policy research and help 
to meet the growing demand for evidence to guide social 
policy decisions.

Appendix

Common confounder-control and instrument-based meth-
ods: Common confounder-control methods for policy 
research include multiple regression models [46, 76, 142, 
143], matching or propensity score weighting [144, 145], 
many implementations of differences-in-differences (DID), 
and DID variants including two-way fixed effects and syn-
thetic controls [26, 27, 29, 36, 146•, 147]. These methods 
are all premised on the assumption that the factors that 
determine policy exposure and also influence heath (or 
proxies for these factors) are fully measured and accounted 
for in the statistical analysis. For example, average educa-
tion, income, or attitudes of community residents all affect 
health and may influence the likelihood a policy is adopted. 
Researchers often attempt to measure and control for each 
of these variables.

Instrument-based methods for policy research use instru-
mental variables (IV) analysis [45, 148, 149]. IV can also be 
implemented as fuzzy regression discontinuity [150–152], or 
DID, the latter if the instrument is defined as an indicator for 
the jurisdictions and times with the policy [153]. Instrument-
based methods require the assumption that the instrument 
(e.g., the discontinuity indicator or the policy adoption indi-
cator) is unrelated to the health outcomes that people in the 
sample would have experienced under alternative values of 

Exposure:

Social policy

(e.g., EITC

eligibility)

Required assumptions for using the front door criterion to

evaluate causality:

1. No unmeasured confounders of the exposure-mediator

relationship

2. No unmeasured confounders of the mediator-outcome

relationship

3. The measured mediator(s) fully mediates the effect of the

exposure on the outcome (i.e., there is no direct effect of

the exposure on the outcome and no unmeasured

mediators of the effect of the exposure on the outcome)

Front Door Criterion

Outcome:

Health

(e.g., child

development)

Exposure-

mediator

confounders

Mediator

(e.g., EITC

participation)

Mediator-

outcome

confounders

Fig. 3  Directed acyclic graph and required assumptions for evaluat-
ing causality via the front door criterion Legend: In the absence of 
a randomized trial, causality is typically evaluated via one of two 
approaches: fulfilling the backdoor criterion (i.e., controlling for con-
founders) or using an instrumental variable. A rarely used alternative 
is to evaluate causality by fulfilling the front door criterion. Using 
the front door criterion is appealing because it can be fulfilled even 
when there are unmeasured confounders of the exposure-outcome 
relationship. This figure provides intuitive informal definitions of 
the required assumptions for evaluating causality via the front door 
criterion. There are many different ways to state the formal required 
assumptions, and we refer the reader to Hernán and Robins [13] and 
Pearl [17] for different variations.
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the policy exposure. Although instrument-based methods in 
health research are commonly used to evaluate the effect of 
a social resource delivered by the policy, they may also be 
used to evaluate a policy as the exposure.

Power calculations: If the sample size is not already 
fixed, power calculations can help ensure a study is designed 
to achieve sufficient precision. However, as inputs to such 
calculations, evidence to guide the selection of anticipated 
effect sizes for social policies and health is sparse. Several 
considerations suggest large effect sizes are unlikely [115•]. 
First, most social policies act on health through intermediate 
levers such as housing or economic security. Second, a large 
fraction of the population may be ineligible or otherwise 
unaffected by the social policy; population-level impacts will 
be muted proportional to the fraction of the population for 
whom the policy is irrelevant. Some research suggests that 
power calculations are rarely done for policy studies with 
existing data and fixed sample sizes, and in retrospect may 
have very low power [117•, 121, 122].

Quantitative bias analysis, negative control exposures 
and outcomes, and other robustness checks are valuable 
yet underutilized tools for assessing the likely direction and 
magnitude of biases in social policies studies. Quantitative 
bias analyses (QBA) are a class of methods used to esti-
mate the direction, magnitude, and uncertainty of systematic 
biases in estimated measures of association. For example, 
researchers have quantified the E-value, which indicates the 
minimum strength of associations that an unmeasured con-
founder would have to have with both the policy and the 
outcome to fully explain away the estimated policy-outcome 
association [103, 154]. In policy studies, QBA may be useful 
for example in estimating the potential magnitude of bias 
arising from a particular strong confounder or mis-measure-
ment of relevant policy features. Guidance for conducting 
QBA is growing [155, 156, 157•], but debate remains over 
which approaches are most informative [158, 159].

Negative controls are useful for detecting biases includ-
ing unmeasured confounding, recall bias, and analytic 
flaws [160]. For example, suicides completed with means 
other than firearms have been used as a negative control 
when evaluating the impacts of firearm policies on firearm 
suicides [161]. If firearm and nonfirearm suicides have 
similar determinants, but nonfirearm suicides are unaf-
fected by firearm policies, then testing the association of 
firearm policies with nonfirearm suicides can be used to 
detect residual confounding due to these factors. Nega-
tive control variables can take many forms, and their util-
ity depends on identifying a compelling negative control 
exposure or outcome. Other forms of robustness checks 
common in the econometric literature have been reviewed 
elsewhere [67•]. For research on the health effects of 
social policies, a high priority is to standardize the inclu-
sion of QBA, negative controls, and other robustness 

checks. Potential checks should be articulated even when 
they cannot be fielded in a particular dataset.

Complex systems modeling, a suite of mathematical 
tools including compartmental, systems dynamic, and 
agent-based modeling, can help address the multi-level, 
dynamic, interrelated nature of real-world phenomena that 
make studies of social policies challenging [109, 162•]. 
These approaches can explicitly model feedback loops and 
reverse causation in which a policy is adopted in response 
to a problem, which can otherwise give the impression 
that a policy magnified the problem it was designed to 
address [124]. Systems modeling approaches can be used 
to answer causal questions about the impacts of social 
policies, but a main contribution of systems modeling 
for policy studies is predicting the potential impacts of 
hypothetical future policies in places where the policies 
have not yet been implemented [162•]. Lack of widespread 
standardized training in complex systems modeling is a 
primary barrier to greater uptake of these methods [163].

Another recent and exciting methodological advance for 
policy research is the development of automated search 
algorithms to support causal identification. For example, 
given a dataset, machine learning can be used to discover 
instrumental variables or natural experiments that can be 
leveraged for causal identification [164]. Causal search 
algorithms can also be used to determine which directed 
acyclic graphs are consistent with an observed dataset and 
thus which causal mechanisms are most plausible [165]. 
These emerging algorithms are promising both because 
of their potential to strengthen causal inferences about the 
health effects of social policies and to better understand 
the complex mechanisms via which social policies act to 
affect health. Pairing these algorithms with deep substan-
tive knowledge is critical to ensure their appropriate use.
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