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Abstract One hundred years ago, Sir Ronald Ross published
his treatise on a general theory of happenings. Dependent
happenings are those in which the frequency depends on the
number already affected. When there is dependency of events,
interventions can have different types of effects. Interventions
such as vaccination can have direct protective effects for the
person receiving the treatment, as well as indirect/spillover
effects for others in the population. Causal inference is a
framework for carefully defining the causal effect of a treat-
ment, exposure, or policy, and then determining conditions
under which such effects can be estimated from the observed
data. We consider here scenarios in which the potential out-
comes of an individual can depend on the treatment of other
individuals in the population, known as causal inference with
interference. Much of the research so far has assumed the
population is divided into groups or clusters, and individuals
can interfere with others within their clusters but not across
clusters. Recent developments have assumed more general
forms of interference. We review some of the different types
of effects that have been defined for dependent happenings,
particularly using the methods of causal inference with inter-
ference. Many of the methods are applicable across

disciplines, such as infectious diseases, social sciences, and
economics.
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happenings . Experimental design . Herd immunity . Indirect
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Introduction

One hundred years ago, Sir Ronald Ross [1] published his
treatise on a general theory of happenings. The happening
element corresponds in modern parlance to an occurrence or
event. Ross differentiated independent from dependent hap-
penings. Independent happenings were “those in which the
frequency of the happening is independent of the number of
individuals already affected” ([1], p. 211). Dependent happen-
ings were those in which the frequency depends on the num-
ber already affected. To the first class belong such happenings
as noninfectious diseases and accidents. To the second class
belong “infectious diseases, membership of societies and sects
with propagandas, trade-unions, political parties, etc., due to
propagation fromwithin, that is, individual to individual” ([1],
p. 211). Ross had been awarded the second Nobel prize in
Medicine in 1902 for elucidating the role of mosquito vectors
in the transmission cycle of malaria. He was also an amateur
mathematician and developed the original malaria models to
quantify the effects of interventions [2, 3]. Ross had published
an addendum in the second edition of his book on the preven-
tion of malaria on a preliminary general theory of happenings
in 1911.

A principled approach to evaluating the effects of interven-
tions that has fostered clarity in thinking about both experi-
mental and observational studies is causal inference [4–7].
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Causal inference is a framework for carefully defining the
causal effects of a treatment, exposure, or policy, then deter-
mining conditions under which such effects can be estimated
from the observed data. In causal inference, each individual is
assumed to have a potential outcome that would occur under
each of the different possible treatments. The outcome is po-
tential in that it only occurs if, in fact, a particular treatment is
given. Usually the treatment assignment of one person is as-
sumed to not affect the potential outcomes of another person,
called the assumption of no interference by Cox [8]. The as-
sumption of no interference is a component of the Stable Unit
Treatment Value Assumption (SUTVA) [9]. The assumption
of no interference is also called the individualistic treatment
response [10]. Under dependent happenings, interference will
likely be present. In the presence of interference, treatments
can have direct effects on the person receiving the treatment as
well as indirect effects on people not receiving treatment. An
individual may have many different potential outcomes de-
pending on the treatment status of the others.

Several branches of research have their roots in the work by
Ross. One is the broad field of infectious disease transmission
models, including modeling the effects of interventions in
populations, which Ross called a priori pathometry. Another
is the large and growing literature on estimating parameters
for these transmission models. Another area is methods to
evaluate interventions in populations based on data from field
studies. In this review, our focus is on the latter, specifically,
on drawing inference about effects of interventions in the
presence of interference, that is, for dependent happenings.

Here, we consider examples largely in the epidemiological
context, in particular infectious diseases and the effects of
vaccines. However, much of the research on causal inference
with interference is motivated by applications in the social
sciences and economics, which also come under the general
heading of dependent happenings in the sense of Ross. Many
of the methods are applicable across disciplines.

Partial Interference

Motivated by an interest in dependent happenings, Halloran
and Struchiner [11, 12] defined direct, indirect, total, and over-
all effects in the presence of interference (Fig. 1). Consider a
cluster (or group) of individuals under two scenarios. Under
scenario A on the left, a certain portion of individuals in the
cluster is vaccinated and the rest remains unvaccinated. Under
scenario B on the right, no one in the cluster is vaccinated. The
direct effect of vaccination under scenario A is defined by
comparing the average outcome when an individual is vacci-
nated with the average outcome when an individual is not
vaccinated. The indirect effect is defined as a contrast between
the average outcome when an individual is not vaccinated
under scenario A compared with scenario B. The total effect

is defined by comparing the average outcome when an indi-
vidual is vaccinated under scenario A to the average outcome
when an individual is not vaccinated in scenario B. In general,
the total effect can be decomposed into a function of the direct
and indirect effects [13, 14]. The overall effect is defined by
the contrast in the average outcome in the entire cluster under
scenario A compared to the average outcome of the entire
cluster under scenario B.

With vaccination, indirect effects are produced by an in-
crease in herd immunity, the collective immunological status
of the population. In other fields, indirect effects are some-
times called spillover effects or peer influence effects [15]. In
mediation analysis, the terms direct, indirect, and overall ef-
fects have different meanings than used here [16].

The potential outcome approach to causal inference typi-
cally assumes no interference between individuals. Assuming
no interference, if there is one treatment and a control, then an
individual has two potential outcomes. The individual causal
effect, which in general cannot be observed, is the difference
between the two potential outcomes under treatment and con-
trol. The average causal effect is the average of the difference
between the potential outcomes if everyone received treatment
and if everyone received control. Drawing inference about
treatment effects generally requires knowledge or modeling
of the mechanism by which individuals select or are assigned
treatment. Under an independent assignment mechanism,
such as randomization, one can construct an unbiased estima-
tor of the average causal effect from the observed average
outcomes in the treatment and control groups [5].

The situation is more complicated under dependent hap-
penings in the presence of interference. Halloran and
Struchiner [12] proposed individual-level causal estimands
in the presence of interference by letting the potential out-
comes for any individual depend on the vector of treatment
assignments to other individuals in the group [9, 17].
However, with a binary outcome and one treatment and one
control, if there are N people in a population, there are 2N

possible treatment vectors and 2N possible potential outcomes.
Causal inference in the presence of so many potential out-
comes would seem difficult, if not impossible, without mak-
ing additional assumptions.

One possible additional assumption which simplifies the
problem considerably is to assume individuals can be
partitioned into groups (or clusters) wherein there is no inter-
ference between individuals in different groups. Sobel [18]
referred to this assumption as partial interference. As a moti-
vating example, he considered interference in a housing mo-
bility experiment in poor neighborhoods in five cities. Eligible
residents were randomly assigned to receive one of two forms
of relocation assistance or no assistance (control). It was plau-
sible that many of the participants knew each other and might
influence each other’s behavior. Sobel assumed interference
could occur within but not across sites, i.e., there was partial
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interference. In the next sections, we consider approaches that
assume partial interference.

Two-Stage Randomization

Suppose there are two different vaccination strategies (or pol-
icies or programs) under consideration. The first strategy
might be to vaccinate 60 % of the individuals in a population;
the other strategy might be to vaccinate no one. A question of
interest then is what are the direct, indirect, total, and overall
effects of the 60 % vaccination strategy compared to the no
vaccination strategy? Assuming partial interference, Hudgens
and Halloran [13] defined group- and population-level causal
estimands for direct, indirect, total, and overall causal effects
of treatment under two different treatment allocations. To ob-
tain unbiased estimators of the population-level causal
estimands, Hudgens and Halloran [13] proposed a two-stage
randomization scheme: the first stage at the group level and
the second stage at the individual level within groups. For
example, suppose there are 20 groups of individuals. At the
first stage, we could randomize 10 groups to the 60 % vacci-
nation strategy and the remaining groups to the no vaccination
strategy. In the second stage within 10 groups, we would ran-
domly assign 60 % of individuals to receive vaccine, and in
the other 10 groups, no one would receive vaccine. Unbiased
estimator’s of the direct, indirect, and total effects can be ob-
tained by contrasts in average outcomes among vaccinated
and unvaccinated individuals under the different vaccination
strategies. Likewise, contrasts in average outcomes of all in-
dividuals under the two vaccination strategies yield unbiased
estimator’s of the overall effect.

To draw inference about the four effects, variance esti-
mators and confidence intervals are needed. Hudgens and
Halloran [13] developed variance estimators under an ad-
ditional assumption they call stratified interference, which

assumes the indirect treatment effects may depend only on
the proportion of other individuals in the group which
receive treatment. Tchetgen Tchetgen and Vander Weele
[19•], Liu and Hudgens [20], and Rigdon and Hudgens
[21] develop exact and asymptotic confidence intervals.

Baird et al. [22•] considered a similar two-stage ran-
domized design in the context of economic experiments to
measure indirect/spillover effects. They refer to the level
of (treatment) coverage in a cluster as the saturation level
and their study design as the randomized saturation
design. Their causal estimands, the intention to treat ef-
fect, spillover on the non-treated effect, and total causal
effect, are analogous to the total, indirect, and overall
effects, respectively, defined above. Baird et al. also con-
sider optimal design of two-stage randomized trials to
detect the different effects. Based on these considerations,
they designed an experiment in Malawi to assess whether
cash transfers help adolescent girls improve schooling
outcomes and also delay marriage and pregnancy. Their
study design accounted for possible spillover effects to
non-beneficiaries as well as the participating adolescent
girls in the same communities.

Partially Randomized and Observational Studies

Often studies are not randomized at two stages, but only
at the individual level, the cluster level, or neither. For
example, Sur et al. [23] describe a cluster-randomized
study in India where 80 geographic clusters were random-
ized to receive either typhoid vaccine or control (hepatitis
A) vaccine. A subset of individuals in these clusters chose
to receive the study vaccine (typhoid or control).
Similarly, Moulton et al. [24] designed a cluster-
randomized study to estimate total, indirect, and overall
effectiveness of pneumococcal vaccine in infants. The

Fig. 1 Study designs for
dependent happenings. A cluster
is considered under two different
scenarios. In the scenario A on the
left, a certain portion of
individuals in the cluster receive
treatment, Z = 1, and the other
portion of individuals receive
control or nothing, Z = 0. In the
scenario B on the right, everyone
receives control or nothing. The
direct, indirect, total, and overall
effects of intervention are defined
by the indicated contrasts
(adapted from [11, 12])
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design entailed randomizing clusters to receive the pneu-
mococcal vaccine or a control vaccine, with individuals
self-selecting to enroll or not in the trial. See Hayes and
Moulton [25] for a general overview of cluster-
randomized trials and Halloran [26] for the discussion of
the related minicommunity design for assessing indirect
effects of vaccination.

In studies which do not utilize two-stage randomization,
the estimators described in the previous section would in gen-
eral be biased or inconsistent due to potential confounding
between treatment and the outcome. In the observational set-
ting where the treatment assignment mechanism is not known
and there is no interference, the propensity score, the proba-
bility an individual receives a treatment assignment based on a
function of observed pretreatment covariates, is one method to
adjust for confounding [27]. Recently propensity score
methods have been extended to the setting where interference
may be present. For example, Hong and Raudenbush [28]
considered interference in the context of the effect on reading
scores of children of being retained in kindergarten versus
being promoted to the first grade. They classified schools by
whether they retained a high proportion or a low proportion of
kindergartners. Interference within a school was assumed to
be summarized in the dichotomous school treatment of high or
low retention rate. The study was observational at two levels:
schools were not randomized to have high or low retention,
and students at risk to be retained were not randomized to be
retained. Assuming partial interference, Hong and
Raudenbush used a multilevel propensity stratification ap-
proach to draw inference about the effects of retention. The
school propensity of adopting a high retention rate was esti-
mated using pretreatment information. Then the child propen-
sity of repetition in high-retention schools and the child pro-
pensity of repetition in low-retention schools were estimated
also based on pretreatment information. Estimation of the
causal effects used stratifications by the estimated school
and child propensity scores.

Tchetgen Tchetgen and Vander Weele [19•] also used
group-level propensity scores to develop inverse probability
weighted (IPW) estimators of the direct, indirect, total, and
overall causal effects in observational studies in the absence
of two-stage randomization. These IPW estimators can be
viewed as a generalization of the usual IPW estimator of the
causal effect of a treatment in the absence of interference.
Lundin and Karlsson [29] proposed similar IPW estimators
of direct, indirect, and total effects under interference where
treatment assignment is randomized only at the first stage, and
in some groups, all individuals remain untreated (Fig. 1). They
were motivated by the Positive Parenting Program, an
Australian parenting support program tested in pre-schools
in Uppsala, Sweden. Perez-Heydrich et al. [30] and Liu et al.
[31] considered the asymptotic properties of different IPW
estimators in the presence of partial interference.

Example

To illustrate estimates of direct, indirect, total, and overall
effects of vaccination, we present results of an analysis by
Perez-Heydrich et al. [30]. They used the IPW estimators
proposed by Tchetgen Tchetgen and Vander Weele [19•] to
estimate the effects of cholera vaccination in a study in
Matlab, Bangladesh. All children and women were individ-
ually randomized to either of two cholera vaccines or a pla-
cebo, though not all participated in the vaccine trial.
Unvaccinated individuals included el igible non-
participants and placebo recipients. Vaccinated individuals
included recipients of either vaccine. This was an individu-
ally randomized study, so neighborhoods (groups) were de-
fined by using a clustering algorithm on geo-referenced data
of the location of individuals’ households. Effect estimates
were calculated based on the difference of the IPW average
outcomes in the relevant groups (Fig. 2). Levels of vaccine
coverage are denoted by α and α'.

The direct effect estimates (Fig. 2a) generally decrease with
increasingα. The indirect effect estimates (Fig. 2b) comparing
incidence of cholera among unvaccinated individuals at cov-
erage levelsα and α' tend to increase (in absolute value) as the
difference in the coverage α − α' increases. The total effect
contours (Fig. 2c) are roughly vertical, suggesting the estimat-
ed risk of cholera when vaccinated tends to be the same re-
gardless of coverage. Note the total effect estimate of being
vaccinated in a neighborhood with α' = 60 % coverage com-
pared to being unvaccinated in a neighborhood withα= 32%
coverage is 5.9 (95 % confidence interval 3.0, 8.8), an order of
magnitude greater than the estimated direct effect of 0.6 at
60 % coverage (Fig. 2a). Thus, taking indirect effects into
account leads to a much different conclusion about the vac-
cine. The estimates of overall effects (Fig. 2d) exhibit a similar
pattern to the indirect estimates. An R package “inferference”
is available for conducting this type of analysis [32].

General Interference

Individuals do not necessarily congregate in identifiable groups
wherein they interact only within those groups but not with
individuals in other groups, as is assumed with partial interfer-
ence. Recent methodological developments for casual inference
in the presence of interference allow for more general forms of
interference. In the general interference setting, each individual
may be assumed to have a unique set of other individuals whose
treatment might affect the outcome of the individual. This in-
terference structure can be represented by a network.

Network theory, also called graph theory, provides a formal
framework for describing interactions between individuals. A
network is defined by a collection of N nodes or vertices, and
the edges or ties connecting the nodes. In the context here, the
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nodes are individuals and the edges are connections to other
individuals which may give rise to interference.

Interference and dependent happenings can be propagated
through networks. Computational social science is a growing
field, fueled by massive data sets on interactions that form
social networks [33]. Companies such as Google and
Facebook collect huge data sets on interactions and perform
randomized experiments within these contexts. Wireless sen-
sor network technology [34] and geographical positions from
cell phone data [35] make electronic monitoring of close con-
tacts and movement possible. Infectious diseases also propa-
gate across networks on multiple scales [36].

Recent approaches to assessing treatment effects in the
presence of general interference, some of which rely on net-
work theory, include Rosenbaum [37], Toulis and Kao [15],
Ugander et al. [38•], Eckles et al. [39], van der Laan [40•],
Sofrygin and van der Laan [41], Aronow and Samii [42•], and
Liu et al. [31] among others. These general interference
methods typically assume one finite population of N individ-
uals. For each individual, a set of other individuals is defined
which may interfere with that individual. Different names
have been used to describe these sets, including interference
sets [31], neighborhoods [15, 38•], and friends [40•, 41] of the
individuals. From the network perspective, the interference
sets can be represented by an adjacency matrix. Typically,

the interference sets for each individual in the population are
assumed known and fixed. It is also usually assumed that the
number of individuals in these interference sets is smaller than
N and that any indirect or spillover effects on an individual, if
present, emanate from his/her known interference set.

Aside from these commonalities, there is considerable var-
iability in recent approaches to causal inference with interfer-
ence regarding how treatment/exposure effects (i.e., causal
estimands) are defined and the mode of inference adopted. A
comprehensive comparison is beyond this review, both in
scope and technical detail. Below we highlight a few ap-
proaches recently proposed.

Randomized Experiments

Aronow and Samii [42•] considered randomized experiments
in the presence of arbitrary interference. Their approach de-
pends on knowing the experimental design by which individ-
uals are assigned treatment. They define an exposure mapping
which relates the individual experimental treatment assign-
ments to the exposures received by individuals depending
on with whom they interact and other underlying features of
the population. Their exposure mapping is equivalent to
Manski’s [10] “effective treatments” function. A population
is considered to have a number of possible exposure

Fig. 2 IPW estimates of a direct
DE(α), b indirect IE(α,α′), c total
TE(α,α′), and d overall OE(α,α′)
effects based on the cholera
vaccine trial data. In (a) the gray
region represents approximate
pointwise 95 % confidence
intervals. The histogram below
depicts the distribution of
observed neighborhood vaccine
coverage. Units of the estimates
are cases of cholera per 1000
individuals per year. (Reprinted
with permission from Perez-
Heydrich et al. [30])
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conditions and causal estimands are defined as contrasts be-
tween average individual potential outcomes for two different
exposure levels. The average potential outcome at any expo-
sure level can be estimated because, by design, the probability
of the exposure conditions is known for each individual.
Aronow and Samii [42•] proposed IPW estimators for infer-
ence in this setting.

Ugander et al. [38•] and Eckles et al. [39] considered ran-
domized experiments on networks where treatment of one in-
dividual could have indirect/spillover effects on neighboring
individuals. Their causal estimand of interest is the average of
the difference in the individual potential outcomes under two
extreme assignments, one where every individual in a network
receives treatment and one where no individuals receive treat-
ment. If individuals were independently randomized to treat-
ment and control, for individuals who share many edges with
other individuals, the probability all of their neighbors would (i)
all receive treatment or (ii) all receive control would be low.
Thus, Ugander et al. considered a partition of the network into
clusters of individuals and proposed randomizing some of the
clusters to receive treatment and the remaining clusters to re-
ceive control. This is called graph cluster randomization. Note
these clusters are not the same as the interference sets described
above. Ugander et al. introduced the notion of network
exposurewherein an individual is network exposed to treatment
(control) if the individual’s response under a particular assign-
ment vector is the same as if everyone in the network had
received the treatment (control). An unbiased estimator of the
average treatment effect using inverse probability weighting
was derived for any randomization design for which the net-
work exposure probabilities can be explicitly computed.

Motivated by a randomized experiment by Facebook,
Toulis and Kao [15] propose causal estimands for peer influ-
ence (indirect) effects describing interference in a social net-
work. For each individual, a neighborhood is defined by the
other individuals with whom he/she shares an edge. If at least
one neighbor receives treatment, then the individual is consid-
ered exposed to peer influence effects. The potential outcome
for each individual can depend on his treatment and that of his
neighbors. Toulis andKao defined twomain causal estimands.
The causal estimand for the primary effect is the average over
the whole population of the difference in the individual out-
comes if an individual received treatment versus received con-
trol when everyone else in the neighborhood received control.
The main causal estimands for peer influence effects are de-
fined by fixing the specific number of neighbors who receive
treatment. For example, if k neighbors receive treatment, the k-
level causal estimand for peer influence effects is averaged
over individuals with at least k neighbors. Two estimation
procedures are proposed: a frequentist model-based estimator
assuming a certain sequential randomization design and
known network and a Bayesian approach which accounts for
uncertainty in the network topology.

We note there is a large, related literature on peer ef-
fects in social sciences dating back to Manski’s seminal
paper [43] on the “reflection” problem. Other recent de-
velopments of statistical methods for drawing inference
about peer effects are described in An [44] and Vander
Weele and An [45]. O’Malley and Onnela [46] give an
overview, comparing approaches in social network analy-
sis and network science.

Observational Studies

van der Laan [40•] and Sofrygin and van der Laan [41]
considered statistical inference about causal effects in the
presence of general interference in the observational set-
ting. They defined the population of interest to be a set of
(possibly) dependent individuals and assumed only a sin-
gle draw from the true data generating distribution is ob-
served. That is, unlike traditional statistical inference,
multiple independent and identically distributed (iid) rep-
licates were not assumed. With partial interference, one
might assume the groups are iid, permitting application
of existing statistical theory (e.g., see [30]). However,
with general interference observing iid replicates is gen-
erally not possible, such that standard large sample
frequentist approaches do not apply. van der Laan [40•]
and Sofrygin and van der Laan [41] derived the asymp-
totic properties of targeted maximum likelihood estima-
tors in this setting, providing a method for valid statistical
inference in the presence of general interference. See also
Ogburn and Vander Weele [47] for related work allowing
for general interference in the observational setting.

Infectiousness and Contagion Effects

It is often of interest in causal inference to understand
the mechanism or pathway through which an exposure
or treatment has an effect on the outcome of interest.
Below we describe two possible causal mechanisms of
interference: the infectiousness and contagion effects.

The vaccine effect on infectiousness is the reduction in
transmissibility from a vaccinated versus unvaccinated in-
fected person during a contact with a susceptible person.
In a study in Niakhar, Senegal, for example, Préziosi and
Halloran [48] estimated the relative reduction in infec-
tiousness of a vaccinated pertussis case compared to an
unvaccinated case to be 67 % (95 % confidence interval
29, 86). Even if vaccination is randomized, the infec-
tiousness effect is measured only in people who become
infected, a post-randomization, variable, so naive es-
timates comparing infected vaccinees and infected un-
vaccinated individuals could be subject to selection
b i a s [ 49 ] . Comb in i ng cau s a l i n f e r en c e w i t h
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interference with principal stratification [50], Vander
Weele and Tchetgen Tchetgen [51] and Halloran and
Hudgens [52] proposed causal estimands of the infec-
tiousness effect in households of size two, assuming
interference occurred only within households, that is
partial interference. Though this causal effect is not
identifiable without further assumptions, bounds can
be identified [51–53] and sensitivity analyses per-
formed [54].

Widespread vaccination in a population can produce indi-
rect effects either by preventing individuals from becoming
infected or by reducing the ability of infected vaccinated in-
dividuals to transmit to others. Vander Weele et al. [16] differ-
entiated these two components, calling the first the contagion
effect and the second the infectiousness effect (as discussed in
the preceding paragraph). Using ideas analogous to mediation
analysis, they showed how the indirect effect can be
decomposed into these two components in households of size
two, assuming partial interference. Ogburn and Vander Weele
[47] extended these methods to groups of arbitrary size and
one large network without assuming partial interference.

Other Approaches to Causal Inference
with Interference

Most of the approaches described above utilize the potential
outcomes framework for causal inference to assess treatment
or exposure effects in the presence of interference.
Randomization-based inference or large sample frequentist
methods are typically employed for drawing statistical infer-
ences. Below brief descriptions are provided of some recently
proposed alternative approaches to causal inference in the
presence of interference.

Carnegie et al. [55] considered an epidemic (mathematical)
modeling approach for estimating the overall treatment effect
in the presence of interference both within and across clusters
in cluster-randomized trials of infectious disease.

Ogburn and Vander Weele [56•] extended causal diagrams
(or graphs) to the interference setting. They considered how
causal graphs can help distinguish among causal mechanisms
that give rise to interference, including the infectiousness and
contagion effects described above.

Manski [57] considered decisions faced by a health
planner concerned with vaccination policy, in particular
whether to mandate vaccination or allow individuals to
self-select whether to be vaccinated. An econometric per-
spective was adopted which includes consideration of the
indirect effect of vaccination on persons not vaccinated.
The health policy decision was framed as an optimization
problem where a certain cost function is to be minimized
which accounts for both the social cost of illness and the
social cost of vaccination. Manski then considered the

optimal decision in settings where the indirect effect is
assumed monotone with increasing vaccine coverage but
otherwise unknown. Seasonal influenza vaccination was
used as an example. This econometric perspective differs
from the potential outcomes based approaches described
above in that Manski did not seek to estimate or draw
inference about the indirect effects of vaccination.
Instead, the goal was to determine the optimal vaccination
policy given only partial knowledge of the indirect effect.

Laber et al. [58] developed a Bayesian online estimation
method to determine optimal treatment allocation strategies
for control of white-nose syndrome in bats, a usually fatal
disease caused by a fungus. The possible interference struc-
ture is described by a network where the nodes are counties in
the USA. Interference and spillover effects are governed by a
model describing the probability of spatial spread of white-
nose syndrome between counties.

Conclusions

One hundred years after publication of Ross’ paper on
dependent happenings, research on estimating treatment
effects in the presence of interference is burgeoning.
One current trend is to develop methods in the presence
of general interference. These methods often involve
using concepts from network theory. Applications moti-
vating this work include social media, economics, and
infectious diseases.

Future studies to evaluate causal effects under interfer-
ence may continue to rely on cluster-randomization with
the accompanying assumption of partial interference. But
increasingly information on how people travel between
clusters will be collected and analyzed to better under-
stand contamination across clusters. Methods are needed
that incorporate such information into both the causal
estimands of interest and methods for inference. In the
infectious disease context, genomic data is increasingly
being gathered on the pathogen sequences. Phylogenetic
information could also contribute to understanding the
network structure of contacts and transmission. Much re-
search remains to be done in developing methods for
causal inference in the presence of interference.
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