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Abstract Genes account for a significant proportion of the
risk for most common diseases. The genome-wide association
scan (GWAS) era of genetic epidemiology has generated a
massive amount of data, revolutionized our thinking on the
genetic architecture of common diseases and positioned the
field to realistically consider risk prediction for common poly-
genic diseases, such as non-familial cancers, and autoimmune,
cardiovascular, and psychiatric diseases. Polygenic scoring is
an approach that shows promise for understanding the poly-
genic contribution to common human diseases. This is an
approach typically relying on genome-wide SNP data, where
a set of SNPs identified in a discovery GWAS are used to
construct composite polygenic scores. These scores are then
used in additional samples for association testing or risk pre-
diction. This review summarizes the extant literature on the
use, power, and accuracy of polygenic scores in studies of the
etiology of disease and the promise for disease risk prediction.
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Introduction

Roughly a century ago, RA Fisher proved that familial resem-
blance could be due to many factors inherited in a Mendelian

fashion [1]. Fisher’s publication not only resolved a key dif-
ference between the Mendelians and biometricians, who be-
lieved that discrete genes could not underlie quantitative traits,
but also led to many core statistical concepts used today. In the
decades that followed that publication, it became widely ac-
cepted that the substantial heritability observed for many hu-
man traits was likely due to the composite influence of many
genes of very small effect. Despite this, even among the most
ardent proponents of Fisher’s work, there was belief that Men-
delian analysis (e.g., linkage analysis, segregation analysis)
was a Bpreferable^ form of scientific inquiry especially where
variation was not continuous and Bindividually traceable
genes^ were available [2]. The notion that the Mendelian ap-
proach, which looks at cosegregation of a single specific mea-
surable genetic locus and a discrete trait, was more powerful
than a biometric approach or that the biometric approach
would be Bmore tedious and cumbersome to use than Mende-
lian analysis^ for discrete traits stood for many years [2]. The
advances in the computer implementation of Mendelian sta-
tistical methods [3, 4], the growing availability of polymor-
phic markers across the genome [5], and the focus of human
genetics on clinically defined diseases all further encouraged
the use of single locus methods. These approaches have ex-
perienced a recent resurgence, again largely due to the avail-
ability of novel technology that allows for the interrogation of
the whole genome [6•]. While linkage analysis was very suc-
cessful in identifying single gene contributions to Mendelian
disorders, the approach has been much less successful in
disentangling the genetic risk for more common genetically
complex disorders [7]. Consequently, the history of human
disease gene mapping has best been characterized as a series
of fits and starts largely focused on attempting to identify
single detectable genetic contributions.

The perceived general lack of success of linkage analysis in
identifying complex disease risk variants, coupled with the
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technological advances that allowed for the development of
large genotyping arrays have made genome-wide association
studies (GWAS) commonplace in disease gene mapping over
the past decade. GWAS have identified thousands of variants
for hundreds of diseases that while detectible and replicable at
stringent multiple test corrected levels explain only a very
small amount of the genetic or phenotypic variance [8]. Initial
work on genetic risk prediction showed that these loci, even
when taken together within a given disease, appeared to pro-
vide very little improvement in risk prediction over known
clinical indicators [9] and account for a very modest amount
of disease or trait heritability. While this Blost^ heritability has
left some puzzled [10], a reasonable explanation for this is the
very small true effect size of each gene contributing to com-
plex disease. The stringent statistical significance criterion of
GWAS has resulted in relatively few of the modest effect size
polymorphisms being deemed Bsignificant^ and Breplicated.^
It has been shown that the expected rank of realistic effect
sizes would not likely be among the top findings in a typical
GWAS [11]. Thus, many associated loci will not be deemed
Bsignificant^ based on a single, large genome-wide study.
However, there is an expectation that the SNPs in the upper
tail of the distribution of test statistics from a given GWAS
will be enriched with true signals.

Purcell and colleagues [12] used an approach in an
early GWAS of schizophrenia, a moderately rare disease
(estimated lifetime prevalence, K, of 1 %) of high herita-
bility (80 %) [13], that steps well beyond single locus
testing. In this approach, two-stage GWAS data were used
to select a set of Bindependent^ SNPs in linkage equilib-
rium that generated p values below some arbitrary thresh-
old (PT) in one sample as a discovery stage. Those SNPs
were then used to create polygenic sum scores, with each
allele weighted by the logarithm of the odds ratio from the
discovery sample to be tested in a second sample. Case-
control differences in polygenic score were then tested
using logistic regression. They found highly significant
differences in polygenic sum score between schizophrenic
cases and controls at PT across a range from 0.05 to 0.5.
In addition, they found that SNPs selected from a stage 1
schizophrenia sample yielded significant case-control
polygenic score differences in a bipolar disorder sample,
possibly indicating a high degree of genetic overlap be-
tween the two diseases. This method approaches a true
Fisherian approach by attempting to index all possible
influential variation across the genome and literally
allowing the statistically non-significant true signals to
stand up and be counted.

The terms Bpolygenic scores^ (PGS), Bgenetic risk scores^
(GRS), and Bpolygenic risk scores^ (PRS) are used inter-
changeably to describe metrics comprising a large number of
SNPs pooled together to represent a measured set of variants
underlying a particular trait or disease. The discussion herein

will make no distinction between application to diseases and
normally distributed traits (e.g., height), and hence, the term
Bpolygenic scores^ will be used.

The application of PGS can be grouped into two broad
categories: (1) exploration of the genetic contribution to the
etiology and (2) prediction of individual disease risk or trait
outcome.

Etiology

Dudbridge [14•] examined the power and predictive accuracy
of polygenic scores for discrete and continuous traits, deriving
analytic expressions as a function of the total heritability of the
trait, the proportion of that variance explained by the mea-
sured marker panel, the total number of markers, the propor-
tion of those markers with no effect on the trait, the total
sample size, the proportions of the sample used for training
and testing, and the p value threshold for selection of markers
from the training sample for subsequent association testing or
risk prediction. The primary finding was that a roughly even
split between training and testing samples yielded the best
power for association testing but the use of a larger training
set increased the precision of prediction. In addition, fewer
null markers at a fixed total marker number and heritability
led to worse predictive power. While this result seems coun-
terintuitive, fewer null markers lead to a decrease in the aver-
age effect per true marker, thus leading to poorer power to
discriminate true from null effects in the training sample.

An important point while considering or comparing the
findings of investigations of the power or precision of PGS
is the choice of genetic models. A detailed discussion can be
found elsewhere [15]. The generalizability of all theoretical
work is limited by the degree to which the assumed distribu-
tion of effects reflects reality. Most theoretical studies tend to
assume something close to additivity. The key variables
influencing the power and precision of PGS are the number
and size of effects. That is, the greater the ability to separate
true from null effects, the greater the power and precision of
PGS.

Marker-Based Heritability

In addition to approaches that create polygenic sum scores,
multiple additional approaches have been developed to exam-
ine multi- or polygenic contributions to disease. These
methods attempt to index what could accurately be termed
Bmarker-based^ or Bmolecular^ heritability. The predecessor
to this method used genome-wide markers in pedigrees to
examine deviation from expected genetic similarity and phe-
notypic similarity [16]. This method was eventually extended
to general populations using genome-wide SNP data and
termed Bgenome-wide complex trait analysis (GCTA)^ [17].
In this method, a population-adjusted genetic relationship
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matrix is derived from all available SNPs and used in a mixed
linear model to estimate via restricted maximum likelihood
(REML) the proportion of phenotypic variation accounted
for by the relationship matrix. While this method can be ap-
plied at the genome, chromosome, or regional level to deter-
mine the amount of variance accounted for, it does not identify
specifically which variants account for the heritability nor
does it specifically facilitate risk prediction. A recent compet-
ing method is a generalization of Haseman-Elston regression
to population samples, termed phenotype correlation-
genotype correlation (PCGC) regression. PCGC generates
markedly higher genome-wide heritability estimates than
REML-based approaches [18•]. Palla and Dudbridge [19] also
extended their previous work [14•] to jointly estimate the
number of variants influencing a trait and the variance
accounted for by those variants. This eliminates the step of
estimating PT and, since the method uses only the distribution
of test statistics, can be applied to GWAS results, without
reanalysis of individual-level data.

Recent methods demonstrate that correcting for linkage
disequilibrium, as opposed to pruning out correlated (but pos-
sibly true independent effect) SNPs increases the heritability
estimates from PGS [20]. The authors examined the perfor-
mance in two large, published GWAS datasets and found
modest increases in heritability for schizophrenia (20.1 to
25.3 %) and multiple sclerosis (9.8 to 12.0 %).

An additional recent extension of polygenic scoring relies
on haploSNPs [21]. HaploSNPs are large shared segments
disrupted only by recombination. After identification,
haploSNPs are recoded to 0,1,2 copies and treated as BSNPs^
in PGS assessment via the aforementioned PCGC regression
approach. HaploSNP heritability estimates jump from 32 to
64 % and from 20 to 67 % versus SNP alone estimates for
schizophrenia and MS, respectively.

Risk Prediction

As GWAS initially yielded new genetic signals, Kraft and
colleagues discussed quantification of genetic risk in terms
of clinical utility [22]. While p values and odds ratios are
useful for discovery of novel SNPs influencing disease risk,
they are inadequate for describing the potential clinical utility
of PGS. Metrics such as the sensitivity, or true positive rate,
and the specificity, or true negative rate, provide more useful
information regarding the potential clinical utility of a given
measure. Functions of sensitivity and specificity are often
plotted across the range of a given predictor with the area
under that curve (AUC) as a commonmeasure of the potential
diagnostic utility of that predictor. AUC, in the context of
polygenic scores, can best be interpreted as the probability
that the PGS value for a randomly selected case will be higher
than that for a randomly selected control. An AUC of 0.5
would indicate a predictor with no better than random

predictive utility. An AUC >0.8 is frequently cited as the stan-
dard for a clinically useful diagnostic indicator. Wray and
colleagues specifically address the meaning and interpretabil-
ity of AUC in the context of specific multi-locus models [23].

In early empirical work on genetic risk prediction, Janssens
and colleagues [9] demonstrated that inclusion of a modest
number of genetic risk loci in predictive models of type 2
diabetes and cardiovascular disease did not improve risk pre-
diction over known environmental risk factors and family his-
tory. Jakobsdottir and colleagues [24] found similar results
using a handful of replicating GWAS results. These authors
conclude that predictive modeling for personalized medicine,
which would require sensitive and specific measures of risk,
was not yet realistic for most common disorders and diseases.
In retrospect, this conclusion was premature due to the rela-
tively small proportion of the genetic variance explained by
the SNPs in the predictive models. Using large numbers of
loci in simulated data, Wray and colleagues [25] conclude that
large screening samples (>10,000) will provide adequate pow-
er for selection of loci that account for a significant proportion
of the genetic variance. Moreover, singling out the segment of
the population sample in the upper 5 % of risk allele count
identifies a segment of the sample with three to seven times
the relative risk for a disease of modest (10–20 %) heritability.
One would expect the predictive ability to increase with an
increase in heritability. Evans and colleagues [26] subsequent-
ly applied a genome-wide approach to the Wellcome Trust
Case Control Consortium data sets and found that the ap-
proach yielded some predictive value beyond chance although
the authors concede that this result could be due to technical
artifact or stratification.

Chatterjee et al. [27•] examined the potential predictive
utility of PGS derived from genome-wide SNP data. Using
the predictive correlation coefficient to describe predictive
accuracy, which has a known relationship with AUC
(AUC=Φ(√0.5 Rn), where Rn is the predictive correlation co-
efficient), the authors examine the impact of several factors on
prediction accuracy. Overall, the authors’ findings are similar
to previous work [14•]. That is, factors allowing for greater
resolution of true from null effects (e.g., increased heritability
at a fixed number of true markers, larger sample sizes) have an
impact on the prediction utility of derived models. A notewor-
thy addition was the examination of multiple effect distribu-
tions. Predictive power was greatest when the underlying true
SNP effects followed an exponential distribution versus other
distributions with more SNPs of smaller effect. An additional
important conclusion of this work is the discussion of the
inherent limitation of building predictive models from a
host of univariate comparisons when the true underlying
genetic architecture of most traits or common diseases is
likely to be much more complicated. The authors argue
for development of methods that better capture complex
genetic architectures.
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Aschard and colleagues [28] explored the impact of more
complicated architectures in simulated models of gene-gene
and gene-environment interactions on predictive accuracy of
polygenic risk scores (although the number of SNPs included
in the models ranged from 15–31). They simulated two to ten
interactions (one to five gene-gene and gene-environment in-
teractions, respectively) and found that as sample size, and the
number and size of interactions increased, the predictive pow-
er also increased. However, these increases were very modest
most likely due to the relatively small set of effects (SNPs,
environments and interactions) accounting for a modest over-
all heritability.

Kong and colleagues explored real life variants, extracting
161 risk alleles from the NHGRI GWAS catalog previously
implicated in traits or diseases commonly seen in primary care
settings or commonly used in indexing disease risk [29•].
Polygenic risk was calculated as follows: (1) the simple sum
of the risk alleles present, (b) product of the odds ratio of the
present risk present, and (c) the total population attributable
risk of the alleles present. Under each of the three methods, the
risk score was normalized against the score distribution in the
control population. Risk scores were calculated for existing
Wellcome Trust Case Control Consortium (WTCCC) data.
They found a significant positive correlation between the
methods, indicating that choice of weighting scheme is prob-
ably less critical compared to other factors. In addition, the
scores were only modestly predictive with AUCs in the 0.5–
0.7 range. It is important to note the relatively small number of
SNPs used in this analysis. An important outcome of these
analyses is the examination of PGS by decile, with consistent
findings of an increase in proportion of cases by increasing
risk decile, an approach worth further discussion and
consideration.

Conclusions—Future Directions

Overall, PGS approaches hold promise for capturing the con-
tribution of genome-wide common variation to complex dis-
ease. The method is generally most powerful when the dis-
covery sample is large. Parameters that influence the number
of risk loci, including the heritability of the disease, the effect
size and distribution of the true loci, and their frequency have
a dramatic impact on the power of the approach. This result is
not surprising since the empirically derived sum score is al-
ways a mix of true and null SNPs. Thus, the power maximizes
at PT ranges where the PGS is most enriched with true signals.
Consequently, any variable that enriches the polygenic score
with disease loci will increase the power of the approach.

It is also clear that different factors drive discovery versus
prediction, and frequently, investigators compromise between
the two. While a larger discovery sample and a much smaller
number of clearly associated SNPs maximize prediction

accuracy, an equal sample split maximizes power to detect
association between PGSs and a trait or disease.

While the PGS approach appears very promising, there are
a number of unanswered questions regarding the method that
our review has not explored, most notably, optimal effect size
or p value thresholds for discovery, deciling or dichotomizing
of PGS, optimal weighting strategies, accommodation of var-
iable ancestry, and inclusion of environmental variables.

A commonly used approach to selecting a SNP during the
discovery process for subsequent inclusion in PGS simply
continues to add SNPs until the proportion of variance pla-
teaus. Frequently, in approaches using log(OR) weighting,
this happens as the OR approaches unity (i.e., a weight=0)
and as the proportion of true effects diminishes. This point in
the distribution varies with the power of the sample and the
genetic architecture of the disease or trait. Diseases with thou-
sands of underlying small effects will generate inflated p-
values leading to the inclusion of tens of thousands of SNPs,
certainly a mix of true and null effects that will diminish the
predictive power of the PGS. While a priori decisions regard-
ing optimal PTwould be difficult since the genetic architecture
of any given disease is largely unknown, it may be worth
scanning a range of PT values in applied data to get a picture
of the Bshape^ of the PGS signal. Alternatively, a PGS could
be limited to the relatively small number of replicated SNPs,
again limiting the predictive power of the PGS. Clearly, more
work needs to be done.

Another issue is the possibility of dichotomizing or
quantiling PGS to identify particular high risk groups for pre-
vention/intervention. If we consider a best case scenario (i.e.,
all true and no null SNPs) and use the probit model described
by Wray [15], assuming a total trait heritability of 80 %, a per
allele effect (a) of 0.05, and a prevalence of 3%; the number of
total alleles underlying the trait can be estimated at 762. Given
the distribution of PGS under the probit model, the consequent
risk at several quantiles can be estimated. For example, at the
90th, 95th, and 99th percentiles the risk of disease is 3.73, 8.1,
and 24 %, respectively. This not only gives an idea of the
upper limit of PGS risk prediction but also highlights the pos-
sibility that individuals at five- to tenfold increased risk may
be identified using refined PGS.

The usual approach to dealing with population stratifica-
tion by ancestry is to create ancestry principal components
from random genome-wide SNP data for adjustment in sub-
sequent testing. In the discovery stage, where simple associa-
tion testing is used to select loci for the PGS, usual methods
[30, 31] of controlling for estimated genome-wide ancestry
can be used. In the PGS testing or prediction stage, where
these loci are summed, measures of ancestry can also be in-
cluded as covariates, where the impact of sum score on case-
control status is modeled. This approach, while potentially
viable, assumes a linear impact of stratification on the compo-
nent parts (the SNPs) of the sum score. This may not be a
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realistic assumption since different polymorphisms may dis-
play different signatures of stratification. However, we do
concede that it is the norm of the field to use composite, or
genome-average, measures of ancestry to correct for stratifi-
cation in GWAS.While not an ideal approach, this may not be
a fatal flaw. Furthermore, population stratification is
commingled with genome-wide true effects. In fact, initial
work highlighted the difficulty in disentangling population
stratification from polygenic signature [32]. If, as we assume,
Fisher’s model is true for complex disease, then some degree
of average genomic difference will be due to true case-control
differences and not confounding by ancestry. Thus, while
correcting for ancestry is a vital step to getting valid results,
it is also important to not overcorrect for it. However, recent
work has demonstrated that the inflation in test statistics com-
monly seen even in adjusted GWAS results is likely due to
polygenicity and not stratification [33•]. This is an area of
active research and novel methods to assess and address the
impact of population stratification on PGS are needed.

While the work of Aschard and colleagues showed a lim-
ited impact by including gene-gene and gene-environment
interactions in prediction models, there are clear instances
where environments of large effect will modify risk calculated
using genes alone and ultimately increase prediction preci-
sion. Using models described by Wray [15], we can examine
the impact of inclusion of a measured environmental variable
on the predictive power of a given PGS. If we assume a dis-
ease with 40 % heritability accounted for by 100 loci of equal
effect with an average minor allele frequency of 20 % and
disease prevalence of 10 %, we can estimate the AUC of such
a model (including only true loci) of 0.78. However, under the
same genetic model but with inclusion of a single main effect
environmental variable with a case-control difference of 1 or 2
standard deviations, the estimated AUC increases to 0.85 and
0.95, respectively. Thus, in diseases or traits with a known
environmental component, risk prediction will benefit from
the joint consideration of genes and environment.

Another issue is the selection of an optimal weighting strat-
egy. Simulations show that simple (unweighted) sum scores
provide adequate power in situations where the number of loci
is small. Purcell and colleagues [12] used an approach where
sum scores were weighted by the logOR resulting from the
case-control differences in the discovery sample. The loga-
rithm of the odds ratio is frequently used since it is normally
distributed with a mean of 0 and variance proportional to the
inverse of the sample size. The use of logOR weighting leads
to the creation of sum scores where the most extreme results
are disproportionately up-weighted. This approach may pro-
vide different results from an approach that uses no weights.
Kong and colleagues showed a strong correlation between
multiple weighting approaches [29•]. In addition, the inclu-
sion and weighting of rare variant with relatively large effects
in PGS is a subject that has not been adequately addressed.

The polygenic score approach will continue to provide
some insight into the genetic architecture of human complex
disease. This approach holds incredible promise for aiding in
the categorizing of specific phenotypic or risk subgroups, for
example, among those with PGS in upper and lower quantiles.
Recently, these methods have been applied to identify individ-
uals at high risk for early disease onset [34, 35], those likely to
suffer from comorbid disorders [36, 37], those with treatment
resistant disease [38], those likely to benefit from intervention
[39], and those who are more likely to suffer frommore severe
chronic disease [40]. PGS methods will continue to be active-
ly used in research settings to identify phenotypically interest-
ing or unique case subsets. As PGS methods are further re-
fined, sample sizes increase and research continues to demon-
strate the clinical utility of the approach, and PGS will likely
become a routine part of clinical risk assessment.
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