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Abstract Genetic risk scores are a useful tool for examining
the cumulative predictive ability of genetic variation on car-
diovascular disease. Important considerations for creating ge-
netic risk scores include the choice of genetic variants,
weighting, and comparability across ethnicities. Genetic risk
scores that use information from genome-wide meta-analyses
can successfully predict cardiovascular outcomes and subclin-
ical phenotypes, yet there is limited clinical utility of these
scores beyond traditional cardiovascular risk factors in many
populations. Novel uses of genetic risk scores include evalu-
ating the genetic contribution of specific intermediate traits or
risk factors to cardiovascular disease, risk prediction in high-
risk populations, gene-by-environment interaction studies,
and Mendelian randomization studies. Though questions re-
main about the ultimate clinical utility of the genetic risk
score, further investigation in high-risk populations and new

ways to combine genetic risk scores with traditional risk fac-
tors may prove to be fruitful.
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Introduction

Multi-cohort genome-wide association studies (GWAS) have
now identified hundreds of genetic variants that are credibly
associated with cardiovascular outcomes, subclinical cardio-
vascular phenotypes, and risk factors for cardiovascular dis-
ease (CVD). However, the individual genetic variants, or sin-
gle nucleotide polymorphisms (SNPs), that have been identi-
fied typically explain a very small fraction of the variation in
complex traits and thus have limited predictive capacity for
disease risk [1]. Aggregating information about multiple
SNPs, each with small effects, into a single genetic risk score
(GRS) has become a useful tool for examining the cumulative
predictive ability of genetic variation at known loci on cardio-
vascular disease outcomes and related phenotypes [2].

Here, we outline key aspects of creating GRSs, discuss
their quantification and evaluation, and provide a brief sum-
mary of the predictive ability of GRSs for cardiovascular out-
comes and subclinical CVD phenotypes. Emerging uses of
GRSs will then be discussed, including (1) prediction in clin-
ical and high-risk populations, (2) GRS-by-environment inter-
action studies, and (3) Mendelian randomization studies. Car-
diovascular outcomes discussed include coronary heart/artery
disease (CHD/CAD), myocardial infarction (MI), ischemic
stroke (IS), hypertension (HTN), and a composite CVD phe-
notype that includes both heart disease and stroke (also con-
ceptualized as Btotal cardiovascular diseases^ [3]). Subclinical
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phenotypes include artery calcification and intimal-medial
thickness (IMT).

Creating Genetic Risk Scores

Fundamentally, the creation of a GRS involves summarizing
information across multiple SNPs. The most common method
sums the number of risk-conferring alleles that an individual
has (0, 1, or 2) across all loci. A statistically analogous coding
scheme is to assign the heterozygous state (i.e., Aa) a value of
0, the non-risk homozygous state −1, and the risk homozy-
gous state 1. If an individual is missing a small proportion of
genotype data needed to construct the GRS (such as 1 or 2
SNPs), imputation to the most common genotype category is
commonly used. An alternative to imputation is to only in-
clude SNPs that have complete genotype data in the GRS,
followed byGRS rescaling to be consistent with GRSs created
using all SNPs.

SNP Selection

To create a GRS, onemust first select the genetic variants to be
included in the risk score. Although earlier studies creating
GRSs for cardiovascular traits included SNPs from biologi-
cally plausible candidate gene association studies [4, 5], most
current GRSs are constructed using SNPs found to be associ-
ated with traits through GWAS. The standard in the field has
been to use SNPs that reached genome-wide significance
(p<5×10−8) in large, consortium-based, multi-study GWAS
meta-analyses. Typically, these consortium-based meta-analy-
ses also include a replication phase, which further enhances
the robustness of the findings. While selecting SNPs from
large meta-analyses is considered the gold standard, less pref-
erable strategies for SNP selection may be used if meta-
analyses have not yet been conducted for the trait of interest
in populations that are demographically and/or ethnically sim-
ilar to the population under study (for example, SNPs may be
selected from biologically plausible candidate genes or from a
single-study GWAS). The vast majority of GRSs in the liter-
ature include only common variants (SNPs with minor allele
frequency (MAF)>5 %), because meta-analyses tend not to
have sufficient power to detect effects from rarer variants.

A disadvantage of including only the most highly signifi-
cant and replicated SNPs is that there may be many other
SNPs with true effects that do not reach the stringent
genome-wide significance levels. Recent work evaluating
the relationship between coronary artery calcification (CAC)
and GRSs constructed from CHD/MI-associated SNPs at var-
ious meta-analysis p value thresholds showed that trait varia-
tion for CAC is maximally explained by including thousands
of SNPs that are at least marginally associated with CAD/MI
(p<0.2) in the GRS [6•]. On the other hand, research on type 2

diabetes suggests that GRSs constructed from increasing num-
bers of SNPs may not substantively improve risk prediction
[7]. With these limited, sometimes conflicting results, more
work is needed to verify whether inclusion of additional mar-
ginally significant SNPs in GRSs is the best approach for
cardiovascular traits.

It has also been suggested that relying solely on genome-
wide significant SNPs from the largest, most current meta-
analysis may not be the best approach to SNP selection.
New algorithms that integrate information from multiple
sources into GRS SNP selection are beginning to appear.
For example, Belsky and colleagues implemented a novel
SNP selection method using public-access resources, includ-
ing GWAS results databases and web-based GWAS analysis
tools, to select SNPs from 16 published GWAS for an obesity
GRS [8••]. This type of algorithm may represent a systematic
and replicable method for integrating results from a wider
variety of sources.

Weights

When equal weights are assigned to each genetic vari-
ant, the score is Bunweighted,^ and its construction is
based on the assumption that each risk allele confers
identical risk. However, for most complex traits, effect
sizes across identified SNPs vary (see, for example,
[9]). Thus, GRSs are often constructed by weighting
SNPs by their GWAS meta-analysis effect sizes, thus
giving more weight to variants with stronger effects.
Weighted scores may increase statistical power com-
pared to unweighted scores, provided that the weights
are accurately determined [10••]. Weights are ideally
calculated from consortium-based meta-analysis effect
sizes, which are more precise due to large sample sizes.
This weighting method is commonly used when the tar-
get population (the population in which the GRS is
going to be evaluated) has a similar demographic and
ethnic composition as the meta-analysis population (the
population used to estimate the effect sizes). See below
for a more detailed discussion of the importance of eth-
nicity in GRS creation. An unweighted score is often
the best option if there are no stable effect estimates
available because (1) no GWAS meta-analyses have
yet been performed on the trait of interest (and thus
SNPs are selected from candidate gene studies or small,
un-replicated GWAS), (2) existing meta-analyses are
comprised of studies with different ethnicities or demo-
graphic profiles than the population to be studied, or (3)
SNPs identified using multiple traits on different mea-
surement scales are to be combined into a single GRS
(for example, a GRS that comprises SNPs associated
with multiple Bintermediate traits,^ described in greater
detail below).
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Population-Specific Considerations

A potential disadvantage of selecting SNPs based on pub-
lished meta-analysis results is that many meta-analyses for
complex traits have been conducted solely in European-
ancestry (EA) populations. This practice is problematic be-
cause the SNPs most significantly associated with a trait often
differ across ethnicities for a variety of reasons including (1)
ethnicity-specific genetic variation, (2) allele frequency differ-
ences across ethnicities, and (3) differing patterns of linkage
disequilibrium (LD) resulting in ethnicity-specific Btag SNPs^
that are associated with the causal variant(s) [11]. Trans-ethnic
meta-analyses for cardiovascular traits are beginning to
emerge [12, 13] and may offer several advantages over
single-ethnicity analyses [11]. However, until trans-ethnic
analyses become commonplace, other approaches for GRS
SNP selection may be required for GRSs constructed for use
in non-EA populations. One strategy is to evaluate SNPs from
EA meta-analyses for association within the target population
and retain only those that have at least a marginal effect. SNPs
selected in this manner may also be combined with the most
highly significant SNPs from smaller ethnicity-specific
GWAS meta-analyses (see, for example, [14, 15]).

Population-specific factors such as age, sex, and demo-
graphics may also be important considerations for SNP selec-
tion and weighting. While there is an awareness that con-
founding and effect modification by population-specific fac-
tors may influence both estimates and inferences, the field of
genetics has been primarily concerned with race/ethnicity be-
cause of the way in which it fundamentally changes the vari-
ants that are included and identified in an analysis. Aside from
ethnicity, GWASs often include populations with a large range
of demographics in order to achieve the sample sizes neces-
sary to obtain enough power to accurately identify SNPs.
Nevertheless, glaring demographic differences should be con-
sidered when creating GRSs.

Estimating and Evaluating Genetic Risk Score
Effects

The effect sizes for the associations between GRSs and car-
diovascular phenotypes are typically reported as beta esti-
mates, odds ratios (ORs), or hazard ratios (HRs), as appropri-
ate for the type of outcome. Effects may be reported per risk
allele (corresponding to a one-allele increase in GRS), per
GRS standard deviation (SD), or with respect to a particular
comparison such as the contrast between the highest and low-
est GRS quartiles. Differing methods of reporting effects often
makes comparison across GRS studies difficult. In addition,
per allele effect sizes tend to decrease as newly discovered
variants are incorporated into GRSs. This is due to smaller
effect sizes of the newly discovered variants compared to

those discovered in the first wave of GWAS meta-analysis,
as has been demonstrated for type 2 diabetes [9]. Thus,
reporting effects per GRS SD is more effective for cross-
study and cross-trait comparisons.

The contribution of GRSs to quantitative cardiovascular
traits, such as CAC, is typically reported as the percent of
variation in the trait explained by the GRS. This may be
assessed before and after adjustment for traditional cardiovas-
cular risk factors (e.g., body mass index (BMI), lipids, HTN,
diabetes, and others). For clinical outcomes, such as CAD or
HTN, the predictive capacity of the GRS is most commonly
evaluated using metrics for risk discrimination and risk reclas-
sification (reviewed in [16]). Prediction models are construct-
ed before and after including traditional cardiovascular risk
factors and/or family history of disease. If the GRS signifi-
cantly improves prediction after inclusion of traditional risk
factors, it demonstrates the potential for clinical utility through
more accurate disease risk prediction for patient populations.
The area under the receiver operating curve (AUC, or c-
statistic) is commonly used to assess discrimination between
people with and without disease [17–19]. The c-index is the
analogous measure for survival data. Higher AUCs indicate
more accurate discrimination, and model improvement is
assessed by change in AUC across models. However, many
have argued that AUC-based methods may not be optimal for
predicting risk [19]. The net reclassification improvement in-
dex (NRI) is a popular choice for evaluating risk reclassifica-
tion [16, 20, 21, 22••]. This statistic evaluates a prediction
model’s ability to correctly reassign individuals into disease
classifications when compared to a different model. Positive
values of NRI correspond to prediction improvement. Clinical
NRI corresponds to correct risk reclassification of individuals
at intermediate risk for disease and may be more clinically
relevant than the traditional NRI [23]. Other methods for
assessing the potential for clinical utility, such as the integrat-
ed discrimination improvement (IDI) [20], are also available.

Applying GRSs to Cardiovascular Traits

A variety of approaches have been used to examine the rela-
tionship between GRSs and cardiovascular traits. Below, we
discuss the current literature on (1) CAD/CHD-associated
SNPs predicting CAD/CHD, (2) blood pressure (BP)-associ-
ated SNPs predicting BP and HTN, both within and across
ethnic groups, (3) intermediate trait-GRSs predicting cardio-
vascular outcomes, (4) GRSs predicting composite CVD, and
(5) GRSs associated with subclinical measures of heart dis-
ease. Representative examples of studies that fall into each of
these categories are provided for dichotomous cardiovascular
outcomes and quantitative cardiovascular traits in Tables 1
and 2, respectively.
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CAD/CHD-Associated SNPs Predicting CAD/CHD

The original concept of using GRSs to predict cardiovascular
disease focused on using SNPs associated with the trait of
interest to predict that same trait (i.e., CAD-GRS to predict
CAD). Several studies have used SNPs found to be associated
with CAD in consortium-based meta-analyses to construct
GRSs for evaluation with respect to CAD/CHD in EA popu-
lations. For example, a weighted 24-SNP GRS constructed
using CAD-associated SNPs from four meta-analyses was
significantly associated with incident CHD in a Finnish cohort
of >24,000 individuals (HR=1.27 per GRS SD) [24]. A study
of >10,000 Swedes showed similar results for a 46-SNP GRS
constructed using CAD-associated SNPs from the largest
CAD meta-analysis to date [12] (HR=1.54 for incident
CHD comparing first versus fourth GRS quartile) [25]. In both
studies, as is often the case when using GRSs to predict car-
diovascular disease outcomes, models including the GRS
modestly but significantly improved risk reclassification be-
yond traditional risk factors, but discrimination was not
improved.

BP-Associated SNPs Predicting BP and HTN

The strength of association between GRSs constructed from
BP-associated SNPs and HTN or BP has been examined in
EA populations. In 2009, the International Consortium for
Blood Pressure Genome-Wide Association Studies consor-
tium (ICBP) conducted a GWAS meta-analysis of HTN and
BP phenotypes in >200,000 EA [26]. A GRS was created
from 29 SNPs associated with systolic blood pressure (SBP)
and/or diastolic blood pressure (DBP) at p<5×10−9, weighted
by the mean effect size for SBP and DBP. The GRS was
evaluated in an independent cohort of 23,294 women and
showed an increase of 1.65 and 1.10 mmHg per SD of the
GRS for SBP and DBP, respectively, as well as a 23 % in-
crease in the odds of HTN. When this same GRS was evalu-
ated in a longitudinal study of >17,000 Swedes, a 1 SD in-
crease in GRS was significantly associated with an increase of
1.0 and 0.6 mmHg in SBP and DBP, respectively, as well as a
61% increase in the odds of hypertension at baseline [27]. The
proportion of variation explained by the GRS was 1.0, 0.7,
and 2.9 % for SBP, DBP, and HTN, beyond traditional risk
factors. Changes in SBP (beta=0.03 mmHg), DBP (beta=
0.023 mmHg), and HTN incidence (OR=1.11) were also sig-
nificantly associated with the GRS. In this study, discrimina-
tion for HTN was marginally but not significantly improved
by adding the GRS to traditional risk factors. These studies
show that while GRSs created for BP and HTN are strongly
associated with these traits, clinical utility may be limited.

GRSs consisting of BP-associated SNPs have also been
evaluated in non-EA ethnicities. A trans-ethnic GWAS meta-
analysis with an African-ancestry discovery sample and a

multi-ethnic replication sample identified five SNPs credibly
associated with blood pressure that were not previously iden-
tified through EA meta-analyses [13]. In the African-ancestry
discovery sample, a weighted GRS with these five SNPs ex-
plained 0.44 and 0.54 % of the variation in SBP and DBP,
respectively, after adjustment for age, body mass index, gen-
der, and the top ten genetic principal components (to account
for ancestry). A composite score that included the five SNPs
along with the 29 ICBP variants [26] explained 0.80 and
1.42 % of the variation in SBP and DBP. This illustrates that
GRSs constructed from SNPs identified in EA-only meta-
analyses are often associated with the same traits in other
ethnicities but to a lesser degree than in EA samples. In addi-
tion, ethnicity-specific SNP identification often leads to an
increase in predictive capacity for GRSs, underscoring the
need for GWAS meta-analyses that include multiple ethnic
groups.

A GWAS meta-analysis with over 80,000 Han Chinese
(including discovery and replication samples) identified sev-
eral SNPs that met genome-wide significance for association
with SBP, DBP, and/or HTN [14]. A GRS was constructed
that included these SNPs as well as SNPs from previous
GWASmeta-analyses that were conducted in EA-only or East
Asian-only samples. Prior to inclusion in the GRS, SNPs iden-
tified in the EA or East Asian meta-analyses were screened to
have at least nominally significant associations with BP in the
Han Chinese sample. In a subset of >28,000 subjects, the GRS
was significantly associated with HTN (OR=1.66 for the
highest versus lowest quintile of GRS) and was also signifi-
cantly associated with SBP and DBP. This study illustrates a
well-powered hybrid approach to GRS SNP selection for use
in non-EA ethnic groups.

Intermediate Trait-GRSs Predicting Cardiovascular
Outcomes

In order to gain a better understanding of the relative genetic
contribution of specific intermediate pathways or risk factors
to cardiovascular traits, GRSs constructed from SNPs associ-
ated with intermediate traits (e.g., CAC) may be evaluated for
association with cardiovascular outcomes such as CHD,
stroke, and CVD. This approach can augment or extend find-
ings from studies using GRSs constructed from trait-specific
SNPs. For example, GRSs constructed from BP-associated
SNPs (SBP and DBP separately) were associated with inci-
dent CHD, IS, and CVD in a large cohort of Finnish subjects
(HRs for CHD=1.25 and 1.23; HRs for IS=1.25 and 1.35;
HRs for composite CVD=1.23 and 1.26 for GRSSBP and
GRSDBP, respectively). This study illustrates that the genetic
factors that influence BP also have a significant effect on
clinical outcomes [28].

In some cases, constructing GRS based on intermediate
traits may be the only option due to the relative lack of studies
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or replicable significant findings from meta-analyses for the
trait itself. For example, large-scale meta-analyses of stroke or
IS are just beginning to emerge ([29, 30], but the sample sizes
are typically smaller for this cardiovascular trait than other
CVD outcomes (such as CHD) or for intermediate traits (such
as BP or lipids). Several studies have evaluated the relation-
ship between intermediate trait or risk factor-based GRSs and
IS. For example, a GRS constructed from SNPs associated
with BP was significantly associated with IS in a Swedish
sample of 3,677 stroke cases and 2,415 controls (OR=1.09
per SD increase in GRS) [31]. The addition of the GRS dem-
onstrated weak but significant improvement in risk reclassifi-
cation. A GRS constructed from atrial fibrillation-associated
SNPs was also significantly associated with incident IS in
Swedish participants (HR=1.23 comparing top and bottom
quintiles of GRS) and modestly but significantly improved
risk discrimination and reclassification [32]. AGRS construct-
ed from high-density lipoprotein cholesterol (HDL-C) SNPs,
however, was not associated with incident IS in European
Americans [33].

Recent studies have now gone further to combine SNPs
associated with multiple intermediate traits into a composite
risk score. For instance, Malik et al. combined SNPs credibly
associated with atrial fibrillation, CAD, HTN, and SBP into a
single 113-SNP GRS and found that it was significantly asso-
ciated with IS in both clinic-based case-control and
population-based samples (OR=1.06 per GRS SD in case-
control sample) [34]. Adding the GRS improved prediction
of IS beyond a sex-adjusted model in the case-control sample
but not in the population-based sample. Another emerging
strategy for creating a composite GRS is to combine interme-
diate trait-associated SNPs with SNPs identified for the trait
itself. In a meta-analysis of four population-based EA cohorts,
a 324-SNP GRS comprised of SNPs credibly associated with
stroke and nine stroke risk factors improved discrimination
and risk reclassification for IS beyond a well-validated risk
factor prediction model [35•].

Studies have also evaluated whether GRSs constructed
from CHD-associated SNPs only, intermediate trait-
associated SNPs only, or the combination of both types of
SNPs are predictive of CHD [25, 36]. A case-control study
of individuals in the Netherlands found that the best predictor
of CHD was a weighted 29-SNP GRS consisting of CHD-
associated SNPs only, with an HR=1.12 per risk allele after
adjustment for traditional risk factors [36]. Other GRSs that
included intermediate trait SNPs were less strongly associated
with CHD and were attenuated after risk factor adjustment. A
separate study in Swedes, however, found that the CHD-
specific GRS and the GRS constructed from CHD-plus inter-
mediate trait-associated SNPs were similarly associated with
CHD (HR=1.5 for first vs. fourth quartile of GRS) after ad-
justment for traditional risk factors, and that risk reclassifica-
tion was modestly but significantly improved beyond

traditional risk factors for both GRSs, although the AUC
was not [25]. Taken together, these studies suggest that adding
SNPs from intermediate traits to a trait-specific GRS may not
improve prediction of cardiovascular outcomes.

GRSs Predicting CVD as a Composite Phenotype

To date, there have been few consortium-based GWASs that
use a composite CVD phenotype (including both heart disease
and stroke) as the outcome measure, although some are be-
ginning to emerge [37•]. Instead, GWAS meta-analyses have
focused on specific CVD endpoints (such as CAD/CHD, MI,
or stroke), subclinical CVD phenotypes (such as CAC, IMT,
and plaque), and intermediate phenotypes (for a review, see
[38]). Following this trend, many GRSs evaluated for their
prediction of CVD have been constructed using these trait-
specific SNPs from consortium-based GWAS meta-analyses.
Studies that specifically evaluate the shared genetic variation
between CAD and stroke may lead to a more refined set of
SNPs that best predict composite CVD.

In early work on CVD, Paynter et al. constructed an un-
weighted 12-SNP GRS from published associations with
CVD-related endpoints (p<10−7 in meta-analysis) and found
a significant relationship with incident CVD in EA women
(per-allele HR=1.05), although this association was attenuat-
ed upon adjustment for traditional risk factors [39]. A second
unweighted 101-SNP GRS also included SNPs associated
with intermediate traits (cholesterol, BP, diabetes, etc.), but
the effect of this GRS on CVD was weaker (per-allele HR=
1.02). Thanassoulis et al. found a significant association be-
tween incident CVD and an unweighted 13-SNP GRS con-
structed from MI/CHD-associated SNPs, with HR=1.05 per
allele after adjustment for CVD risk factors and parental his-
tory of CVD in the Framingham Heart Study [40]. However,
an unweighted 102-SNP GRS that included SNPs associated
with intermediate traits was not associated with CVD. These
studies show that GRSs with CHD/CAD-associated SNPs are
more strongly predictive of composite CVD than more com-
prehensive GRSs that include intermediate trait-associated
SNPs. The same 13-SNP GRS used in Thanassoulis was also
found to be significantly associated with prior CVD (OR=
1.51) as well as CVD mortality (HR=1.35) in EAs with dia-
betes, after adjustment for CVD risk factors [41]. In all stud-
ies, the GRS failed to improve discrimination, although it did
modestly improve risk reclassification of some CVD cases in
the latter two studies.

GRSs Associated with Subclinical Measures of Heart
Disease

Since only a very small number of SNPs have been reliably
associated with artery calcification and IMT, studies have pri-
marily focused on the evaluation of GRSs constructed from
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CAD/MI and/or other risk factor-associated SNPs with sub-
clinical measures of heart disease. In an EA cohort, a GRS
created from three SNPs that have been credibly associated
with CAC explained 2.4 % of the variation in CAC, and a 45-
SNP GRS constructed from CAD-associated SNPs explained
an additional 4 % [6]. Another study conducted in EA found
that a GRS from the same three CAC-associated SNPs was
associated with calcification in multiple vessel beds, but the
associations were no longer significant after adjusting for tra-
ditional cardiovascular risk factors [42]. A 132-SNP GRS cre-
ated from SNPs associated with lipids was also associated
with vessel bed calcification, though less strongly than the
GRS that contained only CAC-associated SNPs. A third study
conducted primarily in EAs found a relationship between
plaque and GRSs constructed from lipid-associated SNPs
but very limited associations between those GRSs and IMT
[43]. However, a separate study found that IMTwas associat-
ed with a GRS that included five fasting glucose-associated
SNPs (beta=0.0048 mm per GRS SD) [44]. Overall, these
studies illustrate that SNPs associated with intermediate traits
may be useful for explaining variation in subclinical pheno-
types but that more work is needed to identify the SNPs most
strongly associated with artery calcification and IMT.

Emerging Uses of GRS

Prediction in Clinical and High-Risk Populations

Currently, there is interest in exploring whether GRSs are
associated with CVD outcomes and subclinical phenotypes
in clinical and other high-risk populations. Accurate pre-
diction of CVD events in high-risk populations, such as
those with comorbidities, is imperative because patients
are treated according to their risk classification. Initial in-
vestigations indicate that GRSs are associated with CVD
in populations with comorbidities. For example, as
discussed previously, GRSs constructed from CAD/CVD-
associated SNPs are associated with CVD, CAC, and
CVD mortality in EAs with diabetes, even after adjusting
for traditional risk factors [41]. There has also been inter-
est in investigating whether GRSs may be useful for sec-
ondary prevention, but most studies have indicated that
GRSs are not particularly successful at predicting new
CVD events in patients with previous CVD. For example,
in a study of 5,742 patients with symptomatic vascular
disease, a 30-SNP GRS constructed from CAD-associated
SNPs was not able to significantly improve 10-year risk
prediction of a composite CVD outcome consisting of MI,
stroke, and vascular death [45•]. In a separate study of
subjects undergoing heart catheterization, GRSs construct-
ed from CAD/MI-associated SNPs were associated with
prevalent, but not incident, MI [46]. More work is needed

to assess whether the use of GRSs will translate to clinical
utility in terms of risk assessment and ultimately differen-
tial treatment in high-risk populations.

GRS-by-Environment Interaction Studies

Cardiovascular disease is likely to be due, in part, to interac-
tion between genetic and non-genetic components [47], in-
cluding demographic, dietary, behavioral, environmental,
and social factors. Studies of common, chronic diseases have
recently begun to utilize GRSs as the genetic variation in
gene-by-environment interaction studies, since GRSs cumu-
latively explain more trait variation than individual SNPs.
GRS-by-environment interaction studies are emerging in obe-
sity, type 2 diabetes, and lipids research. For instance, GRS-
by-age and GRS-by-BMI interactions have been reported for
type 2 diabetes [48, 49], and a GRS-by-education interaction
was observed for hemoglobin A1c [50]. Several studies have
noted GRS-by-diet interactions, including a GRS-by-sugar
sweetened beverages interaction for BMI and obesity [51], a
GRS-by-macronutrient intake interaction for adiposity traits
[52], and a GRS-by-adiposity interaction for triglycerides
and HDL-C [53]. This avenue of research is likely to lead to
a greater understanding of the etiological factors that underlie
the development of complex diseases and thus represents a
promising direction for cardiovascular research.

GRSs as Instrumental Variables in Mendelian
Randomization Studies

Mendelian randomization is a method for obtaining an
unbiased estimate of the potential causal effect of a risk
factor on an outcome of interest using observational
data. With this approach, genetic variants are used as
an instrumental variable, or a proxy, for the risk factor.
GRSs have become a popular choice for instrumental
variables because they typically explain more trait vari-
ation than single SNPs [10••]. Recent applications of
GRSs in Mendelian randomization studies for cardiovas-
cular diseases include the use of a 14-SNP GRS to
explore the causal relationship between HDL-C and
MI [54] and an 8-SNP GRS to evaluate the relationship
between uric acid and multiple cardiometabolic pheno-
types [55]. Burgess and Thompson thoroughly review
the use of GRSs as instrumental variables in Mendelian
randomization studies and provide simulation studies
and recommendations for use [10••]. The extension of
Mendelian randomization techniques to other data types,
such as epigenetic and metabolomic data, may also be a
promising area of research for cardiovascular disease
and is discussed in [56].
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Conclusions

As we take stock of the findings from GWAS meta-analyses
conducted over the past decade, the GRS has been one of the
most promising ways to aggregate multiple sets of results into
a single genetic predictor for cardiovascular disease. More
work is needed to identify the genetic factors associated with
subclinical phenotypes and cardiovascular outcomes, espe-
cially in non-EA populations, so that GRSs can most effec-
tively capture relevant genetic variation. Questions remain
about the ultimate clinical utility of the GRS, but further in-
vestigation in high-risk populations and new ways to combine
GRSs with traditional risk factors may prove to be fruitful.
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