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Abstract Healthcare databases have been used in the past
four decades to identify, refine, and evaluate potential safety
signals of marketed medical products. Critics have challenged
this research because data are from secondary sources and
because some published studies have lacked robust methods
for exposure and outcome definition and failed to adequately
control for biases. We review the history of healthcare data-
bases used in pharmacovigilance for quantifying adverse out-
comes associated with therapeutics, methods to improve the
qual i ty of this research, and best pract ices for
pharmacoepidemiologic studies. Drug and vaccine safety
studies increasingly use information from multiple healthcare
databases, with analyses that aim to keep patient-level identi-
fying data with local research custodians. Analytic methods,
including high-dimensional exposure propensity scores, use
large numbers of variables to reduce confounding and further
anonymize patient data. However, due to gaps in and com-
plexities of the available databases, the value of the research
depends on experts with knowledge about the clinical context
(e.g., how products are prescribed and taken, how outcomes
are diagnosed and recorded, what risk factors must be consid-
ered), understanding the nuances of individual databases and

the clinical practice patterns they represent, and utilizing study
designs that minimize bias, particularly confounding by med-
ication indication.
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Introduction

Existing healthcare databases, such as electronic medical re-
cords, insurance claims, and disease registries, have emerged
over the last four decades as major sources of information on
the safety of therapeutics such as medicines, biologics, vac-
cines, and devices following their marketing approval. Impor-
tant adverse events can be identified in this general-use setting
that might not be observed in preapproval clinical trials be-
cause the general-use setting includes more patients exposed
to the therapeutics and greater diversity related to age, sex, co-
morbidities, co-medications, and treatment adherence.

Applications of these data for medical product safety eval-
uation fall into three general categories: (1) signal generation,
that is data mining to identify new signals of possible but
previously unknown exposure–outcome associations; (2) sig-
nal refinement, including routine and sequential monitoring for
predefined exposure–outcome combinations to follow up on
potential signals; and (3) signal evaluation, or protocol-driven
studies for selected exposure–outcome combinations. The ear-
liest uses of healthcare databases focused on signal evaluation,
but all three applications are being used in some settings.

Cynics have long challenged the use of healthcare data-
bases in the study of medical product safety. One of the
earliest and most vociferous published criticisms came from
Samuel Shapiro, who in 1989 evaluated ten published studies
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against standard research validity criteria: (1) exposures and
(2) outcomes should be appropriately defined; (3) exposure
must precede the outcome in time; (4) bias and (5) confound-
ing should be controlled; (6) findings should be internally and
externally coherent; (7) findings should have statistical stabil-
ity across logical strata such as medication dose; and (8)
measures of association should have reasonable statistical
precision, especially when increased risks are being excluded
[1]. Of the ten early studies selected for review, Shapiro
judged that six fulfilled none or only one of the eight criteria
and only two fulfilled six or more. One may take exception to
the specific criteria, their applicability to these studies, and the
wisdom of publishing this critique; nevertheless, the paper
reminded the research community that database studies de-
serve critical evaluation against scientific principles. In a
commentary in 2010, David Grimes described research find-
ings from database studies, including some conducted in the
Danish national patient registries, as “garbage in, garbage out”
[2]. Both papers sparked controversy and fueled a mostly
healthy debate that led to improvements in database research.
Over time, research methods, the quality and quantity of
databases, and the sophistication of the research community
evolved substantially. We have also seen the emergence of
best practice guidance and better targeting of studies to data-
bases that are ‘fit for purpose.’

Use of healthcare databases in pharmacoepidemiologic
research has more recently been embraced with renewed
enthusiasm, and even promoted by law in the USA [3].
The US Food and Drug Administration (FDA) Sentinel
Initiative, the Observational Medical Outcomes Partnership
(OMOP) [now part of the Innovation in Medical Evidence
Development and Surveillance (IMEDS) program], and
Exploring and Understanding Adverse Drug Reactions
(EU-ADR; described further in this article) are projects
that each employ a collective of health databases to ad-
dress medical product safety issues, making data available
on large numbers of individuals (up to hundreds of mil-
lions) but increasing the likelihood that numerically small
exposure–outcome associations with very narrow confi-
dence limits may lead readers to falsely accept the exis-
tence or absence of a true association, even if erroneous,
biased, or biologically implausible.

Does the current enthusiasm for real-world data oversell
the utility of these data sources for addressing all potentially
important questions of medical product safety? This article
traces the development of product safety research using
healthcare databases, from single-database studies to research
and monitoring programs using multiple databases. We re-
view (1) the history of administrative claims, electronic health
records, and multiple databases used for pharmacovigilance;
(2) the evolution of methods to improve the quality of this
research; and (3) best practice recommendations for meeting
the challenges of conducting this research.

Healthcare Databases: From One to Many

When drugs receive regulatory approval, the complete safety
profile is unknown [4], which is why many countries have
established formal spontaneous adverse event detection and
reporting activities [5]. However, the resulting signal informa-
tion provides only qualitative information due to incomplete
ascertainment of the count of adverse events (numerator of a
measure) and the total number exposed to the product (de-
nominator of a measure). More importantly, a noted signal
does not imply a causal relation between the drug and the
adverse event. In fact, an important next step is to consider
whether the signal may be plausible, given the nature of the
signal, mechanism of action of the product, and temporal and
biological plausibility [6]. Once a safety signal has been
identified and deemed a possibility, regulatory authorities
typically request post-authorization safety studies that use
appropriate study designs with comparison groups, rigorous
methods, and data sources that can provide valid estimates of
numerators and denominators. The need for this post-
authorization research has influenced the design and analysis
of pharmacoepidemiologic research studies using healthcare
databases.

Single Databases

I n t h e U SA , u s e o f s i n g l e d a t a b a s e s f o r
pharmacoepidemiologic research began in 1979 when Jick
and colleagues evaluated the association between post-
menopausal estrogens and endometrial cancer using the Group
Health Cooperative (GHC) of Puget Sound database [7]. GHC
is a managed care organization that was initiated in Seattle,
Washington, in 1947. GHC covered outpatient and inpatient
care and prescriptions for approximately 250,000 members at
the time the Jick et al. study was completed. Since then, US
health insurance databases from commercial payers (e.g.,
UnitedHealthcare and WellPoint) and federal payers (e.g.,
Med i c a i d and Med i c a r e ) h av e be en u s ed fo r
pharmacoepidemiology studies [8]. These claims databases
typically have information on outpatient and inpatient services
experienced, outpatient drugs dispensed, emergency care, men-
tal health care, and laboratory and radiographic tests [8, 9].
They do not usually have clinical information such as the
results of laboratory tests or vital signs such as blood pressure.

Similar database research has been conducted in Canada
using administrative claims data from Saskatchewan province
[10]. In the late 1980s, general practitioners in the UK
established Value Added Information Medical Products
(VAMP) to facilitate management of medical record data and
build an information database [11, 12]. The VAMP database
later became the General Practice Research Database (GPRD)
and is now the Clinical Practice Research Datalink (CPRD). In
The Netherlands, two databases were initiated, PHARMO [13]
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and the Integrated Primary Care Information database [14].
Some websites maintain a catalog of databases that can be used
for research, along with contact information [15–17].

Multiple Databases

Because an individual database may not be large enough to
evaluate rare outcomes that may occur as a result of exposure
to biologics or medications, initiatives such as the Vaccine
Safety Datalink (VSD) and the HMO Research Network
(HMORN) include multiple data sources. Sponsored by the
US Centers for Disease Control and Prevention, the VSD was
begun in 1990 to monitor the safety of vaccines using data
from Kaiser Permanente Northwest, Northern California, and
Southern California, and from GHC of Puget Sound [18]. It
now uses data from an additional five healthcare organiza-
tions: HealthPartners, Minneapolis, Minnesota; Harvard Pil-
grim Health Plan, Boston, Massachusetts; Kaiser Permanente,
Colorado; Kaiser Permanente, Georgia; and Marshfield Clin-
ic, Marshfield, Wisconsin [19]. Only Kaiser Permanente
Northwest, Northern California, Southern California, and Col-
orado, GHC, and the Marshfield Clinic provide data routinely,
with the remaining three participating in select studies
(DeStefano F. In: West SL, editor, 2014, personal communi-
cation). Since its inception, VSD researchers have published
almost 150 peer-reviewed articles on investigations related to
influenza; diphtheria, tetanus, pertussis; rotavirus; human pap-
illomavirus; pneumonia; measles, mumps, rubella; zoster;
hepatitis; and meningococcal vaccines. They have also con-
ducted studies describing the design and analysis of studies for
signal detection of adverse events that might be associated
with specific vaccines [20–24], vaccine coverage [19, 24, 25],
and algorithms for identifying outcomes [26, 27], and they
have published articles on using electronic healthcare data-
bases for assessing vaccine safety [28–35].

HMORN was initiated in 1995 when several healthcare
research networks decided to pool data to “increase sample
size and population diversity” [36]. HMORN includes the same
members as the VSD but has expanded to include nine others
[37]. In the 19 years since its inception, HMORN researchers
have published more than 2,000 articles, many of which were
protocol-driven single-exposure outcome studies.

The success of HMORN’s Virtual Data Warehouse and
distributed data model led to the FDA’s Mini-Sentinel pilot
program, which was established to perform active surveillance
[38] using 16 data sources, including HMORN and additional
commercial insurance claims data sources (Table 1). In 2011,
Canada launched the Canadian Network for Observational
Drug Effect Studies (CNODES), which uses claims data from
seven provinces: British Columbia, Alberta, Saskatchewan,
Manitoba, Ontario, Quebec, and Nova Scotia [40].

Researchers in Europe have also developed an ongoing
data network, the EU-ADR, consisting of eight databases

(one is a pediatric database) from The Netherlands, Denmark,
the UK, and Italy, facilitating both surveillance [39, 41] and
protocol-driven studies to evaluate signals [39] (Table 1).

Currently, healthcare data from more than 100 million
individuals are available from the Mini-Sentinel project, 21
million from EU-ADR, and possibly another 40 million from
CNODES, with other networks in development [41]. Cross-
continent collaborations are ongoing, and the potential to pool
data from across multiple continents exists.

Evolution of Methods Applied to Healthcare Databases

In this section, we briefly describe methods and processes to
handle the increasingly vast amounts of information contained
in automated health databases to conduct product safety re-
search. Sound design and analysis are prerequisites for valid
results, but mistakes in the design phase are often impossible
to recoup later and may have a major influence on results. In
contrast, analytic mistakes are often revealed because multiple
analyses are performed, are straightforward to address.

Study Design Aspects

In the 1990s and early 2000s, a number of papers noted that
jazz musicians did not live shorter lives despite a life of
excesses [42], that Oscar winning actors and actresses lived
longer than non-winning candidates [43], and Popes lived
longer than artists [44]. Letters [45] and re-analyses of the
original data [46–48] pointed to immortal-time bias, which
had been described previously in textbooks [49] but not
widely recognized. Two methods publications described this
bias, caused by person-time not at risk of the outcome that is
retrospectively assigned an incorrect exposure status or incor-
rectly excluded from the study population experience [50, 51].
These publications highlighted the methodological problems
of using future information (accessible in database studies) to
characterize exposure in observational cohort studies.

Disagreements in results from interventional and observa-
tional research on the coronary safety of hormonal replace-
ment therapy led to development of the currently considered
state-of-the-art new-user design [52]. With this design, only
new users of the study exposures are eligible for inclusion,
thereby reducing the risk of adjusting for factors that may be
on the causal pathway and that may have been affected by
treatment before study entry as well as ensuring that events
occurring prior to study entry have been ascertained [52]. The
best study-specific definition of new or incident drug use will
address by a trade-off between internal validity and applica-
bility, especially in the context of comparative effectiveness or
safety research [53], in which the treatment of interest is
compared with alternative treatments. Comparative
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effectiveness/safety research combined with the new-user de-
sign allows researchers to minimize confounding by indica-
tion at the design stage by comparing subjects with similar
baseline risks related to the indication [54], while providing
clinicians with evidence directly applicable to their practice.
Selection bias related to time on treatment and created by the
healthy user effect is also eliminated at baseline [55].

Analytical Aspects

Starting in the late 19th century, techniques related to what we
currently know as correlation and regression relied on strati-
fication of data and tabular analyses [56] and were based on a
single or a limited number of predictors. Now, we know of

numerous patient and physician characteristics that influence
disease risk, prescribing, and diagnosing and that may act as
c o n f o u n d i n g o r e f f e c t -mod i f y i n g f a c t o r s i n
pharmacoepidemiologic research. Also, an individuals’
healthcare services utilization affects prescribing and eventual
diagnosis and is often treated as a confounding factor [57].

Healthcare databases containing administrative data or
electronic medical records can contain a large number of
variables. Although less so than early stratification methods,
regression models may nonetheless be limited in the number
of covariates they can accommodate [58, 59] depending on
the frequency of the outcomes. Methods to limit the number of
variables to include in statistical models while retaining the
ability to control for confounding summarize, in one score, the

Table 1 Populations included in the US Food and Drug Administration’s Mini-Sentinel Pilot and the Exploring and Understanding Adverse Drug
Reactions (EU-ADR) programs

Data partner Population size
(approximate)

Source

Mini-Sentinel

Aetna 45 million http://www.aetna.com/about-us/aetna-facts-and-subsidiaries/aetna-facts.html

HealthCore, Inc. 43 million http://healthcore.com/home/hc_home.php

HealthPartners 12 million https://www.healthpartners.com

Group Health Cooperative 600,000 https://www1.ghc.org/html/public/about/index.html

Harvard Pilgrim Health Care Institute 1.2 million https://www.harvardpilgrim.org/pls/portal/docs/PAGE/MEMBERS/ABOUT/
FINANCIALS/FINANCIAL_FILES/Q1-2014-FINANCIALS.PDF

HealthPartners Institute for Education
and Research

1.5 million https://www.healthpartners.com/public/about/quick-facts/

Henry Ford Health System (Health
Alliance Plan of Michigan)

> 675,000 http://www.henryford.com/body.cfm?id=38768
https://www.hap.org/

Marshfield Clinic Research
Foundation

400,000 https://www.marshfieldclinic.org/about-us

Meyers Primary Care Institute 500,000 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3421389/

Humana’s Comprehensive Health
Insights, Inc.

11.3 million http://www.competitive-health-analytics.com/research/data_assets.asp

Kaiser Permanente 9.3 million http://share.kaiserpermanente.org/article/fast-facts-about-kaiser-permanente/

UnitedHealthcare 70 million https://www.unitedhealthcareonline.com/b2c/CmaAction.do?channelId=
6518c7958f5fa010VgnVCM100000c520720a____

Vanderbilt University Medical Center 1.2 million http://www.tn.gov/tenncare/

EU-ADR Coloma et al., 2011 [39]

Italy

Pedianet 160,000 children

HSD 1.5 million

Lombardy Regional 9 million

Tuscany Regional 3.5 million

Netherlands

IPCI 1.5 million

PHARMO 3 million

UK 4 million

QRESEARCH

Denmark 1.8 million

Aarhus

HSD Health Search/CSD LPD, IPCI Integrated Primary Care Information
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effect of many measured variables (exposure propensity
scores [60, 61] and disease risk scores [62]) or rely on a proxy
for measured and unmeasured confounders (instrumental var-
iables [63]). Exposure propensity scores can take advantage of
the availability of large numbers of variables for the study of
common exposures and rare outcomes [64]. A semi-
automated version of propensity scores called high-
dimensional propensity score combines subject matter knowl-
edge and epidemiologically appropriate automated variable
selection from large pools of variables in healthcare data
[65]. Variables derived from healthcare data, such as prescrib-
ing preference at the physician or hospital level, have been
used as instrumental variables [66, 67].

Methods Appropriate for Multiple Data Sources

Meta-analytical techniques allow analytical results or
individual-level data from different studies to be combined.
While most commonly used to combine results from pub-
lished literature, meta-analytical techniques can also be used
to pool results from prospectively planned research. Thus, in
prospectively designed multinational studies, which may use
retrospective data, a parent protocol is adapted to the local data
specifications to decrease study design heterogeneity across
sites [68–70].

Newer approaches standardize automated healthcare data
to a common data model to create very large analytic datasets
not limited to specific exposure–outcome associations, includ-
ing initiatives such asMini-Sentinel [71••] and theMedication
Exposure in Pregnancy Risk Evaluation Program (MEPREP)
[72]; these initiatives typically put in place processes for
running common programming code as well. Mini-Sentinel
data partners extract data, transform them into the Mini-
Sentinel common data model, and load their source data, with
the resulting data stored as tables within a relational database.
The Mini-Sentinel Operations Center sends an executable
program to the secure Mini-Sentinel Secure Portal to query
the Mini-Sentinel Distributed Database. Each data partner
runs the program on its own data transformed to the common
data model behind its data security firewalls. Only aggregated,
rather than patient-level, results are uploaded to the secure
portal for retrieval by the Mini-Sentinel Operations Center.
Mini-Sentinel researchers have also investigated a privacy-
maintaining method that allows pooled analyses on
individual-level data with full confounder adjustment [73•].

A different approach to data sharing has been taken in the
signal-evaluation observational component of programs such
as SOS (Safety Of non-Steroidal anti-inflammatory drugs)
[70] and SAFEGUARD [74] aimed at studying specific
groups of exposure–outcome associations. Research partners
extract and elaborate data following criteria agreed among the
research partners and create aggregated tables in a standard-
ized format for submission to custom-built Jerboa software.

Jerboa combines the tables and runs the statistical analyses at
the central level [39]. Appropriate software and hardware
infrastructure ensures central data storage and remote secure
data access by geographically dispersed research partners. The
EU-ADR Alliance also relies on Jerboa software to create an
ongoing platform that maintains the ability to study a wide
scope of associations [41]. Methods developments within the
EU-ADR include the harmonization of event definition and
validation across databases [75–77].

Methods for sequential safety analysis have been in use for
some time in VSD and are being implemented in Mini-Senti-
nel, including a variation of the log likelihood ratio test,the
creation of propensity score-matched cohorts (sequential co-
hort designs), and implementation of generalized estimating
equations [23, 31, 78, 79•, 80].

Improving the Methodology

OMOP, now part of IMEDS [81•, 82, 83], was a 5-year
public–private partnership begun in the USA in 2008 that
focused on identifying good methods for medical product
safety research in healthcare data and establishing a shared
resource for scientific collaboration [68, 84]. OMOP main-
tains a publicly available methods library including methods
for sequential safety monitoring [85]. OMOP’s research and
tools have been instrumental in evaluating the utility of iden-
tical methods on results from a variety of US data sources [86]
and the effect of applying a variety of study designs to address
a single question [87]. OMOP methods have also been repli-
cated in six European databases that contribute to EU-ADR
[88].

Best Practices

As the availability of large clinical and claims databases
increased, their use in non-interventional research to evaluate
the effect of pharmaceuticals on health outcomes has in-
creased. With this, it has been essential that principles of
collaboration, patient privacy, and methodologic rigor be de-
veloped and followed. Table 2 lists available guidelines on a
variety of pharmacoepidemiologic topics, stratified by scope
of guideline.

The International Society for Pharmacoepidemiology guid-
ance [91] recommends that a protocol be written before and
followed during the conduct of any pharmacoepidemiologic
study and that the staff be qualified for such research; the
European Medicines Agency (2014) provides details on the
organization of such a protocol. More recently, the European
Network of Centres for Pharmacoepidemiology and
Pharmacovigilance (ENCePP) methodologic guidance [90••]
catalogs study designs and analytical methods that are
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commonly used in non-interventional research of medications
and describes the importance of implementing and
documenting quality control and quality assurance procedures
in non-interventional and randomized studies.

Guidance on the Use of Electronic Healthcare Databases

A number of guidances specific to use of electronic healthcare
data sources in pharmacoepidemiologic research have been
developed. To understand and select appropriate data sources
for pharmacoepidemiologic research, one should consider
data lags (i.e., time between occurrence of a medical service
or prescription and its mention in the data source), sources of
variable values (e.g., dispensed prescriptions vs. prescribed
medications), sources of bias (e.g., lack of insurance coverage
for selected services), population covered, within-patient link-
age coverage (e.g., sufficient linkage between prescription
files and hospital files), similarity of data sources if multiple
sources are used to increase numbers of included patients [94],
and reasons why patients ‘leave’ the data source (e.g., in
commercial claims in the USA, reaching age 65 years and
qualifying for Medicare). The FDA guidance also recom-
mends that an assessment of inappropriate data or missing
data be implemented and that the researcher understand the

limitations of the available data for exposure assessment [93•].
For example, exposure assessment often involves outpatient
prescription data; however, actual consumption of a medica-
tion is rarely documented.

Outcome assessment in electronic healthcare data sources
has similar challenges. Because outcomes are frequently
ascertained via hospital claims diagnoses or clinical recording
in electronic medical records, it is important to validate the
outcome of interest [93•, 97]. Claims diagnoses are generally
coded into categories that may not be specific enough, and
claims diagnoses and free text in electronic medical records
may occur because the diagnosis is being ruled out, not
because the condition has been diagnosed. In addition, sensi-
tivity analyses should be used to assess the effect of various
definitions [93•].

Guidances for Collaborations

The growing use of multiple electronic health data sources
requires cross-center rules for addressing technical issues and
policy issues. In general, each collaboration has developed its
own set of rules, and several have been published and serve as
good models (Table 2).

Table 2 Published sources that
provide guidance on conducting
pharmacoepidemiologic studies
or studies with electronic
healthcare data

Scope Guidance and source

Guidelines on conducting
pharmacoepidemiologic studies

Guideline on Good Pharmacovigilance Practices,
European Medicines Agency [89]

Guide on Methodological Standards in Pharmacoepidemiology
(Revision 3), European Network of Centres for
Pharmacoepidemiology and Pharmacovigilance [90••]

Guidelines for Good Pharmacoepidemiology Practices (GPP),
International Society for Pharmacoepidemiology [91]

Guideline on Conduct of Pharmacovigilance for Medicines
Used by the Paediatric Population, European Medicines
Agency [92]

Guidelines on conducting non-interventional
studies using a large multipurpose
healthcare database

Guidance for Industry and FDA Staff. Best Practices for
Conducting and Reporting Pharmacoepidemiologic Safety
Studies Using Electronic Healthcare Data, Food and Drug
Administration [93•]

Guidelines for Good Database Selection and Use in
Pharmacoepidemiology Research, Hall et al. [94]

GPS – Good Practice in Secondary Data Analysis: Revision
After Fundamental Reworking, Working Group for the
Survey and Utilization of Secondary Data (AGENS) [95]

Guidance on collaborations across multiple
investigators and use of multiple data
sources to increase the study size for a
single study

Mini-Sentinel Statement of Principles and Policies, Mini-
Sentinel Coordinating Center [96]

Vaccine Safety Surveillance Using Large Linked Databases:
Opportunities, Hazards and Proposed Guidelines,
Verstraeten et al. [97]

Combining Electronic Healthcare Databases in Europe to
Allow for Large-Scale Drug Safety Monitoring: the
EU-ADR Project, Coloma et al. [39]
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Verstraeten and colleagues [97] recommend the following
steps for data sources used for hypothesis generating and
hypothesis testing: (1) evaluate the data quality; (2) provide
a detailed description of data source and data linkagemethods;
(3) for screening, consider multiple comparisons; (4) use
positive controls (e.g., seizures after pertussis vaccination);
(5) split datasets into subsets and conduct multiple analyses to
evaluate the consistency of results; (6) adhere to predefined
statistical criteria; and (7) for vaccination studies, perform
minimal matching or stratification on age, time, and socioeco-
nomic status, if feasible.

The US Mini-Sentinel investigators have developed exten-
sive policies and procedures [96] to address, among other
things, agreements among collaborators on how to work and
publish results, ensuring transparency, understanding public
health practice versus research, maintaining patient privacy
protections, ensuring use of minimum required patient-
specific data, agreements on safety communications, ensuring
protocol-based assessments, and conflicts of interest. Along
similar lines, the ENCePP code of conduct has developed
guidance to promote scientific independence and transparency
in the implementation of pharmacoepidemiologic studies [98].

Other Recommendations

Many of the recommendations have been focused on signal
evaluation, with much less attention to signal refinement/
routine monitoring or signal generation using existing data-
bases. The routine monitoring process generally involves
multiple exposures and/or multiple outcomes and is addressed
through standardized computer programs or modules that are
not as focused on controlling for confounding and bias as
signal evaluation studies. Signal evaluation studies can tailor
the design, selection of covariates, and follow-up time to the
specific exposure–outcome pair. This granularity is not yet
possible in routine monitoring, and therefore results of such
monitoring generally need additional confirmation through
signal evaluation studies. A challenge faced in the era of
frequent use of multi-database studies is that the sources used
for routine monitoringmay be the only good sources for signal
evaluation studies. A group of North American and European
pharmacoepidemiologists, convened at the request of the
FDA, recently published recommendations regarding the im-
plications of using signal refinement modular programs on the
ability to perform signal evaluation studies in the same data
sources [99].

Other recommendations not necessarily specific to
pharmacoepidemiologic research include understanding
sources of unidentified confounding, providing sufficient pa-
tient identity protections and data security [94], conducting
quality checks at every step of analysis, starting with data
extraction (e.g., subsetting of study patients from the original
data source), and documenting all quality checks [94].

Complexities of Using Multiple Databases for Research

As described earlier, the use of multiple databases to evaluate
drug safety signals has been ongoing since 1995 [36].
Country- and database-specific differences in diagnosis and
treatment patterns have to be considered when pooling the
results across the databases. Source data are extracted, trans-
formed, and loaded into a common data model that uses
universal coding schemes for consistency across databases.
New methods were developed to deal with data that had to be
kept behind local research center firewalls to maintain patient
confidentiality and adhere to institutional ethical require-
ments. The efforts put forth and the progress made by those
conducting research using distributed databases have moved
the pharmacoepidemiology discipline forward by giant leaps.
Some of the challenges these innovators faced are described
below.

Because the data maintained by the data partners are often
coded using differing coding nomenclatures and data struc-
tures, those working with multiple databases use a common
data model to create a consistent layout for their research
studies. The process of deriving a common data model re-
quires extensive discussions to flesh out nuances specific to
each partner’s data (e.g., the meaning of the ordering and
maximum number of the diagnosis codes on the outpatient
and inpatient claims files, as well as whether to maintain the
detail of the original data versus bringing along the added
complexity of derived variables). Along with determining a
common data model, multiple database projects promote con-
sistency across databases by using centrally developed ana-
lytic code that is distributed to the data partners for execution
on their data [41, 100].

Besides the need for procedures promoting consistency
among the databases as described above, researchers using
multiple databases for pharmacoepidemiologic research have
also needed to develop new analytic approaches such as high-
dimensional propensity scores [79•] for controlling bias and
confounding to enhance the validity of the results [39]. Link-
age across files within a single healthcare system is feasible in
the EU-ADR because each of the four countries has national
health identifiers. In the USA, additional methodologic re-
search is needed to determine appropriate linkage algorithms
so that individuals can be linked across databases (e.g., from
different insurance companies or linking electronic health
record data to claims) in order to construct longitudinal histo-
ries, exclude duplicate histories, or identify certain outcomes
(e.g., cancer or death) [100].

Much has been accomplished by researchers using multiple
databases for drug safety research, but more needs to be done.
For example, a recent methodologic study conducted by
OMOP researchers evaluated 53 drug–outcome pairs in ten
different databases using two study designs: a new-user cohort
design with propensity score adjustment and a self-controlled
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case series [86]. The proportion of test cases that yielded
estimates of the association that were consistent in the direc-
tion of the association across databases was 23 of 53 (43 %)
for the cohort method and 18 of 53 (34 %) for the self-
controlled case series method. This heterogeneity across data
sources needs further exploration because it may affect the
utility of multiple database studies.

Conclusion

Healthcare databases can be very useful for protocol-driven
studies and for signal refinement, specifically monitoring of
predefined exposure–outcome pairs for specific outcomes that
have been validated in the individual database. Much progress
has been made since the early studies. Databases have im-
proved in number and quality, allowing us to study more
products in diverse settings and to evaluate some outcomes
that are extremely rare. Our knowledge of the strengths and
limitations of the databases has improved as more validation
studies have been conducted to compare secondary data to
source data. Some databases, such as those reflecting elec-
tronic medical records, are the source data. The use of new
methods such as the new user design, greater use of active
comparators and propensity scores, and recognition of immor-
tal time bias have improved the ability to control for con-
founding. Use of common data models and efficient methods
for conducting analyses in a distributed fashion while pooling
aggregated results have facilitated multicenter research in
settings where patient-level identifiable data must remain
behind the firewall of the individual data center, allowing for
greater research collaboration and larger studies while
protecting the privacy of patients’ personal health information.
Moreover, the evolution of policies and common expectations
for collaborative research is creating a multinational research
community in which multicenter database studies are becom-
ing common.

As a result of these advances, most safety studies published
in recent years fully address the research criteria enumerated
by Shapiro [1], particularly those relating to exposure and
outcome definition, bias and confounding, and coherence of
evidence. When researchers cannot fully address these meth-
odological questions through the research methods, they de-
scribe the limitations of methods and potential impact of the
limitations, for example by conducting sensitivity analyses.

Despite these advances, the monitoring of medical product
safety cannot yet be delegated to smart algorithms applied to
healthcare databases. There is substantial heterogeneity across
databases in content, coding systems and practices, duration
of available medical history and follow-up time, and quality of
outcome information (e.g., linkage to cancer registries and
mortality details in selected databases), and databases reflect
differences in clinical practice patterns. This heterogeneity

may be important for some exposure–outcome relationships
but not for others. Understanding the sources and implications
of heterogeneity is the subject of an active IMEDS research
program [101].

Moreover, there are data gaps owing to the secondary
nature of the data. Some of the data problems noted by Grimes
[2] have been overcome by using appropriate exposure and
outcome definitions, such as prescription records of diabetes
medications to help identify patients with diabetes, rather than
using only inpatient diagnosis data. However, many data
sources do not include information on potential risk factors
that affect health outcomes, such as use of illicit substances,
use of over-the-counter medicines, smoking, and actual ad-
herence to the medication. Some long-term outcomes, such as
cancer, cannot be studied easily because of the relatively
short-term follow-up contained in many databases. This limits
the characterization of exposure dynamics and generally trun-
cates follow-up before a reasonable latency period has elapsed
for cancer development and diagnosis. Reasons for a physi-
cian prescribing one drug over another can be measured only
by proxy indicators, meaning that confounding by indication
remains a relevant topic of concern for many exposure–out-
come pairs except when an active comparator drug is used
interchangeably for the same indication.

Even if the data gaps were filled and methods and under-
standing of the data perfected, research is still limited by the
number of persons with relevant exposures for some impor-
tant exposures and populations. Thus, the spontaneous ad-
verse experience reporting systems are still needed to generate
signals for infrequent exposures and rare outcomes. Despite
having 59,594,132 person-years of follow-up in the EU-ADR,
it was estimated that it would be possible to detect relative
risks for two outcomes of interest for commonly used medi-
cations: a relative risk of 2 for only 23 % of available medi-
cations for outcomes as frequent as myocardial infarction (an
association that would not be detectable from spontaneous
reports alone) and for only 1 % for events as rare as rhabdo-
myolysis [102]. Similar challenges have been observed for
studies on non-steroidal anti-inflammatory drugs in pediatric
populations in a multi-database project in Europe and studies
of asthma mortality in users of long-acting β-agonists in
chronic asthma in nine US databases [77, 103].

Use of healthcare databases for ‘high-throughput’ signal
refinement and wide-scale signal generation activities may not
be advisable until we can better target these applications to the
right data sources appropriate for specific exposures and out-
comes. Currently, such targeting is dependent on experts who
are knowledgeable about the clinical context (e.g., how prod-
ucts are prescribed and taken, how outcomes are diagnosed
and recorded, what risk factors must be considered). In addi-
tion, experts need to understand the nuances of individual
databases and the clinical practice patterns they represent,
and must be facile with methods for minimizing bias,
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particularly confounding by medication indication. The in-
creasing amounts of potentially linkable healthcare and non-
healthcare records from multiple ‘big data’ sources add new
challenges to such targeting. Without appropriate care, we risk
finding an overabundance of false signals and false assurance
from the absence of signals, with associated consequences for
patients and the healthcare system.
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