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Abstract Ubiquitous augmented reality (UAR) imple-

mentation can benefit smart shop floor operations signifi-

cantly. UAR from a user’s first-person view can support

and provide the user with suitable and comprehensive

information without him/her being distracted from ongoing

tasks. A natural hand-based interaction interface, namely, a

mobile bare-hand interface (MBHI), is proposed to assist a

user in exploring and navigating a large amount of infor-

mation for a task in the user’s first-person view. The

integration of a smart shop floor and UAR-based MBHI is

particularly challenging. A real shop floor environment is

composed of challenging conditions for the implementa-

tion of UAR, e.g., messy backgrounds and significant

changes in illumination conditions. Meanwhile, the MBHI

is required to provide precise and quick responses to

minimize the difficulty of a user’s task. In this study, a

wearable UAR system integrated with an MBHI is pro-

posed to augment the shop floor environment with smart

information. A case study is implemented to demonstrate

the practicality and effectiveness of the proposed UAR and

MBHI system.

Keywords Augmented reality (AR) � Mobile bare-hand

interaction (MBHI) � Smart objects (SOs) � Manufacturing

shop-floor

1 Introduction

With the development of Industry 4.0, the Internet of

Things (IoT) [1, 2], especially technologies involving

smart sensors and interfaces, will permeate all contexts of

the manufacturing industry, offering convenient and intel-

ligent digital access to physical functionalities of inter-

connected things. Lee et al. [2] developed an industrial

IoT-based smart hub that served as a gateway for existing

IoT devices and managed IoT devices at distributed loca-

tions, such as smart factories, warehouses, and offices. In

smart factories, common objects equipped with some

augmented functions, attributes, intelligence, etc., become

smart objects (SOs), which are primarily elements built

into the structure of a smart environment [3, 4]. In such

environments, the SOs are supposed to seamlessly react to

changes occurring within the surrounding smart environ-

ment and interactions from users to provide useful and

customized services [5, 6]. Interaction with SOs should

become ubiquitous, i.e., at anywhere and anytime, and as

transparent and natural as conducting daily activities to

enable users to discover and interact with SOs, e.g., smart

machines and workpieces, in a smart manufacturing envi-

ronment. Actual interactions between users and SOs

require an intuitive interaction interface that presents the

object’s functionality, e.g., providing guidance for an

ongoing task to a user and transforming user input (e.g.,

natural hand gestures) into interaction commands that

trigger actions at the SOs.

As a popular computing-assisted technology, augmented

reality (AR) can provide a seamless interface that serves as

a connection between the real and virtual world, such that

the connections between users and the smart environment

can be enhanced [7, 8]. AR has been widely implemented

as an intuitive graphical interface for users to interact with
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and program the SOs [9, 10]. Ubiquitous AR (UAR) is AR

integrated in ubiquitous multimedia environments sup-

ported by ubiquitous computing (e.g., ubiquitous tracking,

ubiquitous information presentation, and ubiquitous inter-

action) [11]. Screen-based graphical user interfaces (GUIs)

for interacting in smart environments have been widely

implemented for a long time [12, 13]. However, traditional

screen-based GUIs, e.g., desktop-based, projection, and

mobile device screens, display information on a monitor

such that the information is detached from the physical

environment, regardless of the screen’s location. Moreover,

a screen-based interface requires users to interact with the

display device physically; this prevents users from using

multiple devices simultaneously or devices that they cannot

reach physically. Compared with traditional devices, more

flexible interaction methods and tools have been developed

in some computer-vision based AR systems. Vision-

tracked fiducial markers have been used for realizing

interactions between users and SOs [14, 15]. A handheld

device-based interaction tool has been proposed for two-

dimensional (2D) to three-dimensional (3D) AR modeling

[16]. Although these devices are user-friendly, they are still

not natural.

Human hands have been used for interactive manipu-

lation and navigation in AR systems to provide more nat-

ural and user-friendly human-computer interactions (HCIs)

[17–19]. Compared with traditional HCI devices, human

hand interactions are more intuitive and convenient, and

less disturbing. Human hand interactions can be classified

into two types: device-assisted and bare-hand interactions.

Data gloves have been widely used to capture hand

motions in device-assisted hand interaction systems. The

spatial positions of the hands and joint angles can be

obtained directly from the sensors on the data gloves.

However, data gloves and connecting wires in wired data

gloves cause inconvenience to the users. Additionally, data

gloves are often unaffordable for ordinary users. In bare-

hand interaction systems, no devices or wires are attached

to a user’s hands. Natural features on the hands and hand

gestures are detected and tracked to realize a natural HCI.

Human hand interaction is more efficient than traditional

input devices, and users prefer bare-hand interactions over

interaction involving other devices [20]. Herein, a mobile

bare-hand interface (MBHI) is proposed; it allows a user’s

ubiquitous interactions with all connected SOs through

explicit and simple manipulations as well as programmable

behaviors with bare-hand gestures, which are natural to

learn.

In this study, major improvements have been made to

transform the previous desktop-based bare-hand interface

system to an MBHI system, such that users can navigate in

a smart environment and interact freely with the SOs with

bare-hand gestures. The MBHI enables users to interact

with SOs in the user’s first-person view directly, thereby

providing a continuous ubiquitous user experience in a

smart environment without distracting the user’s attention

when the user is exploring the surroundings. Developed on

a mobile processor, the MBHI provides gesture-based

freehand interactions with greater convenience and intu-

itiveness. Users can interact with SOs including machines,

workbenches, and material rack to complete tasks, such as

control machine operations, gain access to schedule

information, and program the SOs. Context adaptive AR

information overlays are aligned with the SOs to present

their attributes and functions. A case study in a smart shop

floor is implemented to demonstrate the characteristics of

the MBHI system.

The remainder of this paper is organized as follows.

Section 2 provides an overview of related work pertaining

to a user’s interaction with SOs in a smart environment. An

overview of the MBHI system is presented in Section 3,

and the details of the mobile 3D bare-hand interaction

methodology and interaction methods between users and

SOs are presented in Section 4. Section 5 discusses a case

study and the experimental results of the proposed method.

Conclusions and future work are presented in Section 6.

2 Related works

2.1 Natural-hand-gesture-based interaction

Smart interaction, which refers to natural and intuitive user

interfaces for the manipulation of augmented contents and

interaction with SOs in a smart environment, has become a

popular topic [21]. Velaz et al. [22] conducted a set of

experiments with interaction approaches including mouse,

haptic devices, and marker-less hand 2D/3D motion cap-

ture systems to compare the effects of these interaction

approaches on the manipulation of augmented contents in a

smart AR environment. A sensor-based glove was imple-

mented with a head-mounted display (HMD) to enable

users to be immersed in an AR scene and interact with the

virtual smart components [23]. Recently, hand-based

human computer interface has become a popular research

topic in IoT and AR-based smart environments (see

Table 1). Hand-based HCI aims to provide a more direct

approach for manipulating and interacting with augmented

contents of SOs. Bare-hand interaction method comprises

two main groups: indirect and direct interactions. Indirect

bare-hand interaction uses noncontact hand gestures for

interaction, and these bare-hand detection and tracking

systems identify bare-hand gestures from video streams

and use them as commands [24–26]. Meanwhile, interac-

tion and control are triggered when contact is established

between the human bare hands and virtual objects in direct
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bare-hand interactions [27]. This system recognizes user

operations from the geometrical information of a triangle

that is defined using three marker positions. A threshold

that is set to 3 cm is used to determine whether the user is

holding the object. However, this will affect the user’s

visual sensation because objects have different sizes and

shapes. A 3D vector is used to derive the angle for rotating

the object. However, the object will not be rotated when the

user rotates his/her hand along this 3D vector. In the pro-

posed system, a hand coordinate system is established on

the user’s hand to provide more accurate pinch operations.

2.2 User-smart object interaction

The rapid development of portable viewing devices with

powerful processing and graphical rendering hardware,

e.g., tablets, has resulted in an increased usage of AR as an

intuitive user interface for information display and inter-

action with machines and services in smart factories and

shop floors [3, 28, 29]. In a smart environment, machines,

which are SOs, should be capable of operating in a coor-

dinated manner and learning from their operations and

events. Hence, it is highly important to program the SOs.

Bergesio et al. [30] proposed an interaction system to allow

users to identify objects in a smart space using a

smartphone.

2.3 Summary

A review of state-of-the-art natural user interfaces and

interaction methods with SOs reveals that a natural user

interaction system that can be used to support mobile bare-

hand-based manipulation and interaction with augmented

contents of SOs in a smart environment has not been

developed yet. Specifically, a user’s ubiquitous identifica-

tion, manipulation, interaction, and programming of SOs

with bare hands during his/her navigation in a smart

environment has not been considered. A natural and intu-

itive mobile bare-hand-based interaction method that does

not require calibration and attached devices and can pro-

vide prompt and precise responses to allow a user to

interact with SOs directly and ubiquitously does not exist.

3 System overview

The proposed MBHI is a smart human-machine interface,

enabling the recognition of a user’s hand gesture such that

the user can interact with smart machines with bare hands.

In this MBHI system, a smart HMD is configured with

RGB-D cameras, motion capture systems, processors, and

network capabilities. The system can display augmented

first-person views to the users (see Fig. 1). The RGB-D

camera is used to capture the scene of the surrounding

physical environment, as well as recognize and track the

user’s hands gestures in the environment. By wearing the

smart HMD, the user can navigate within the smart shop

floor, and all the important manufacturing information can

be highlighted directly in his/her field of view using AR

contents/icons overlaid neatly over the real world. Specif-

ically, the AR contents/icons are created and geo-registered

using a Web service and visualized based on the position

and direction of sight of a user. The user can access the

manufacturing information by interacting directly with the

AR contents/icons of the smart machines. Figure 2 shows

the MBHI that allows users to interact with the smart

machines, and the interaction design is presented in the

next section. The MBHI comprises four modules: wearable

devices, hand feature extraction and tracking, hand gesture

recognition, and interaction scheme (see Fig. 2). These

modules are described in detail in Sections 4 and 5.

4 Methodology

4.1 Smart machines in a smart shop floor

The service objectives of a smart machine are typically

consistent with those of the corresponding nonsmart

machine [31]. The modeling of smart objects has been

performed extensively [30]. In this study, a smart archi-

tecture to describe smart machines is developed. In the

proposed smart shop floor, a smart machine is an SO of the

corresponding physical machine (see Fig. 3). It comprises

seven elements: smart sensors, actuators, processors and

memory, data storage, algorithms/functions, physical

machine, and communication module. In a smart machine,

sensors are used to detect value changes in quantities (e.g.,

temperature and pressure) or detect events (e.g., RFID

Table 1 Comparison of the existing natural hand gesture based

interaction

Interaction

methods

Representative

works

Advantages Disadvantages

Device-

based

methods

[22] Easy to

implement

Unnatural to use

Sensor-

based

methods

[23] Fast response Need to wear

sensors, prone

to drift errors

Hand-

based

methods

[24–27] Most natural

way to interact

with objects

Computation

intensive
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reader), based on the demand of the system/user or con-

tinuously. The detected values/events are propagated and

stored in data storage. Actuators are enabled based on the

functions of a smart machine (e.g., display the task

instructions and adjust machining speed and/or feed). An

actuator is enabled or disenabled according to the status

data based on algorithms/functions. The functions of a

smart machine are a set of algorithms and rules that obtain

an input from the captured status data and interaction

information from the user, update the status data, and

provide feedback to the user. It determines the change(s) in

an SO based on data received from the sensors on the

corresponding physical machine. It controls the commu-

nications between SOs and smart machines. Processors are

responsible for executing the algorithms and provide

results from the execution of functions. Depending on the

complexity of a smart machine, the processor can be a

high-performance central processing unit (CPU), mobile

Fig. 1 MBHI

MBHI

Smart machines
Servers

Wearable devices Hand feature 
extraction & tracking

Hand gesture 
recognition

Interaction scheme

Smart rack

Smart assembly 
workbench

Smart robot

Smart 3D print 
machine

Smart CNC 
machine

Network 
communication

Network 
communication

Direct 
interaction

Fig. 2 Architecture of MBHI
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processor, or microcontroller. Data storage is used to store

the current and historical status data and task data (e.g.,

task schedules, and task guidance). The communication

module enables a smart machine to exchange status data

and task data with other smart machines, with users and/or

with the server. Figure 3 shows all the elements and their

roles during an interaction. The design details of the

interaction between users and smart machines are illus-

trated in Section 4.3.

4.2 Hand feature extraction and tracking

In this study, human hands were used as an interaction tool

in a UAR smart environment. In the first step of hand

feature extraction and tracking, the hand regions are

obtained from the input video stream, and the fingertips are

extracted from these hand regions. An RBG-D camera was

used in this study to retrieve the 3D information of these

fingertips. The flowchart of the algorithm for 3D hand

feature extraction and tracking is shown in Fig. 4.

4.2.1 Hand segmentation

In the 3D direct bare-hand interaction methodology pro-

posed herein, the continuously adaptive mean-shift

algorithm [32] was used to track human hands using a 1D

histogram, which comprises quantized channels from the

hue saturation value (HSV) color space. The hues were

separated from the saturation in the HSV color space; the

intensity was used to create a model of the desired hue

using a color histogram. The resulting discrete hue model

was used to segment the hand region in the input video

stream.

For each frame of the input video stream, a trained skin

color histogram was used to categorize every pixel as a

skin-color or nonskin-color pixel. It was assumed that a

large portion of the input color image was the hand region.

The hand contours were detected and extracted using the

OpenCV library [33]. The connected component (a number

of connected pixels) with the largest perimeter was selected

as the hand contour.

4.2.2 Hand feature extraction and tracking

In the hand feature extraction method proposed herein,

fingertips were identified from the hand contour using a

curvature-based algorithm [34]. The dot product of

PiPi�1 ðPi;i�1Þ and PiPiþ1 ðPi;iþ1Þ based on Eq. (1) was

used to determine the curvature of a contour point, where

Pi is the ith point in the hand contour; Pi�1 and Piþ1 are the

Identification

Manipulation

Programming

Smart machines 
pairing

Smart 
sensors

Actuators Status data

Functions/ 
algorithms

Smart rack

User 
hand 

gestures

Memory

Processors
Smart kernelPhysical rack

Pairing with 
other smart 
machines

Fig. 3 Model of smart machine

Hand segmentation 
based on skin color

(Sec. 4.2.1)

Fingertips extraction based 
on a curvature algorithm

(Sec. 4.2.2)

3D information 
retrieval

(Sec. 4.2)

Hands 
differentiation

(Sec. 4.2.3)

Fig. 4 Flowchart of the bare-hand interaction methodology
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preceding and following points, respectively; l is the point

index on the hand contour. In the proposed system, l is set

to 15.

Cl Pið Þ ¼ Pi;i�1 � Pi;iþ1

Pi;i�1

�
�

�
� Pi;iþ1

�
�

�
�
: ð1Þ

Points with curvature values greater than a threshold of

0.5 were selected as fingertip candidates. The directions

indicated by the cross product of the two vectors, Pi�1 and

Piþ1, were used to determine whether a candidate was a

fingertip point or a valley point between two fingers. An

ellipse was fitted to the hand contour using the least-

squares fitting method, and the center point of the ellipse

was set as the center of the hand. All the candidates were

separated into different candidate groups. The distance

between each candidate and the hand center was computed.

The candidate with the largest distance from the hand

center was identified as a fingertip. The hands and finger-

tips could be tracked by executing the detection and

extraction processed for each frame, as the hand segmen-

tation and features extraction processes were fast.

4.2.3 Differentiation of hands

The system can differentiate a user’s hands automatically

to realize a dual-hand interaction. At the start of the hand

differentiation process, a user is required to place either

one or both of his/her hands with the palm(s) facing down

in the camera’s view to ensure that all five fingertips can be

detected. For each hand, the tip of the thumb Pth is deter-

mined as the farthest fingertip from the mean position Pm

of all the five fingertips. The cross product DH of

PHCPth ðPHC;thÞ and PHCPm ðPHC;mÞ is calculated according

to Eq. (2), where PHC is the hand center.

DH ¼ PHC;th � PHC;m

PHC;th

�
�

�
� PHC;m

�
�

�
�
: ð2Þ

The hands of a user can be differentiated by examining

the direction of the vector DH, which is represented as

Eq. (3).

DH ¼ Hxiþ Hyjþ Hzk: ð3Þ

The number of hands in the camera’s view can be

determined automatically by the system. When only one

hand is present, it will be specified as either the ‘‘right

hand’’ or ‘‘left hand,’’ and this specification will remain

unchanged until the hand is out of the camera’s view. If

both of the user’s hands are in the camera’s view, the

centers of these two hands are tracked using a matching

algorithm that minimizes the displacement between these

centers over two successive frames after the hand differ-

entiation process. Hence, these two hands can be differ-

entiated in each frame. It is important to note that the palms

must be facing down, and that the two hands must not cross

each other such that the proposed method can be used.

4.3 Interaction design

The interaction workflow illustrated in Fig. 3, i.e., smart

machine identification, manipulation, programming, pair-

ing, etc., highlights the role of the smart machines and user,

as well as the need for a common interaction scheme be-

tween them such that the user can perform ubiquitous

interactions with bare hands.

During a user’s navigation in a smart environment, when

he/she is near a smart machine, the smart distance sensors,

which operate continuously, capture the distance between

the user and smart machine and transfer the distance

information to the smart kernel of the smart machine.

When the user is sufficiently close to the smart machine,

i.e., the distance is less than a threshold, the smart machine

will contact the server automatically to request the user

information, including the user ID, IP address of the MBHI

system, and 3D positions and poses in real time. The 3D

positions and poses are tracked in real time using the

motion capture system. After the smart machine has

obtained the user information, it will connect with the user

through the MBHI system and send the smart machine

information, including the smart machine’s capabilities,

task information, and instructions to the tasks to the user.

Therefore, the user becomes aware of the smart machines

and their capabilities in the surroundings. The user’s AR

view is updated based on the real camera pose to render 3D

menus from the corresponding viewpoint. Hence, virtual

menus are aligned with surfaces of physical objects. The

menus are rendered as AR overlays to blend with the video

stream and then displayed via the HMD. Simultaneously,

users can interact with smart machines using bare-hand

gestures. These interactions are interpreted as sockets,

which can achieve communication between smart machi-

nes through the underlying network.

When a smart machine has been identified by a user,

obtaining access to its capabilities and stored task-related

data is a common human-smart-machine interaction. In a

smart environment, all stored task-related data can be

accessed freely using simple hand gestures via the MBHI.

Users wearing the HMD can view virtual icons of the

available task data (e.g., task schedule, ongoing task

information, and task instructions) overlaid around smart

machines (see Fig. 5). Essential information is displayed

next to the icons. Users can easily access the information

and add additional instruction files from other smart

machines and/or other computers/servers. For example,

users can drag and move the designated files from the

source smart machine to the destination smart machine

using simple selected gestures and 3D translation, and the
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files will be sent automatically to the target. The entire

process is intuitive and does not require users to access the

two smart machines. As the MBHI is built based on the IoT

concept, in which various different smart machines/devices

are connected in a network to allow seamless interactions

between them, the MBHI enables information/data to be

transferred between smart machines. Using natural user

hand gestures, users are not required to learn and remember

the built-in interfaces of different devices.

In addition to interactions with smart machines, users

can program the smart machines using bare-hand gestures

in the AR smart world, thereby creating a personalized

interface that combines the capabilities of different devices

and complying with the event-condition-action (ECA)

paradigm [10]. In this stage, a user can personalize the

smart space to according to the requirement of the tasks

and his/her preferences (see Fig. 6).

The MBHI method allows device pairing using hand

gestures from users. Therefore, the MBHI can consolidate

smart machines in a natural and user-friendly manner. In a

smart manufacturing environment, many wireless devices

can be paired with one another via the MBHI to perform

various functions. Supported peripherals include smart

sensor peripherals (e.g., air quality sensors) and smart

actuators (e.g., fans and air freshener). Traditionally, users

must perform tedious operations to pair these devices.

However, using the MBHI, users can view the virtual

representations and menu options of these devices via their

HMDs. The MBHI allows users to pair or connect devices

conveniently by pulling the overlays of the devices from

one to another in the AR interface. The pairing will be

completed automatically in near real time. For example,

when a user wishes to pair the air quality sensors of smart

machines to the fan/air freshener (see Fig. 7), he/she can

drag the virtual representation of the air quality sensors to

the fan/air freshener. When the two devices have been

paired, they will be displayed in the AR interface as paired.

Next, the user can program the behavior of these paired

devices. The procedure of unpairing two devices is similar

to that for pairing. Users only need to drag a paired device

away from the other paired device and these devices will be

disconnected. The MBHI enables devices to be paired in a

timely manner and connection of multiple devices.

5 Implementation

The proposed method was implemented using visual C??

in the Microsoft Windows 10 operating system. The system

configuration is shown in Fig. 1. An Astra depth camera

was used as the input video device of the system. The

output display was a VUZIX WRAP 920 Video iWear,

which was a HMD with a 640 9 480 display resolution in

a 67’’ screen and 31� diagonal field-of-view. The pro-

cessing unit was a personal computer with a 2.50 GHz Intel

Core i5 7200U processor and 8 GB RAM. The Astra

camera was used to detect the hand regions to calculate the

depth information of the fingertips. All the fingertips were

augmented on the image captured by the Astra camera

attached on the user’s head such that the view shown in the

HMD was consistent with the user’s real view. Frame rate

is commonly used as a measurement of how quickly an

application displays consecutive images. An application is

generally considered real time if the frame rate is at least

15 frames per second. The frame rate of this system was

approximately 25 frames per second. For the case study, a

server was developed to link the cloud services, workers,

and resources on the shop floor via a TCP/IP network. The

workers used a tablet (Microsoft Surface) as the UAR

device. The UAR application was executed on the surface

tablet and communicated with the server to obtain updated

data. RFID sensors as well as environment sensors (e.g.,

temperature and distance) were distributed in the smart

shop floor environment.

5.1 System accuracy

Root mean square (RMS) errors were used to determine the

accuracy of the MBHI method developed in this study. For

a set of n values x1; x2; � � � ; xnf g, the RMS value xrms was

calculated using Eq. (4).

xrms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 þ x22 þ � � � þ x2n
n

r

: ð4Þ

5.2 Accuracy of fingertip detection

The RMS error estimation method [35] was used to

determine the accuracy of the fingertip detection method

Fig. 5 Virtual icons overlay on the real machine
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for 2D images. A user points at a reference point using the

tip of his/her index finger during the error estimation

method, as shown in Fig. 8, where the red triangles are the

reference points and the circles are the 2D positions of the

fingertips. A total of 1 000 fingertip positions were col-

lected for each reference point during the error estimation

process. The RMS errors were calculated based on the

differences between the coordinates of the index fingertip

and the coordinates of the reference points. For the MBHI

method in this study, the RMS errors were determined to be

1.13 and 1.24 pixels with reference to the depth camera

space in the x- and y-axes, respectively.

5.3 Case study

In the proposed smart environment, a first-person view was

provided, in which the user could move around and operate

within the environment developed. The MBHI was

implemented to empower users with tools to control,

augment, and interact with the smart environment (smart

shop floor) ubiquitously. Contrary to the method of artifi-

cial intelligence that generates services automatically by

mining data stored on the cloud, the proposed method

introduces the user into the development loop of a smart

environment, such that he/she can program the SOs to

Smart rack

Each �me Someone approach to Distance sensor then

and
Ac�vate

Display

Tangible interac�on surface

On-going manufacturing tasks

Smart control panel

If As soon as Someone approach to RFID

and

or Weight sensor Temperature sensor Humidity sensor

Fig. 6 Visual programming editor for MBHI

Fig. 7 Pairing of the smart objects

Fig. 8 Accuracy estimation of the fingertip detection method
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enable the smart environment to realize customized func-

tions. The user’s AR view is updated based on real camera

poses to render 3D menus from the user’s viewpoint;

hence, the virtual menus will be aligned with surfaces of

physical objects. The menus are displayed as AR overlays

to merge with the video stream and then display via the

HMD. Users can interact with smart machines using bare-

hand gestures, and these bare-hand interactions are inter-

preted as sockets to achieve communication between smart

machines through the underlying network. When a smart

machine is identified by a user, obtaining access to its

capabilities and storing task-related data is a common

human-smart-machine interaction. In a smart environment,

all the stored task-related data are interactive and can be

accessed freely with simple hand gestures via the MBHI.

Figure 9 shows the user interface for the basic activities

implemented in the smart shop floor. The list in the fig-

ure shows the smart devices, with their status information

organized by dependency relations. When the user selects

motion sensor 2, which is attached to the smart robot, a

new panel pops up and shows the status information and

control buttons (see Fig. 9b). As shown in the panel, the

user can verify the dependency relations of this sensor to

the SO that it is attached to, acquire the history sensor

readings, program the customized functions, and turn the

device on/off. The user-friendly buttons allow users to

activate the various options with bare-hand gestures.

The case study illustrated is a proof-of-concept inves-

tigation of the proposed solution. Therefore, it lacks the

complexity of a typical shop floor, which may consist of

many machines and equipment. However, the basic prin-

ciples have been illustrated using bare-hand gestures to

interact with equipment controls, and AR displays can

provide the users with timely and useful information in

addition to the views of the equipment.

6 Conclusion

Herein, an MBHI method was proposed for ubiquitous

interactions with SOs in a smart manufacturing shop floor.

This direct 3D bare-hand interaction method was efficient

and user-friendly. Hand and fingertip differentiation algo-

rithms were developed to achieve a dual-hand interaction

interface. Using depth vision technologies, 3D information

of the fingertips could be retrieved and used for direct bare-

hand interaction operations. It was experimentally

observed that users could use the MBHI method to

manipulate virtual objects and interact with SOs ubiqui-

tously. The MBHI provided a dual-hand interface that

afforded direct and intuitive interactions between a user

and the virtual objects and SOs in an AR environment. The

case study demonstrated the applicability of the system.

AR-based applications, such as AR-based smart environ-

ments, education, and rehabilitation would benefit from the

proposed MBHI interaction methodology. Further research

is necessary to obtain an effective algorithm for addressing

3D manipulation gestures. The self-occlusion problem will

be addressed for a more robust interaction process.
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