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Abstract To realize the reuse of process design knowledge

and improve the efficiency and quality of process design, a

method for extracting thinking process rules for process

design is proposed. An instance representation model of the

process planning reflecting the thinking process of techni-

cians is established to achieve an effective representation

of the process documents. The related process attributes are

extracted from the model to form the related events. The

manifold learning algorithm and clustering analysis are

used to preprocess the process instance data. A rule

extraction mechanism of process design is introduced,

which is based on the related events after dimension

reduction and clustering, and uses the association rule

mining algorithm to realize the similar process information

extraction in the same cluster. Through the vectorization

description of the related events, the final process design

rules are formed. Finally, an example is given to evaluate

the method of process design rules extraction.

Keywords Process design rules � Process design rules

extraction � Process planning model � Related event �
Manifold learning

1 Introduction

Manufacturing enterprises have accumulated a large

amount of process data in the process of product design and

manufacturing, which has become a knowledge resource.

How to acquire and reuse this process knowledge [1, 2] is

one of the key problems to be solved in reusing process

knowledge and promoting the standardization of process

technology, and it is also the application bottleneck of

existing computer-aided process planning (CAPP) systems.

The experience knowledge of process design mainly exists

in the brains of technicians, and it mainly refers to the

design rules that have the internal logical relationship in

the process of the whole process design decision and rea-

soning [3]. Therefore, the key to acquiring the experience

knowledge of process design is to obtain the design rules

with internal logical relationships. Instances are the

reflection of human thinking activities, and the knowledge

is hidden in a large number of instances. How to extract the

process design rules from the existing process design

instances is the key to this process and acquiring the expert

experience knowledge of the process design is difficult.

2 Related work

At present, research achievements regarding knowledge

acquisition of process design experience can be divided

into four categories: process knowledge acquisition based

on a rough set (RS); process knowledge acquisition based

on artificial neural networks (ANNs); process knowledge

acquisition based on the case-based reasoning (CBR); and

process knowledge acquisition based on the fusion of

multiple algorithms.
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Beynon et al. [4] offered an approach using RS theory to

generate rules for use in expert systems and for the tradi-

tional statistical task of classification. Zhang et al. [5]

presented parallel RS-based methods for knowledge

acquisition using MapReduce to mine knowledge from big

data. Chao and Sun [6] applied RS to remove the properties

without affecting the choice of welding type, and estab-

lished the welding type selection decision table to obtain

valuable welding process knowledge. Augasta and

Kathirvalavakumar [7] proposed a new rule extraction

algorithm based on ANNs that relies on a reverse engi-

neering technique to prune the insignificant input neurons.

Masood and Hassan [8] used feature-based ANNs to realize

the pattern recognition for bivariate process mean shifts.

Khorasani and Yazdi [9] developed a dynamic surface

roughness monitoring system based on an ANN in a mil-

ling operation that uses cutting conditions as input and

surface roughness as output. Armaghan and Renaud [10]

proposed using knowledge acquisition as a basis for

seeking solutions from non-compensatory multi-criteria

decision aids. Olsson et al. [11] applied CBR to geometric

measurements for decision support in manufacturing,

which allows product measurements and related adjust-

ments to the production line to be stored as cases in a CBR

system. Zhang et al. [12] proposed a body-in-white fixture

design method integrating CBR with rule-based reasoning.

Prado et al. [13] introduced a new method for fuzzy-rule

evolution that forms expert system knowledge: knowledge

acquisition with a swarm-intelligence approach, which is

based on the use of particle-swarm optimization to obtain

the antecedents, consequences, and connectives of the

rules. Tsai [14] used self-organizing map (SOM) nets and

K-means clustering for low-temperature welding process

data mining, analyzing the knowledge of process with

strong characteristics. Jiang et al. [15] proposed a hybrid

approach of RS and CBR to remanufacturing process

planning that could reuse knowledge generated from

existing parts remanufacturing to rapidly create sound

process planning for the new arrival of used parts. On the

whole, these methods are not focused on the specific

thinking process of technicians in the process of the pro-

cess design, resulting in the deflection between the results

of acquisition and the actual process knowledge, influ-

encing the sharing and reuse of process knowledge.

In addition, Efthymiou et al. [16] introduced a knowl-

edge framework based on semantic technology and artifi-

cial intelligence approaches to facilitate the definition,

storage, and extraction of knowledge in terms of past

production process configurations. Chryssolouris et al. [17]

demonstrated the different approaches followed for

knowledge management in manufacturing process model-

ing. Obayashi [18] presented multi-objective design

exploration (MODE) and its application for design rule

extraction. Anantasarn et al. [19] applied process intensi-

fication to achieve sustainable process design. Batoulis

et al. [20] introduced a semi-automatic approach to identify

decision logic in process models. Kluza and Nalepa [21]

proposed a method for generating and designing business

processes with business rules.

In this paper, a method of process design rules extrac-

tion is proposed. This method builds an instance repre-

sentation model of process planning that reflects the

thinking process of technicians. Based on the model, the

related events with causal relationships are established and

taken as the object of analysis, and then the process design

rules are extracted.

3 Definition and representation of the process
planning model

To extract the process design rules effectively, this paper

introduces the instance representation model to character-

ize the process planning.

Definition 1 Instance representation model of process

planning (IRMPP). This model is composed of the fol-

lowing elements: the processing requirements, the geo-

metric features, the machining features, the processing

steps, the processing process, and the relationship between

various processing attributes.

\IRMPP[=\processing requirements, geometric

features, machining features, processing steps, processing

process, the relationships between various processing

attributes[
It can be formalized as

IRMPPh i ¼ X; J;T;C;G;Vh i: ð1Þ

Definition 2 The relationships between various process-

ing attributes V have

V ¼ V1;V2;V3;V4;V5;V6;V7f g; ð2Þ

where V1 represents the relationship between the process-

ing requirements X and the geometric features J, which is a

directed line segment with X as the starting point and J as

the end point; it indicates that the state of X will affect the

state distribution of J; V2 represents the relationship

between geometric features J and machining features T; V3

represents the relationship between machining features

T and processing step C; V4 represents the relationship

between processing step C and processing process G; V5

represents the relationship among machining features; V6

represents the relationship among processing processes;

and V7 represents the relationship among processing steps.

The structure of the model is illustrated in Fig. 1.
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In the process instance representation model built in this

paper, the processing requirements are used to represent the

problem description of the instance, and the other four

attributes and the relationships of the attributes are used to

represent the solution of the problem.

Definition 3 Related process attributes. This refers to two

process attributes that have a relationship in the process

planning model. In this paper, it refers to: (geometric fea-

tures, machining features), (machining features, processing

steps), (processing process, processing steps), (processing

requirements, processing process), (processing require-

ments, geometric features).

Definition 4 Process variable. Each process attribute is

composed of many constraint elements that are called

process variables.

Definition 5 Independent attribute instance a. This refers

to a specific instance of each class of process attribute.

Definition 6 Longitudinal related event B. This refers to

the process attribute instance chain composed of the same

process attributes that have a causal relationship. The

related event can be formalized as

B = (b1, b2, � � � , bp), ð3Þ

where bi (i B p) is an instance of this class of process

attribute. Since each class of process attribute contains a

number of process variables, then Eq. (3) can be further

expressed as

B ¼

b11 b12 � � � b1k
b21 b22 � � � b2k

..

. ..
. . .

. ..
.

bp1 bp2 � � � bpk

2
6664

3
7775; ð4Þ

where bij (j B k) represents the jth process variable instance

of the longitudinal related event in the ith process attribute

instance.

Definition 7 Related event F. This consists of an inde-

pendent attribute instance and a longitudinal related event,

and the independent attribute instance has a causal rela-

tionship with the longitudinal related event.

Owing to the five kinds of related process attributes

defined in this paper, the related events are divided into five

categories according to the independent attribute instance.

The formal representation of the related event is

F ¼ ða; f (a)Þ ð5Þ

where a represents an instance of independent attributes

and f(a) represents the longitudinal related event corre-

sponding to the independent attribute instance.

Definition 8 Related event set. This refers to the collec-

tion of the same kind of related events, and it is satisfied

that the independent attribute instances of each related

event in the set are the same or similar.

The independent attribute instances are the same or

similar in a related event set, and an independent attribute

instance corresponds to multiple longitudinal related

events. Then the formal representation of the correspond-

ing relationship can be expressed as

f ðaÞ ¼ B1; B2; � � � ; Bi½ �; ð6Þ

where Bi corresponds to a longitudinal related event in the

longitudinal related event set.

Definition 9 Instance of a related variable. This refers to

a certain number of instances of process variables with a

high frequency of longitudinal related events that occur in

the event of a related event set.

Definition 10 Similar process information. This refers to

a combination of process variables with high similarity in a

large number of instances of process planning.

4 Process design rules extraction approach

4.1 Method overview

The general method of this paper is shown in Fig. 2. It

mainly includes the representation of the process planning

instance, the representation of the process instance data,

and the extraction of the process design rules.

(i) Process instance representation model. This part is

mainly concerned with the model representation

of the process planning instance. Through the

construction of the causal relationship among the

process attributes, it is further combined to form

an instance representation model of the process

planning.

Fig. 1 Structure of the model
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(ii) Preprocessing of process instance data. This part

is mainly concerned with the dimension reduction

and clustering of related events in the model,

which is based on the manifold dimension reduc-

tion algorithm and agglomerative hierarchical

clustering algorithm. The two algorithms are used

to reduce the dimension of the longitudinal related

events and improve the similarity of the longitu-

dinal related events of the same cluster, to better

extract the similar process information.

(iii) Extraction of process design rules. This part ismainly

used to extract the similar process information in the

same cluster and formalize the independent attribute

instances. After association rules analysis, the similar

process information is extracted and as a result of

process design rules, the extraction of the process

design rules is finally completed by the formal

description of the independent attribute instances.

The representation form of the process design rules is

Rule i : K ! L; ð7Þ

where Rule i is the process design rule i, K the premise of

the process design rule and is composed of some process

variables, and L represents the result of the process design

rule and is also composed of some process variables.

4.2 Extraction of related events

This paper is based on a large number of process planning

instances to extract the process design rules. The extraction

of process data from an instance of the process planning is

the basis for subsequent work. In this paper, an instance

representation model of the process planning is con-

structed, and the five kinds of process attributes are used as

the main body of the model to realize the extraction of the

original data. The five kinds of process attributes in this

paper refer to processing requirements, geometric features,

machining features, processing steps and processing

process.

The extraction of similar process information is the key

to the process design rule extraction in this paper, and it is

equivalent to the case of the related variables.

In the model, there is a causal relationship between the

two adjacent process attributes, so any two adjacent attri-

bute instances can be used to form a class of related events.

The related event types in the model are classified into five

Fig. 2 General method of process design rules extraction
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categories. According to the process constraint variable

information contained in each process attribute, the related

events can be divided into the following five categories.

Class 1. Related event: (processing requirements, geo-

metric features), as shown in Fig. 3.

Class 2. Related event: (geometric features, machining

features), as shown in Fig. 4.

Class 3. Related event: (machining features, processing

steps), as shown in Fig. 5.

Class 4. Related event: (processing steps, processing

process), as shown in Fig. 6.

Class 5. Related event: (processing requirements, pro-

cessing process), as shown in Fig. 7.

4.3 Preprocessing of process instance data

The dimensionality reduction of process data of the lon-

gitudinal related event scan eliminate the redundant pro-

cess data and better reflect the intrinsic structure of the

longitudinal related events. Clustering analysis of the lon-

gitudinal related events after dimensionality reduction can

reduce the effect of noise, improve the similarity of the

longitudinal related events of the same cluster, and

improve the accuracy of similar process information

extraction from the same cluster longitudinal related

events. Therefore, we need to preprocess the process

instance data before extracting the process design rules,

which includes two steps: the dimensionality reduction of

the process instance data and the clustering analysis of

longitudinal related events after dimensionality reduction.

4.3.1 Dimensionality reduction of process instance data

Manifold learning is a mathematical analysis method used

to obtain the low-dimensional representation of a high-di-

mensional observation space. It is applied to reduce the

dimension of the process information data and find the

intrinsic dimension of the data, which is helpful for the

subsequent data clustering and further extraction of process

design rules. The mathematical definition of manifold

learning is as follows [22].

Definition 11 Manifold learning. The observation space

data (X ¼ Xi; i ¼ 1; � � � ; nf g � RM) is given, assuming that

the low-dimensional spatial data of the sample X is Y ¼
fYi; i ¼ 1; � � � ; ng � Rm with the unknown nonlinear

transformation f : Yi ¼ f ðXiÞ, m � M. The embedded

mapping of f : RM ! Rm is C?.

The three classic algorithms of manifold learning are

Laplacian eigenmaps (LE) [23], locally-linear embedding

(LLE) [24], and isometric mapping (ISOMAP) [25].

Compared with the other two typical dimensionality

reduction algorithms, the LLE algorithm has no dimension

limitation, the parameters of the algorithm are only the

nearest-neighbor number and the target dimension, and

there is a global optimal solution. The iterative process of

the ISOMAP algorithm is avoided and the computation is

reduced relatively. It is more difficult to determine the

parameters of the adjacency matrix in the LE algorithm,

and it is more sensitive to noise. Compared with the LE

algorithm, the LLE algorithm is relatively small and easy

to implement. Therefore, the LLE algorithm is used to

reduce the dimension of the process instance data in this

paper.

The dimension reduction process of process instance

data based on the LLE algorithm is as follows.

(i) Convert the data of each longitudinal related event

into the row vector

B ¼

b11 b12 � � � b1k
b21 b22 � � � b2k

..

. ..
. . .

. ..
.

bp1 bp2 � � � bpk

2
6664

3
7775: ð8Þ

The data of each row vector represents a process attri-

bute instance in the data matrix of the longitudinal related

events. The adjacent process attribute instances that the

adjacent row vectors represent have a causal relationship.

According to the sequence of the data in the process

instance representation model, the data of each process

attribute in the longitudinal related event can be trans-

formed into the vector data. The vector formula that the

matrix is transformed into is

B ¼ ðb11; b12; � � � ; bpkÞ: ð9Þ

Each variable of a longitudinal related event constitutes

a dimension of the vector. A sample set X of the LLE

algorithm is formed after conversion of the longitudinalFig. 3 Schematic diagram of the relationship between processing

requirements and geometric features

Fig. 4 Schematic diagram of the relationship between geometric

features and machining features
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related event data set. The process data B of each longi-

tudinal related event corresponds to a sample data Xi. The

sample data are mapped to the new data set Y ¼
fY1;Y2; � � � ;Yng;Yi 2 Rm by the LLE algorithm.

(ii) Calculate the k-order neighborhood of each longi-

tudinal related event in the longitudinal related

event set.

According to the input data sets of a longitudinal related

event X ¼ fXi; i ¼ 1; � � � ; ng, the Euclidean distance dx(i,

j) between each sample point Xiði ¼ 1; � � � ; nÞ and the other
sample point Xjðj 6¼ iÞ is determined. Take the nearest

k sample points as the nearest neighborhood points.

(iii) Calculate the reconstruction weights wi ¼
fwi1;wi2; � � � ;wikg of the sample point Xi and the

neighborhood points.

The sample point Xi is approximated by a linear com-

bination of nearest neighborhood points, minimizing the

following reconstruction function values

eðWÞ ¼
Xn
i¼1

Xi �
Xk
j¼1

w
ij
gj

 !2

; ð10Þ

where gjðj ¼ 1; 2; � � � ; kÞ are the k nearest neighborhood

points of Xi and wij is the reconstruction weight of the

nearest neighbor point gj to the sample point Xi.

(iv) All the sample points are mapped into the low-

dimensional space so that the mapping satisfies the

following formula

uðYÞ ¼
Xn
i¼1

Y
i
�
Xk
i¼1

w
ij
hj

 !2

; ð11Þ

where u(Y) is the loss function, Yi the output

vector of Xi, hjðj ¼ 1; 2; � � � ; kÞ the k nearest

neighborhood points of Yi, and satisfy the follow-

ing formula

Pn
i¼1

Yi ¼ 0;

1

N

Xn
i¼1

YiY
T
i ¼ I:

8>>><
>>>:

ð12Þ

4.3.2 Clustering analysis of longitudinal related events

after dimensionality reduction

In this paper, we use the agglomerative hierarchical clus-

tering algorithm to cluster the longitudinal related events.

To specify the clustering process of related events, in this

paper the process sequence of shaft sleeve parts is used as

an example of dimensionality reduction for clustering

analysis. The clustering process of other related events is

similar to the given example.

The related mathematical description of the clustering

process of the shaft sleeve parts process sequence is as

follows.

(i) The formal representation of the shaft sleeve parts

process sequence in Table 1 is

Xn�n ¼

x11 x12 � � � x1n
x21 x22 � � � x2n

..

. ..
. . .

. ..
.

xn1 xn2 � � � xnn

2
6664

3
7775; ð13Þ

Fig. 5 Schematic diagram of the relationship between machining features and processing steps

Fig. 6 Schematic diagram of the relationship between processing process and processing steps

Fig. 7 Schematic diagram of the relationship between processing

requirements and processing process
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where element xij in the matrix X is the jth pro-

cessing procedure of the ith shaft sleeve parts

process sequence in Table 1.

(ii) Distance between the process sequences of dif-

ferent parts. The dissimilarity matrix for each

object in the Eq. (13) is

Dn�n ¼

0

dð2; 1Þ 0

..

. ..
. . .

.

dðn; 1Þ dðn; 2Þ � � � 0

2
6664

3
7775: ð14Þ

This is an n 9 n matrix that represents the simi-

larity of two objects in n objects.

Any element d(i, j) in Eq. (14) represents the

dissimilarity of the process sequence between the

ith part and the jth part in Table 1(distance of

these two objects). A variety of distance mea-

surement methods are available and the Euclidean

distance measurement method is widely used. In

this paper, the Euclidean distance formula is used

to calculate the distance between the process

sequence of each part. The formula for Euclidean

distance is

dði; jÞ ¼ Xik � Xj

��
2
¼

Xq

k¼1

Xik � Xjk

�� ��2
" #1=2

:

ð15Þ

(iii) Distance of clusters of the shaft sleeve part

process sequence. According to the agglomerative

hierarchical clustering algorithm, in the process of

process sequence clustering of the part, first the

distance of clusters is calculated and the clusters

whose distance is small are combined, then the

number of these clusters is reduced. The formulas

for calculating the distance between clusters include

the minimum distance, the maximum distance, the

mean distance, and the average distance methods. In

this paper, we use the minimum distance to measure

the distance between two clusters. The formula for

calculating the minimum distance is

dminðci; cjÞ ¼ min
p2ci;p02cj

p� p0j j ; ð16Þ

where ci, cj represent two clustering clusters; mi,

mj represent the average values of two clusters and

p� p0j j represents the distance between two

objects.

4.4 Extraction of process design rules

After clustering, the similarity of longitudinal related

events in the same cluster is increased. The similar pro-

cess information is extracted by analyzing the longitudinal

related events of the same cluster, which is the result of

the process design rules. Through the formal description

of the independent attribute instances in the related

events, the premise of the process design rules is

obtained, and finally the complete process design rules are

formed.

Table 1 Information for the shaft sleeve parts machining process

Serial

number

Part name Step

1 Screw Blanking Rough

turning

Half finishing

turning

Turning

thread

Milling Clamping Inspection

2 Guide pillar Blanking Rough

turning

Finishing turning Milling Grinding Clamping Inspection

3 Stud Blanking Rough

turning

Half finishing

turning

Turning

thread

Grinding Inspection

4 Threaded

bushing

Blanking Rough

turning

Finishing turning Drilling Turning

thread

Grinding Inspection

5 Orifice bushing Blanking Rough

turning

Finishing turning Drilling Boring Grinding Inspection

6 Bolt Blanking Rough

turning

Half finishing

turning

Turning

thread

Milling Grinding Inspection

7 Shaft Blanking Rough

turning

Finishing turning Milling Grinding Inspection

8 Bearing sleeve Blanking Rough

turning

Finishing turning Drilling Boring Clamping Inspection

9 Dowel pin Blanking Rough

turning

Finishing turning Grinding Clamping Inspection
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4.4.1 Similar process information extraction in the same

cluster

Each longitudinal related event is composed of a number of

process variables. In the same cluster, the similar process

information of the longitudinal related events corresponds

to the related variables of high frequency. Finding the high-

frequency related variables is the key to the extraction of

similar process information.

A data mining algorithm based on association rules [26]

is used to reveal the relationship of the intrinsic properties

of things. It can find a number of frequent item sets in the

input objects. Using association rules to deal with the

longitudinal related events of the same cluster, the process

variables combinated with higher frequency in the longi-

tudinal related events can be regarded as a number of

frequent item sets. The association rules mining algorithm

can effectively extract the related variables of higher fre-

quency in the same cluster longitudinal related events.

(i) Related concepts

The analysis object of the association rules is the thing, and

the set of things is usually made up of things identifier and

an items set. Here I ¼ I1; I2; � � � ; Inf g is the items set, and

A ) B is the association rule, where A, B meet

A � I;B � I;A 6¼ £;B 6¼ £;A \ B 6¼ £.

If A ) B is established in the things set D, its support

level is s and its confidence level is c.

Here s is the proportion of the total number of things in

things set D that contains A and B at the same time from

the total number of things in D. The formal representation

of s is

supðA ) BÞ ¼ PðA [ BÞ: ð17Þ

The confidence level c is the probability that thing B

happens at the same time that A happens. The formal

representation of c is

confidenceðA ) BÞ ¼ PðBjAÞ ¼ supðA ) BÞ=supðAÞ:
ð18Þ

When the support and confidence levels of association

rules are greater than or equal to the minimum support and

confidence levels, the strong association rules are

generated.

Concept of an item set. The collection of items is called

the item set. A set containing K items is called a K item set,

and the number of things of the K item set is called the

support count or frequency of the K item set. If the support

of the item set I is more than the minimum support, it is

called a frequent item set.

(ii) Apriori algorithm

In this paper, the Apriori algorithm is used to mine the

association rules, and is based on the longitudinal related

events after clustering.

The core idea of the algorithm is that it is a recursive

algorithm based on the idea of a two-stage set. The K items

set is derived from the K - 1 items set recursively, and is

based on iterative search method. The specific process is to

find a frequent 1 items set L1, then the objects in L1 are

combined to find the candidate 2 items set, and then the

frequent 2 items set L2 is found. We wait until the K items

set is not frequent. The algorithm has two important

properties: a non-empty subset of a frequent items set is

also a frequent items set; a frequent items set cannot con-

tain a non-frequent items set.

Two important steps in the process of the Apriori

algorithm. Connection step: The connection step is the

process of generating candidate items set Ck from frequent

items set Lk�1. First, the frequent items in the frequent

items set Lk�1 are sorted according to a certain order. Ii is

one of the frequent items in Lk�1, Ii = (Ii1, Ii2, ���, Ii(k-1)).

Taking two of the frequent items I1, I2, if I1, I2 are the

same as the first k - 2 elements, the last element is dif-

ferent, then through the combination of the elements of I1,

I2 to generate a K items set Ck, Ii = (I11, I12, ���, I1(k-2),

I1(k-1), I1(k)).

Pruning step: The items set Ck generated in the con-

nection step is a super-set of the frequent items set Lk�1.

Items in the items set Ck may be frequent, and may be

infrequent. Frequent sub-items of Ck cannot contain

infrequent K - 1 items. Based on the above analysis, if a

K-item in the candidate items set Ck does not contain the

frequent K - 1 item, the candidate K-item is not a frequent

item and is deleted from the candidate items set. The entire

Ck is traversed to determine the Lk.

(iii) Similar process information extraction

After the related events of the same cluster are analyzed by

the association rules, a number of process variables with

high frequency in the same cluster longitudinal related

events are combined and outputted. By analyzing the def-

inition of the longitudinal related events, we can see that

each longitudinal related event is composed of a certain

number of process variables. The formal representation of

longitudinal related events is

B ¼

b11 b12 � � � b1k
b21 b22 � � � b2k

..

. ..
. . .

. ..
.

bp1 bp2 � � � bpk

2
6664

3
7775: ð19Þ

Each element of the matrix represents the corresponding

process variable instance of the longitudinal related event.

Here bij (i B p, j B k) represents an instance of the process
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variable in the longitudinal related event. Each process

variable has some variables, which means that each ele-

ment in the matrix has some values

bij ¼ ððbijÞ1; ðbijÞ2; � � � ; ðbijÞlÞ: ð20Þ

After the operation of association rules, the frequent

item sets of process variables are outputted. We assume

that there are binomial frequent item sets in the output

result

ðbijÞh ) ðbdnÞz;
d� p;
n� k;

8<
: ð21Þ

where h and z represent the possible values of process

variables. We use the frequent items sets as the similar

process information for the longitudinal related events of

the cluster.

4.4.2 Formation of process design rules

The similar process information extracted from the longi-

tudinal related events of the same cluster is the result of the

process design rules, and the premise of the process design

rules is not formalized. Here, we combine the related

events (processing requirements, processing process), as

shown in Fig. 7, to analyze and formalize the independent

attribute instances of processing requirements, to determine

the premise of process design rules, and ultimately to form

the process design rules of the related events set.

(i) Formal description of processing requirements

Because the shaft sleeve parts are discussed as an example

in this paper, for such parts, the differences of the pro-

cessing requirements are mainly reflected in the following

aspects: whether the internal diameter exists or not (i.e.,

shaft or sleeve parts), whether to process the internal

thread, whether to process the external thread, the rough-

ness of outer diameter, the roughness of inner diameter, the

face roughness, and so on.

In view of the above, consider the different character-

istics of the processing requirements of the shaft sleeve

parts: inner diameter, external thread, internal thread, outer

diameter roughness, inner diameter roughness, face

roughness, and we can formalize the processing require-

ments as ½x1 x2 x4 x5 x6 x7�; where x1 is used

to denote the presence or absence of the inner diameter,

and x1 2 {0, 1}, respectively, denote the presence and

absence of the inner diameter; similarly, x2 and x3 are used

to indicate the presence or absence of external and internal

threads; x4 indicates the outer diameter roughness; x5 rep-

resents the inner diameter roughness, and we set the cor-

responding value of x5 to null for the shaft part (i.e., no

inner diameter); x6 indicates the face roughness. Then x4,

x5 and x6 are normalized, mapped to the [0, 1] interval, and

the null value of x5 is set to 1. Eventually, a vector rep-

resentation of the processing requirements is formed. In

this way, the premise of the process design rules can be

accurately described, to provide the basis for the formation

of process design rules in the next step, and to provide a

convenient retrieval method in the reuse of process design

rules.

(ii) Formation of process design rules

After obtaining the vector representation of the processing

requirements, the mean vector is obtained for all the pro-

cessing requirement vectors in the related events set of the

same cluster, and as the premise of process design rules.

Then, the process design rules of the related events set are

formed.

The formal description of the process design rules for

the related events set

Rule i : ða1; a2; � � � ; anÞ ! ððbijÞh; ðbdnÞzÞ; ð22Þ

where a1; a2; � � � ; an denote the processing requirements

vectors in the related events set of the same cluster; the

superscript denotes the mean vector.

(iii) Reuse of process design rules

We extract the process design rules to improve its reuse

efficiency, when a new part requires process design.

Firstly, determine the vector representation of its process-

ing requirements. Secondly, the similarity between the

processing requirement vectors of the part and the mean

vector of each cluster is compared. Finally, the most sim-

ilar clustering cluster is used to analyze the association

rules, and the corresponding process design rules are

obtained as a reference for the process design of the new

part.

Through the above steps, we can solve the problem of

knowledge reuse in the process design of new parts, and we

discuss this in detail in the following section using a case

study.

5 Case evaluation

To evaluate the validity of the method proposed in this

paper, the process sequences of shaft sleeve parts are

selected as the objects for evaluation. The details for the

shaft sleeve parts machining process are given in Table 1.

5.1 Data preprocessing

According to the common sense in processing technology,

the sequence of each processing process in the processing

is determined. In addition, the processing accuracy of the
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processing process is different, and in accordance with the

different processing accuracy, the processing processes are

sorted from low to high.

Classification assignment. Because a rough turning

process generally exists in the processing of shaft sleeve

parts, select the rough turning process as the standard

process, and assign it to 15. The processing accuracy of

each processing process is compared with the rough turning

process, and the numerical value is determined. For

example, there are half finishing turning and finishing

turning in the turning process, which can be assigned to 20

and 35, respectively, according to the processing accuracy.

The milling process is generally adjacent to the turning

process, and the processing accuracy is lower than that of

finishing turning, so it is assigned to 30. The assignment of

each processing process is completed in accordance with

this.

The minimal-maximum normalization of each process-

ing process. The artificial classification assignment may

cause deviation in the numerical size of each processing

process. To reduce the deviation and maintain the different

processing accuracy of each processing process, the

assignment value of each processing process is treated by

minimal-maximum normalization

m0 ¼ m� mA

MA � mA

: ð23Þ

where v is the the numerical size of each processing pro-

cess. mA the minimum value, MA the maximum value and

m0 is the value of v after minimal-maximum normalization.

The minimum value of the assignment process is 5 and

the maximum value is 90. The value of milling process

after the conversion-based Eq. (24) is 0.235 3. For exam-

ple, the assignment result of the first shaft sleeve part is

[10, 15, 20, 25, 30, 35, 40], and according to the Eq. (24),

the normalized result is [0.058 8, 0.117 6, 0.117 6, 0.176 5,

0.235 3, 0.294 1, 0.411 8]. The numerical values of each

process sequence are shown in Table 2.

The dimension of the data is reduced with the LLE

algorithm. The data matrix after dimension reduction is Y,

then the input sample data X is

The ith column data of the matrix X represent the process

sequence pretreatment data of the ith shaft sleeve part in

Table 1.

Here the number k of the nearest neighbors is set to 3,

and the target dimension m is set to 3. A value of k that is

too large or too small will affect the smoothness of the

manifold or low-dimensional topology. A value of d that is

too large or too small will cause too much noise or low-

dimensional overlap. The values of k and d are generally

based on experience to select a more active value, and may

take a number of attempts to determine. We also refer to

the study by Hu et al. [27] for further discussion in this

area. Through the operation of the LLE algorithm, the

process sequence data after dimension reduction is

Each column of the matrix represents the corresponding

output data of the process sequence after LLE dimension

reduction.

The distance between the process sequences of parts can

be calculated as

D ¼

0

2:0919 0

0:3688 2:3424 0

2:3248 0:8671 2:6534 0

2:1971 0:2852 2:4767 0:5939 0

0 2:0919 0:3688 2:3248 2:1971 0

2:4249 1:6798 2:4291 2:5433 1:9630 2:4249 0

2:1971 0:2852 2:4767 0:5939 0 2:1971 1:9630 0

3:0154 2:5528 2:9264 3:4172 2:8353 3:0154 0:8740 2:8353 0

2
6666666666664

3
7777777777775

:

X ¼

0:058 8 0:058 8 0:058 8 0:058 8 0:058 8 0:058 8 0:058 8 0:058 8 0:058 8

0:117 6 0:117 6 0:117 6 0:117 6 0:117 6 0:117 6 0:117 6 0:117 6 0:117 6

0:176 5 0:352 9 0:176 5 0:352 9 0:352 9 0:176 5 0:352 9 0:352 9 0:352 9

0:235 3 0:294 1 0:235 3 0:235 3 0:235 3 0:235 3 0:294 1 0:235 3 0:352 9

0:294 1 0:352 9 0:352 9 0:235 3 0:235 3 0:294 1 0:352 9 0:235 3 0:352 9

0:352 9 0:352 9 0:411 8 0:352 9 0:352 9 0:352 9 0:411 8 0:352 9 0:411 8

0:411 8 0:411 8 0:411 8 0:411 8 0:411 8 0:411 8 0:411 8 0:411 8 0:411 8

2
666666664

3
777777775
:

Y ¼
� 0:086 5 � 0:478 3 0:238 0 � 1:340 0 � 0:761 2 � 0:086 5 1:201 5 � 0:761 2 2:074 1

� 1:353 1 0:701 8 � 1:528 3 0:604 9 0:737 9 � 1:353 1 0:701 5 0:737 9 0:750 4

1:000 0 1:000 0 1:000 0 1:000 0 1:000 0 1:000 0 1:000 0 1:000 0 1:000 0

2
4

3
5:
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The elements of the matrix D represent the Euclidean

distance between the process sequences of the nine shaft

sleeve parts in Table 1.

The minimum distance is used as the dissimilarity

measure formula, and the minimum distance threshold of

the clustering object distance is set to 1. The algorithm will

terminate when the minimum distance of the clustering

object is more than 1.

Taking the data of Table 1 as the samples, the samples

of each part are clustered at the beginning of clustering. In

the initial algorithm, there are nine clusters: {1}, {2}, {3},

{4}, {5}, {6}, {7}, {8}, {9}. Each element in the cluster

represents the number identification of the process

sequence of these samples in Table 1. The algorithm is

terminated after 10 steps. The clustering results are {1, 3,

6},{2,4, 5, 8},{7, 9}.

In addition, we need to determine the processing

requirements of the parts, where N represents absence, Y

represents presence, NaN represents a null value, and the

results are shown in Table 3.

Use 0 instead of N and 1 instead of Y. After the

roughness is normalized and the NaN value is replaced by

1, the processing requirements vector is obtained, as shown

in Table 4.

The parts {1, 3, 6} are a cluster and the mean vector of

the processing requirements is [0, 1, 0, 1, 1, 1]. Similarly,

the mean vector of the processing requirements for the

parts {2, 4, 5, 8} is [0.75, 0, 0.25, 0, 0.5, 0]. The mean

vector of the processing requirements for the parts {7, 9} is

[0, 0, 0, 0, 1, 0].

5.2 Rule extraction

Here, the process sequence of cluster {1, 3, 6} is selected

as the sample to extract the frequent item set of the process

sequence. The variable instances of each longitudinal

related event of the cluster {1, 3, 6} are shown in Table 5.

The data is analyzed by the association rules algorithm.

Assume that the minimum support count is 2 and the

minimum confidence level is 60% (superscript i represents

the ith process). The first four processes are the same, and

we analyze them from the fourth process.

Step 1: Select candidate 1 items set C1 as shown in

Table 6.

Table 2 The results of the

process pretreatment
Serial number Step

1 0.058 8 0.117 6 0.176 5 0.235 3 0.294 1 0.352 9 0.411 8

2 0.058 8 0.117 6 0.352 9 0.294 1 0.352 9 0.352 9 0.411 8

3 0.058 8 0.117 6 0.176 5 0.235 3 0.352 9 0.411 8 0.411 8

4 0.058 8 0.117 6 0.352 9 0.235 3 0.235 3 0.352 9 0.411 8

5 0.058 8 0.117 6 0.352 9 0.235 3 0.235 3 0.352 9 0.411 8

6 0.058 8 0.117 6 0.176 5 0.235 3 0.294 1 0.352 9 0.411 8

7 0.058 8 0.117 6 0.352 9 0.294 1 0.352 9 0.411 8 0.411 8

8 0.058 8 0.117 6 0.352 9 0.235 3 0.235 3 0.352 9 0.411 8

9 0.058 8 0.117 6 0.352 9 0.352 9 0.352 9 0.411 8 0.411 8

Table 3 Processing requirements of the parts

Serial

number

Part name Inner

diameter

External

thread

Internal

thread

Outer diameter

roughness

Inner diameter

roughness

Face

roughness

1 Screw N Y N 6.3 NaN 6.3

2 Guide pillar N N N 1.6 NaN 3.2

3 Stud N Y N 6.3 NaN 6.3

4 Threaded

bushing

Y N Y 1.6 3.2 3.2

5 Orifice bushing Y N N 1.6 1.6 3.2

6 Bolt N Y N 6.3 NaN 6.3

7 Shaft N N N 1.6 NaN 3.2

8 Bearing sleeve Y N N 1.6 1.6 3.2

9 Dowel pin N N N 1.6 NaN 3.2
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Step 2: Select frequent 1 items set L1 as shown in

Table 7.

Step 3: Select candidate 2 items set C2 as shown in

Table 8.

Step 4: Select frequent 2 items set L2 as shown in

Table 9.

Step 5: Select candidate 3 items set C3 as shown in

Table 10.

Step 6: Select frequent 3 items set L3 as shown in

Table 11.

Table 4 Processing requirements vector

Serial

number

Part name Inner

diameter

External

thread

Internal

thread

Outer diameter

roughness

Inner diameter

roughness

Face

roughness

1 Screw 0 1 0 1 1 1

2 Guide pillar 0 0 0 0 1 0

3 Stud 0 1 0 1 1 1

4 Threaded

bushing

1 0 1 0 1 0

5 Orifice bushing 1 0 0 0 0 0

6 Bolt 0 1 0 1 1 1

7 Shaft 0 0 0 0 1 0

8 Bearing sleeve 1 0 0 0 0 0

9 Dowel pin 0 0 0 0 1 0

Table 5 Data for machining process parameters

Serial number Part name Step

1 Screw Blanking Rough turning Half finishing turning Turning thread Milling Clamping Inspection

3 Stud Blanking Rough turning Half finishing turning Turning thread Grinding Inspection

6 Bolt Blanking Rough turning Half finishing turning Turning thread Milling Grinding Inspection

Table 6 Candidate 1 items set

Candidate 1 item Frequency

Turning thread4 3

Milling5 2

Grinding5 1

Clamping6 1

Inspection6 1

Grinding6 1

Inspection7 2

Table 7 Frequent 1 items set

Frequent 1 item Frequency

Turning thread4 3

Milling5 2

Inspection7 2

Table 8 Candidate 2 items set

Candidate 2 item Frequency

Turning thread4 ) milling5 2

Turning thread4 ) inspection7 2

Milling5 ) inspection7 2

Table 9 Frequent 2 items set

Frequent 2 item Frequency

Turning thread4 ) milling5 2

Turning thread4 ) inspection7 2

Milling5 ) inspection7 2

Table 10 Candidate 3 items set

Candidate 3 item Frequency

Turning thread4 ) milling5 ) inspection7 2

Table 11 Frequent 3 items set

Frequent 3 item Frequency

Turning thread4 ) milling5 ) inspection7 2
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Step 7: Stop the iterative algorithm to find the frequent

items, and the confidence level is calculated as shown in

Table 12.

The four strong rules in this cluster are: turning

thread4 ) milling5, turning thread4 ) inspection7,

milling5 ) inspection7, turning thread4 ) milling5 ) in-

spection7. We take the longest term as the result of the

process design rule, and combine with the mean vector of

the processing requirements for the cluster {1, 3, 6}: [0, 1,

0, 1, 1, 1] to form a process design rule:

Rule 1: [0, 1, 0, 1, 1, 1] ? (blanking, rough turning, half

finishing turning, turning thread, milling, unknown,

inspection)

Similarly, the association rule analysis of the cluster {2,

4, 5, 8} gives the following process design rule:

Rule 2: [0.75, 0, 0.25, 0, 0.5, 0] ? (blanking, rough

turning, finishing turning, drilling, unknown, unknown,

inspection)

For the association rule analysis of the cluster {7, 9}, the

following process design rule is available:

Rule 3: [0, 0, 0, 0, 1, 0] ? (blanking, rough turning,

finishing turning)

5.3 Rule reuse

A new type of shaft sleeve part, a connecting rod screw, is

introduced. The actual processing process is blanking,

rough turning, half finishing turning, turning thread, mil-

ling, grinding, and inspection.

Firstly, we determine the processing requirements vec-

tor. The part has an external thread and no inner diameter.

The outer diameter roughness and the face roughness are

all 6.3 lm. After normalization processing of roughness,

the processing requirements vector is [0, 1, 0, 1, 1, 1].

Secondly, the similarity between the processing

requirement vector of the part and the mean vector of the

three clusters is compared. The Euclidean distance method

is used here to obtain three distances, namely 0, 1.73, and

1.97.

Finally, the cluster with the highest similarity is ana-

lyzed by the association rules, that is, {1, 3, 6}. Get Rule 1:

[0, 1, 0, 1, 1, 1] ? blanking, rough turning, half finishing

turning, turning thread, milling, unknown, inspection.

After comparison, we can see that Rule 1 and its actual

processing process are the same in the first five and last

terms. Rule 2 only satisfies the first two and last items. Rule

3 only satisfies the first two items, so the method of

matching the processing requirements vector is valid. In

fact, the connecting rod screw is similar to part 6 in the

cluster {1, 3, 6}, which is all bolt parts with nuts, so the

processing process is highly similar to part 6.

If data preprocessing is not performed, the processing

process of the nine shaft sleeve parts are directly analyzed

by the association rules. At 60% confidence, we will only

acquire a process design rule: Rule: (shaft sleeve parts) ?
(blanking, rough turning, finishing turning, unknown,

unknown, unknown, inspection). It can be seen that the

process design rule we have obtained is not accurate

enough.

6 Conclusions

Process design rules are an important part of process design

knowledge: access to process design rules is conducive to

the realization of process design knowledge reuse and thus

helps to improve the level of process design. In this paper,

a method of thinking process rules extraction for process

design has been proposed. Firstly, the instance represen-

tation model of process planning reflecting the thinking

process of technicians has been constructed, and the related

events have been extracted from the model as the basis for

the extraction of process design rules. Secondly, the man-

ifold learning algorithm and clustering analysis have been

used to preprocess the process instance data. Finally, based

on the association rule mining algorithm, the similar pro-

cess information extraction in the same cluster has been

achieved, and the complete process design rules have been

formed by vectorizing the independent attribute instances

in the related events.

The value of applying the proposed method to real

industrial settings is that similar process information can be

extracted from a large number of process instance data, and

then the process design rules can be extracted in the similar

process information. Through the formal description of

processing requirements of parts, the process design rules

are indexed and reused. However, in the actual process

design, due to the diversity of parts, the processing process

may be very rich, and the difference is great. The clustering

method cannot effectively achieve the process clustering of

similar parts. In addition, the algorithm of association rule

mining is not ideal for irregular process data. Therefore,

when we apply this method, we need to perform some

Table 12 The confidence level of frequent item

Frequent item Confidence level

Turning thread4 ) milling5 2/3

Turning thread4 ) inspection7 2/3

Milling5 ) inspection7 2/3

Turning thread4 ) milling5 ) inspection7 2/3
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handling of the actual processing process to make the

process data more concise and tidy.
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