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Abstract Wind turbines (WTs) are quite expensive pie-

ces of equipment in power industry. Maintenance and

repair is a critical activity which also consumes lots of time

and effort, hence making it a costly affair. Carefully

planning the maintenance based upon condition of the

equipment would make the process reasonable. Mostly the

WTs are equipped with some kind of condition monitoring

device/system, which provides the information about the

device to the central data base i.e., supervisory control and

data acquisition (SCADA) data base. These devices/sys-

tems make use of data processing techniques/methods in

order to detect and predict faults. The information provided

by condition monitoring equipments keeps on recoding in

the SCADA data base. This paper dwells upon the tech-

niques/methods/algorithms developed, to carry out diag-

nosis and prognosis of the faults, based upon SCADA data.

Subsequently data driven approaching for SCADA data

interpretation has been reviewed and an artificial intelli-

gence (AI) based framework for fault diagnosis and prog-

nosis of WTs using SCADA data is proposed.

Keywords SCADA data � Data-driven approaches �
Artificial intelligence (AI) � Diagnosis and prognosis of

wind turbines � Central monitoring system (CMS)

1 Introduction

Renewable energy source is playing an important role in the

global energy mix, as a mean of reducing the impact of

energy production on climate change. Wind energy made its

first appearance thousands of years ago with the vertical

axis windmills found at the Persian-Afghan borders around

200 BC and the horizontal-axis windmills of the Nether-

lands and the Mediterranean following much later

(1300–1875 AD). Gradual evolution and perfection of these

systems were performed in the USA during the 19th century

mainly for pumping water between 1850 and 1970. The first

large wind machine to generate electricity of 12 kW was

installed in Cleveland, Ohio, 1888. Towards the end of

World War I, use of 25 kW machines throughout Denmark

was widespread. More development of wind turbines (WTs)

in the USA was inspired by the aerospace developments,

while subsequent efforts in Denmark, France, Germany,

and the UK (between 1935 and 1970) showed that large-

scale WTs could work. European developments continued

after World War II and lots of developments have been

made [1]. During the last thirty years, securities of energy

supply and environmental issues have reheated the interest

for wind energy applications. In addition, the challenge of

wind energy applications is the target of 1,000 GW of wind

power by 2030. Further the trend in future is towards pro-

ducing big and offshore turbines. The future forecast is

indicated that the demand for wind power will increase

many folds in the years to come. The rated capacity and size

will both increase in time to come.
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2 Brief background

2.1 WTs

A wind turbine (WT) is a machine used for converting the

kinetic energy in wind into mechanical energy. WTs are

mainly classified into two general types: horizontal axis

and vertical axis. A horizontal axis machine has its blades

rotating about an axis parallel to the ground. A vertical axis

machine has its blades rotating about an axis perpendicular

to the ground. There are a number of available designs for

both and each type has certain advantages and disadvan-

tages. However, compared with the horizontal axis type,

very few vertical axis machines are available commer-

cially. Further horizontal WTs are also of two types:

upwind and downwind. In case of upwind WT the rotor is

in the front of the unit. In order to keep it oriented into the

wind, a yaw mechanism is needed. Also the extended

nacelle is required to position the rotor far away enough

from the tower, in order to avoid any problems with a blade

strike. In a downwind turbine the rotor is on the back side

of the turbine. The nacelle is designed to seek the wind,

thus there is no need to have a separate yaw mechanism.

The flexible blade could be used but this advantage may

also be a disadvantage, as the flexing may cause fatigue to

the blades. Tower shadow is a problem with downwind

machines because the rotor blade is behind the tower. This

may cause turbulence and lead to increased fatigue on the

unit. Keeping in view the pros and cons of both types,

mostly upwind WTs are used. The various parts of hori-

zontal WT (see Fig. 1) and their purposes are indicated: 1:

blades (two or three blades, wind blowing over the blades

causes the blades to ‘‘lift’’ and rotate); 2: rotor (blades and

the hub together); 3: pitch (blades are turned out of the

wind to keep the rotor from turning in winds that are too

high or too low to produce electricity); 4: brake (disc brake

which can be applied mechanically, electrically, or

hydraulically); 5: low-speed shaft (turns at about 30 r/min

to 60 r/min); 6: gear box (connects the low-speed shaft to

the high-speed shaft in order to increase speed from

30 r/min or 60 r/min to about 1,200 r/min to 1,500 r/min for

producing electricity); 7: generator (induction generator

that produces 60-cycle AC electricity). 8: controller (starts

or stops the WT at wind speeds of about 12.87 km/h to

25.75 km/h and 104.61 km/h respectively; 9: anemometer

(measures the wind speed and transmits wind speed data to

the controller); 10: wind vane (measures wind direction

and communicates with the yaw drive to orient the tur-

bine); 11: nacelle (the rotor attaches to the nacelle, which

sits atop the tower and includes the gear box, low and high-

speed shafts, generator, controller, and brake, a cover

protects the components inside the nacelle); 12: high-speed

shaft (drives the generator); 13: yaw drive (upwind turbines

face into the wind; the yaw drive is used to keep the rotor

facing into the wind as the wind direction changes;

downwind turbines do not require a yaw drive); 14: yaw

motor (powers the yaw drive); 15: tower (made of tubular

steel or steel lattice, wind speed increases).

2.2 Fault diagnosis and prognosis

A fault is a physical defect, imperfection or flaw that

occurs within the system. This may cause a failure: the

non-performance of some action that is due or expected.

Fig. 1 a Parts of WT b CMS on WT [2]

62 K.-S. Wang et al.

123



Fault detection is determination of faults that present in a

system and time of detection. Fault isolation is determi-

nation of kind, location and time of detection of a fault;

follows fault detection. Fault identification is determination

of size and time-variant behavior of a fault; follows fault

isolation and fault diagnosis is determination of kind, size,

location and time of a fault; follows fault detection, and

includes fault isolation and identification [3]. Prognosis is

an approach that combines information on each machine’s

current condition with historical data from machines of the

same class, physics models of failure components and short

term projected usage to predict the future probability of

failure of that individual machine. That is, prognosis gives

a probabilistic forecast that is specific to each machine,

allowing a strategy that balances the risk of running a

machine with damage indications against the lost revenue

while waiting for maintenance [4]. Data mining is a pro-

cess of extraction of useful information and patterns from

huge data. It is also called as knowledge discovery process,

knowledge mining from data, knowledge extraction or data

/pattern analysis [5]. Various maintenance practices have

been described and classified, empirically, into the fol-

lowing approaches [6]: reactive approach, preventive

approach, predictive approach, diagnostic (expert systems)

approach, autonomous approach, lean approach, proactive

approach. The ultimate goal of fault diagnosis and prog-

nosis is to decide the appropriate maintenance strategy.

2.3 Fault diagnosis and prognosis systems on WT

Condition monitoring (CM) can detect faults early and

prevent major breakdowns. This is associated with signif-

icant decrease in maintenance costs. Furthermore, it allows

for optimisation of maintenance schedules, thereby reduc-

ing downtime and enhancing equipment availability, safety

and reliability [7]. Garcı́a et al provided comprehensive

review of the CM of WTs, describing the different main-

tenance strategies. In their study they have focused their

attentions on the sensor technology (acquiring and ana-

lysing data for fault diagnosis) [8]. Hameed et al have also

provided significant vital information in the area of CM [9,

10]. On a WT major faults are generated because of the

main gear box, generator, main bearings, rotor blades and

their possibility of failures in terms of percentages are

32 %, 23 %, 11 % and less than 10 % respectively as stated

by the insurer German Lloyd. The condition monitoring

system (CMS) is a tool that provides information on the

status of a component and can also predict an expected

failure/fault. The possible applications of CMS on WT are

shown in the Fig. 1b. The fault diagnoses sensors used and

techniques employed for CMS on various parts of the WT

are summarized in Table 1 [8–12]. Digital filtering, mod-

eling, signal and spectrum analysis are the main parts of the

data processing in CMS. Data analysis in WTs could be

based on many techniques, and a few important used

techniques are summarized in Table 2. The next step is to

predict the remaining life of the components. So as to adopt

a suitable maintenance strategy for WTs [13].

Some existing CMS are: Gram & Juhl TCM system,

DMT WindSafe system, Siemens monitoring & safety

system, Prüftechnik [18].

3 SCADA data based CMS for WT

Supervisory control and data acquisition (SCADA) is an

application that collects data from a system and sends them

to a central computer for monitoring and controlling. Cur-

rent CM systems essentially provide the necessary sensor

and capability of data capture required for monitoring. This

monitoring system consists of wireless sensors that com-

municate with an embedded microprocessor mounted on

Table 1 Summary of CMS on WT

Part of WT Fault Technique Sensor/monitoring quantity

Gear box Gear tooth damages,

bearing faults

Vibration monitoring and spectrum analysis,

supplemented with AE sensing detects

pitting, cracking

Transducers, velocity sensors,

accelerometers, spectral emitted

energy sensors, AE sensors

Oil analysis Temperature, contamination, moisture

Generator Stator, bearing, rotor

inside

Current signature analysis Current measurement

Rotor blades Creep & corrosion,

fatigue, imbalance,

roughness

Shearography, radiography, AE sensing AE sensors, strain gauges, Fiber bragg

grating

Tower and blades Ultrasonic testing

techniques

Time-frequency techniques and wavelet

transforms

Ultrasonic sensors, Fiber bragg grating

Pitch mechanism, Yaw

system, power electronics/

electrical system

Voltage and current

analysis, electrical

resistance

Spectrum analysis, eddy current,

thermography

Current and voltage measuring

equipments
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the devices. Its purpose is to allow diagnostic and fault

detection algorithms to be deployed down at the sensor/

hardware level. This will decrease the volume of data that

must be transmitted and stored via the more traditional

centralised SCADA system approach. The SCADA data

resides on a server/PC in the form of a database, and the raw

data reside on the hard-drive of the microprocessor/sensor

system mounted on the turbine (see Fig. 2). A typical

SCADA data is 10 min averaged data [19]. Thus the col-

lected and stored SCADA data must then be examined in

order to deduce the overall health of the turbine as well as

its internal components. An operational wind farm typically

generates vast quantities of data. The SCADA data contain

information about every aspect of a wind farm, from power

output and wind speed to any errors registered within the

system [20]. SCADA data may be effectively used to

‘‘tune’’ a wind farm, providing early warnings of possible

failures and optimizing power outputs across many turbines

in all conditions. Typical parameters recorded by SCADA

on a WT could be broadly categorized into following types

which could be used in fault diagnosis and prognosis

activity: wind parameters, such as wind speed and wind

deviations; performance parameters, such as power output,

rotor speed, and blade pitch angle; vibration parameters,

such as tower acceleration and drive train acceleration;

temperature parameters, such as bearing temperature and

gearbox temperature [21]. There are some success stories

about using SCADA data for CM. Wiggelinkhuizen et al

presented the framework of the EU funded condition

monitoring for offshore wind farms project. They studied a

small wind farm of five turbines having been instrumented

with several condition monitoring systems and also with the

‘‘traditional’’ measurement systems for measuring

mechanical loads and power performance. Data from

vibration and traditional measurements, together with data

collected by the turbines’ SCADA systems, have been

analyzed to assess. They could determine failures, detect

early stage of failure and assess the components’ health.

They developed, applied, and tested several data analysis

methods and measurement configurations successfully and

concluded that for all types of measurement SCADA data,

time series, vibration monitoring could be used for CM [18].

Zaher and McArthur also proposed an idea to use the

combination of abnormal detection and data-trending

techniques encapsulated in a multi-agent framework for the

development of a fault detection system for WTs [19].

Table 2 Summary of sensory signals and signal processing methods [17]

Methods Description Applications

Statistical methods Root mean square, peak amplitude

Maximum value, minimum value, mean, peak to peak, standard

deviation, shape factor, crest factor, impulse factor, definite

integral, energy ratio and kurtosis.

Widely used the diagnosis of

failures

Trend analysis Particular algorithms power output patterns from WT generators Monitoring pitch mechanisms,

power output generators

Filtering methods Least median squares, filtering with and without a classical

statistical method (based on standard deviation)

Vibration filtering

Time-domain analysis Variations in current signals and trends, vibration analysis, oil

analysis, AE analysis

Imbalances between the rotor and

the stator phases, faults in the

rotor windings of the generator

Cepstrum analysis Inverse Fourier transform of the logarithmic power spectrum Gear vibrations

Time synchronous averaging (TSA) Waveform signal Cracked gear tooth Identifies

source of error

Fast-Fourier transform (FFT) Conversion of a digital signal from the time domain into the

frequency domain, constant speed wind energy converters.

Bearings

Amplitude demodulation Low-amplitude and low-frequency, periodic signals that might be

masked by other higher energy vibrations

Bearings

Order analysis Out of phase signals can be separated and analysed, suitable for

variable speed wind energy converters

Overall rotor condition including

surface roughness, mass

imbalance and aerodynamic

asymmetry.

Wavelet transforms Time-frequency technique, non-stationary signals Gears, bearings, mechanical

systems

Hidden Markov models (HMM) Classification of patterns in trend analysis Bearings

CI Techniques Intelligent algorithms [14–16] All Systems
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4 AI methods for analysis of SCADA data from WTs

Pre-processing of SCADA is a must for extraction of useful

information and patterns from huge data. The various AI

methods being used for analysis of SCADA data from WTs

are artificial neural networks (ANNs), fuzzy systems and

combination techniques like adaptive neuro fuzzy infer-

ence systems (ANFIS).

4.1 ANNs

ANNs can be used for a wide range of applications. They

are inspired by the mechanism of the brain and can be

classified by different categories as depending upon the

learning mechanism or how they are trained (supervised/

unsupervised). ANNs accept input parameters, process

them, and produce output parameters according to a non-

linear transfer function. Some of the key features for neural

networks (NNs) are their high processing speeds which are

due to their massive parallelism, their proven ability to be

trained and produce instantaneous and correct responses

from noisy or partially incomplete data, and their ability to

generalize information over a wide range. These features

make them a good choice for applying to WTs’ data

analysis.

4.2 Fuzzy systems

Fuzzy systems are very useful in two general contexts like

in situations involving highly complex systems whose

behaviors are not well understood and in situations where

an approximate, but fast solution is desired. A further

advantage of fuzzy systems is that the existing expert

knowledge can be implemented to improve the approxi-

mation by tuning, removing or adding of membership

functions and rules.

4.3 ANFIS

Fuzzy neural networks have shown to be very advanta-

geous in dealing with real-world problems. These neuro-

fuzzy systems combine the benefits of these two powerful

paradigms into a single capsule. This gives the ability to

accommodate both data and existing expert knowledge

about the problem under consideration. In ANFIS the

advantages of NN are combined with fuzzy inference

system (FIS). Thereby the FIS is used to set up a set of

rules whose membership function parameters are tuned in a

training phase. Recently, Schlechtingen et al have proposed

a system for WT condition monitoring using ANFIS. For

this purpose, ANFIS normal behavior models for common

SCADA data were developed in order to detect abnormal

behavior of the captured signals and indicate component

malfunctions or faults using the prediction error. They used

33 different standard SCADA signals and described them,

for which 45 normal behavior models were developed. The

performance of these models was evaluated in terms of the

prediction error standard deviations to show the applica-

bility of ANFIS models for monitoring WT SCADA sig-

nals. The computational time needed for model training

was compared to NN models showing the strength of

ANFIS in training speed. For automation of fault diagnosis,

FIS was used to analyze the prediction errors for fault

patterns. The outputs were both the conditions of the

component and a possible root cause for the anomaly. The

output was generated by the aid of rules that capture the

existing expert knowledge linking observed prediction

error patterns to specific faults. The work was based on

continuously measured WT SCADA data from 18 turbines

of the 2 MW class covering a period of 30 months. The

system proposed in this method shows a novel approach

with regard to the usage of ANFIS models in this context

and the application of the proposed procedure to a wide

range of SCADA signals [36].

Fig. 2 Proposed intelligent frame work for fault diagnosis and prognosis of WTs
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5 Various algorithms for SCADA data analysis

for WTs

A considerable work has been carried out in using SCADA

data on WT diagnosis and prognosis by Kusiak and his

group. The works carried out by various researchers are

presented in Table 3. Kusiak et al presented various models

for monitoring wind farm power output. An evolutionary

computation algorithm was used to build a nonlinear

parametric model to monitor the wind farm performance.

The k-NN model produced good performance for the wind

farm operating in normal conditions [22]. In their later

study, Kusiak et al proposed the concept of anticipatory

control applied to WTs. A modified evolutionary strategy

algorithm was used to solve a nonlinear constrained opti-

mization problem. The proposed approach has been tested

on the data collected from a 1.5 MW WT. In a subsequent

study, Kusiak et al proposed a framework for optimization

of the power produced by WTs. They proposed control

approach generated optimized settings of the blade pitch

and yaw angle. They used integration of data mining and

evolutionary computation in their approach [23]. In a later

study on SCADA data, Kusiak and Zhang found that

vibrations of a WT had a negative impact on its perfor-

mance. Data-mining algorithms were used to build models

with turbine parameters of interest as inputs, and the

vibrations of drive train and tower as outputs. The perfor-

mance of each model was thoroughly evaluated based on

metrics widely used in the wind industry. The neural net-

work algorithm outperforms other classifiers and is con-

sidered to be the most promising approach to study WT

vibrations [24]. Ye et al proposed that with design of wind

speed difference tests to detect both hard failures (cause

complete shutdown of the turbine e.g. gear failure) and soft

failures (degrade the turbine performance but do not nec-

essarily stop the turbine e.g. anemometer faults). They used

PSO based approach to learn from historical data to decide

the location and size of the boundary i.e., abnormal state

from the normal state [26]. Further Kusiak et al presented

an intelligent WT control system based on models inte-

grating the following three approaches: data mining, model

predictive control, and evolutionary computation. The

results produced by the intelligent control system were

found to be better than those of the current WT control

system. For turbulent wind, the intelligent control system

smoothed the power output, generator torque, and rotor

speed without compromising the electricity demand [25].

Uluyol et al proved that the WT power curve analytic was

useful for assessing WT performance and generating robust

indicators for component diagnostics and prognostics. This

approach makes use of SCADA information and provides

easy configuration based on process control approaches for

condition-based monitoring. They used operational regime-

based condition indicators that prevented false alarms and

increased the possibility of fault isolation. This approach

could also detect slow performance degradation caused by

component wear as well as degradation due to an

impending failure [28]. Kusiak and Li used fault data

provided by SCADA system. They carried out fault pre-

diction at three levels: fault and no-fault prediction, fault

category (severity), and the specific fault prediction. They

used power curve to determine the health of a WT. The

model extraction at levels 1 and 3 was performed using

NN, the NN ensemble (NNE), boosting tree algorithm

(BTA), and support vector machine (SVM). Whereas at

level 2 they used NN, the standard classification and

regression tree (CART), the BTA, and the SVM. Further-

more they could successfully predict faults 5–60 min

before they occur at each level [29]. Kusiak and Verma

used an association rule mining algorithm to identify fre-

quent status patterns of turbine components and systems to

predict using historical WT data. They explored five data-

mining algorithms namely bagging, ripper, rotation forest,

random forest, and k-nearest neighbor (k-NN, k=10). They

concluded that the best predication results were obtained

with random forest algorithm [30]. Zhang and Kusiak

proposed three monitoring models for detecting abnormal

vibration of WTs in time domain based on SCADA data.

The sampling interval of SCADA data was 10 s, and it

allowed to detect abnormal statuses of WTs in the time

domain. The data collected included training, test, and

error data. They used a modified k-means clustering algo-

rithm to the first vibration monitoring model. The k-means

algorithm grouped data into clusters by examining their

similarity. The clusters were then labelled as normal or

abnormal statuses of WT vibration based on the error

reports of WTs. They further incorporated the concept of

control charts to develop models for monitoring of turbine

vibration. They also addressed the detecting of abnormal

drive train and tower vibration of a WT. They compared

seven different data-mining algorithms, namely, NNE, NN,

boosting regression tree (BT), SVM, random forest with

regression (RF), CART, and k-NN. Four metrics, the mean

absolute error (MAE), standard deviation of absolute error

(SD of AE), mean square error (MSE), and the standard

deviation of square error (SD of SE), are utilized to eval-

uate the performance of data-mining algorithms in model

extraction. They found that the NNE model was recognized

as the most suitable model for determining drive train

acceleration and the NN model was considered to be the

most suitable algorithm for developing the model for pre-

dicting tower acceleration [31]. Yang et al in their work

proposed a technique which would interpret the SCADA

data collected from WTs. They developed an effective

method for processing raw SCADA data, further proposed

an alternative condition monitoring technique based on
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investigating the correlations among relevant SCADA

data; and realized the quantitative assessment of the health

condition of a turbine under varying operational conditions.

Both laboratory and site verification tests had been con-

ducted and were found satisfactory [32].

6 Discussions and future challenges

From the literature reviewed it has been demonstrated

successfully by researchers that by keeping track of wind

speed and power output parameters, the overall health of

the turbine can be supervised. Furthermore, SCADA data

could be usefully used for CM of WTs and locating faults.

There has been success in using SCADA data for power

prediction, optimal control settings, performance evalua-

tion, predicting turbine faults (predicting drive train

acceleration/tower acceleration/gear box failure) and also

the vibrations on a WT. Many AI techniques have been

applied including NN, Fuzzy, ANFIS, GA’s etc [32, 33],

AI model in CM of WTs is justifiable as there are many

variables involved and it is not easy to establish accurate

mathematical model for such kind of complicated systems.

It is also proposed to use data fusion techniques for mon-

itoring the health of WTs’ [34]. Few challenges that need

to overcome before SCADA data analysis becomes fully

successful are: SCADA data can differ from turbine to

turbine and SCADA data change with the operational

conditions. So because of this it becomes difficult to dif-

ferentiate between a real fault and fake fault which is quite

a challenge.

Moreover WT SCADA data are usually 10 min

average data, so some information is lost. Thus referring

to the research of WT condition monitoring, a frame

work is proposed that takes SCADA data and also an

add on high frequency data from the sensors (some) to

diagnose and prognose with both conventional data and

SCADA data. After comparison of the two results, the

appropriate method can be chosen for maintenance

decision making.

A number of models have been proposed, then tried and

tested [35, 36], accuracy of the model depends upon the

careful selection of variables and the quality of the data

(free from noise). So pre-processing of the data plays an

important role in the accuracy of the models. Performances

of AI based data mining algorithms and CM algorithms are

showing quite promising results. Hence by using compu-

tational intelligence concepts more efficient models could

be obtained thus enhancing the accuracy and robustness of

the model. It is proposed that data mining (AI based) and

evolutionary computations could be integrated for building

the models for prediction and monitoring.

7 Conclusions

The major outcomes from this study are listed below:

A frame work is proposed for diagnosing and prognosing

of CM of WTs using a combinational approach. These

make use of conventional SCADA data and add on high

frequency data from the sensors. In addition to this it

also analyses historical SCADA data.

Few challenges that need to overcome in SCADA data

analysis are: firstly SCADA can differ from turbine to

turbine, secondly SCADA data change with the opera-

tional conditions. So pre-processing the raw data can

equally contribute to the success of the CM algorithm

itself.

Some researchers have successfully demonstrated the

use of AI algorithms for SCADA data analysis. Seeing

their performance it is believed that AI models could

enhance the accuracy and robustness of models.

Though the comparison results of various models are

mentioned but no clear cut perfect modeling technique

could emerge. So this area remains open for further

explorations.
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