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Abstract In order to supply better accordance for mod-

eling and simulation of complex networks, a new degree

dependence entropy (DDE) descriptor is proposed to

describe the degree dependence relationship and corre-

sponding characteristic in this paper. First of all, degrees of

vertices and the shortest path lengths between all pairs of

vertices are computed. Then the degree dependence

matrices under different shortest path lengths are con-

structed. At last the DDEs are extracted from the degree

dependence matrices. Simulation results show that the

DDE descriptor can reflect the complexity of degree

dependence relationship in complex networks; high DDE

indicates complex degree dependence relationship; low

DDE indicates the opposite one. The DDE can be seen as a

quantitative statistical characteristic, which is meaningful

for networked modeling and simulation.

Keywords Degree dependence matrix � Degree

dependence entropy (DDE) � Entropy � Complex networks

1 Introduction

There are many systems existing in the form of networks,

such as social networks, biological networks, World Wide

Webs, and so on. Because these networks are with high

complexity, they are named ‘‘complex networks’’ [1].

According to the quick spreading of application fields, the

research of complex networks has become one of the most

important intersecting fields of multi-subjects, and the mod-

eling and simulation of complex networks has been paid more

and more attention to. As an important aspect, many statis-

tical descriptors of complex networks have been proposed,

such as average path length, clustering coefficient, degree

distribution, betweenness, entropy, etc., [2] in which entropy

is an interesting conception. Some entropy descriptors have

also been defined, such as entropy of the degree distribution,

target entropy, search information entropy, and road entropy,

etc. [3, 4]. Although the unprecedented progress has been

achieved, these descriptors cannot describe the degree

dependence relationship, which is also an important charac-

teristic for modeling and simulation of complex networks.

In this paper, we propose a new entropy descriptor for

complex networks named degree dependence entropy

(DDE), describe the constructing process, and interpret the

reasonableness of the DDE descriptor through the simula-

tion experiments. The simulation results show that the

DDE descriptor can reflect the complexity of degree

dependence relationship in complex networks, which is

meaningful for networked modeling and simulation. The

rest of this paper is organized as follows: the complex

networks and information entropy is reviewed in Sects. 2

and 3. Sections 4 and 5 describe the construction of degree

dependence matrices and the proposed DDE descriptor.

The experiments and discussion are discussed in Sect. 6.

Finally, the conclusions are given in Sect. 7.

2 Complex networks

Qian Xue-sen gave a strict definition for complex networks

as: networks with part or all characteristics of self-
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organization, self-similarity, attractor, small world and

scale-free can be called the complex networks. It also can

be generalized as networks producing high complexity, and

the complexity is mainly presented as following points:

(i) The structure is complex. The number of vertices is

large, and the structure of networks produces many

different characteristics.

(ii) The network is evolutional. Mainly networks repre-

sent the appearance and disappearance of vertices.

Take the world-wide network for example, the web

page or link may appear or disconnect at any time,

which changes the network structure continuously.

(iii) The types of links are diverse. The weights between

vertices are different and may have direction.

(iv) The network is with dynamics complex. The set of

vertices may belong to the non-linear dynamics

system, and the vertex state will change complex.

(v) The vertices are various. Vertices of complex net-

works can represent anything, for example, vertices of

the human relationship complex networks represent

different individuals, and the vertices of world-wide

complex networks represent different web pages.

(vi) The complexity is the fusion of multi-level com-

plexities, which will affect each other and lead to

unpredictable result.

Based on the characteristics above, many researches

have been done on complex networks, and information

entropy is one of the most interesting fields, which will be

investigated in this paper.

3 Information entropy

Information entropy is a conception of information theory

proposed by Shannon [5]. Shannon defined information as

‘‘the reduction of entropy’’, viz. ‘‘the reduction of uncer-

tainty of a system’’, and firstly proposed the quantitative

description method for information. Suppose X = {x1, x2,

���, xn} is a discrete random variable, the appearance

probability of information source given by X is denoted as

pi = p(xi), i = 1, 2, ���, n, and
Pn

i¼1

pi ¼ 1. Then the infor-

mation entropy of information source X can be expressed

as

HðXÞ ¼
Xn

i¼1

pi log2

1

pi

¼ �k
Xn

i¼1

pi ln pi; ð1Þ

where H(X) is a value expressing the global characteristic of

information source, and k = log2e is the Boltzmann constant.

Information entropy can be seen as a measurement of

the order of a system, the higher the information entropy,

the more information content is, and the less uncertain of X.

4 Construction of degree dependence matrices

Information entropy has some excellent characteristics,

which can be used for the singularity detection or irregu-

larity judgment in many engineerings [6, 7] and signal

analysis fields [8, 9]. If there are multiple states existing in

the detected signal or system (denoted by X), the higher

H(X) will indicate the less uniform of X and more singular,

otherwise the lower H(X) will indicate the less singular.

Hence we can use information entropy to establish analyse

models and measure the complexity of a system. In this

paper, we compose the degree dependence matrices to

express the degree dependence situation of a network.

Suppose a undirected complex network A has N vertices

expressed as v1, v2, ���, vN, and ki is the degree of vi. Let DN9N

is the shortest path length matrix of A, where Dij is the

shortest path between vi and vj. For each shortest path length

d, we compose a degree dependence matrix Pd as

Pd
mn ¼ #fðvi; vjÞjDij ¼ d; ki ¼ m; kj ¼ n;
i ¼ 1; 2; � � � ;N; j ¼ 1; 2; � � � ;Ng; ð2Þ

where #{�} denotes the number of elements in the set.

Equation (2) denotes the degree dependence situation

between pairs of vertices when the shortest path length

between them is d. Take the network shown in Fig. 1 as an

example:

The degrees and the shortest path lengths between all

pairs of vertices are shown in Eqs. (3) and (4).

K ¼ ðk1; k2; k3; k4ÞT ¼ ð1; 3; 2; 2ÞT; ð3Þ

D ¼

0 1 2 2

1 0 1 1

2 1 0 1

2 1 1 0

2

6
6
4

3

7
7
5: ð4Þ

Then we should compute the elements of Pd, using one

element P1
23 as an example, it is computed as

P1
23 ¼ #fðvi; vjÞjDij ¼ 1; ki ¼ 2; kj ¼ 3;

i ¼ 1; 2; 3; 4; j ¼ 1; 2; 3; 4g
¼ #fðv3; v2Þ; ðv4; v2Þg ¼ 2: ð5Þ

Then we can achieve the whole degree dependence

matrix when d = 1 as shown in Eq. (6):

2

4

3

1

Fig. 1 Example network
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P1 ¼

0 0 1 0

0 2 2 0

1 2 0 0

0 0 0 0

2

6
6
4

3

7
7
5: ð6Þ

Further, in order to normalize the matrix, we transfer Eq.

(2) to the normalized form:

Pd
mn ¼ Pd

mn

�
N2: ð7Þ

The matrix is symmetric, and we can achieve all the

degree dependence matrices for the other different d in the

same way.

5 Degree dependence entropy based on degree

dependence matrices

For the undirected complex network A, suppose A is con-

nective, we have obtained all the degree dependence matri-

ces of A. Then we can define the DDE (EDDE) as Eq. (8):

EDDEðPdÞ ¼
XN

m¼1

XN

n¼1

Pd
mn logPd

mn: ð8Þ

For each complex network, at most N DDEs can be

obtained. However the number of DDEs N0 is much less

than N in most actual situation, viz. N0 � N due to the

small world characteristic.

Obviously, DDE is a quantitative statistical character-

istic of complex networks. From the construction of degree

dependence matrices and the intrinsic meanings of infor-

mation entropy, we can indicate that the DDE can reflect

the degree dependence relationship and corresponding

characteristic in certain extent. When the degree depen-

dence relationship is complex, the DDE values will be

high; when the degree dependence relationship is uniform,

the DDE values will be low.

6 Simulation experiments and result analysis

In order to exam the reasonableness of the proposed

descriptor for complex networks, we calculate the DDEs of

different type networks, including: the nearest-neighbor

coupled network (regular network) (vertices number:

N = 1,000, neighbors number of each vertex: B = 20), ER

random graph (N = 1,000, average degree of vertices:

T = 20), WS small-world network (N = 1,000, B = 20,

replacement probability p = 0.0001 - 1), and BA scale-

free network (N = 1,000, T = 20, vertices number of initial

ER graph: NI ¼ 20, initial probability of lines: pI ¼ 0:1).

In the first experiment, we compute the DDEs of dif-

ferent complex network types. The DDE values of them are

shown in Table 1, and the corresponding curves are shown

in Fig. 2 (only the non-zero DDEs are denoted).

From Table 1 and Fig. 2, it can be seen that DDE is

increasing with the increasing of random. Because regular

network is with the most definite degree dependence rela-

tionship, it has the lowest DDEs on all shortest distances.

For WS small-world networks, when p = 0.1 the DDE

values are higher than p = 0.01, which also indicates that

higher DDE values mean less regularity, and the DDE

values of ER random network are much higher than both of

them. Specially, for BA scale-free networks, because there

are some key vertices owning most shortest paths passing

by them, the degree dependence relationship will be par-

ticularly uniform, and it has the highest DDEs.

Table 1 DDE values of different type networks

Networks d

1 2 3 4 5 6 7 8 9 10

Regular 0.1891 0.3801 0.5811 0.7919 1.0121 1.2415 1.4800 1.7265 1.9816 2.2449

ER 0.2764 3.4488 9.3357 9.3835 0 0 0 0 0 0

WS (p = 0.010) 0.3321 0.8869 3.1348 4.9598 5.3673 5.3684 0 0 0 0

WS (p = 0.10) 0.4624 3.0150 7.9846 7.9982 0 0 0 0 0 0

BA 0.3290 4.3698 10.9743 11.9280 11.9521 11.9341 0 0 0 0

Fig. 2 DDE curves of different type networks
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In the second experiment, we compare the DDEs of WS

small-world networks under different replacement proba-

bility p. The results are shown in Fig. 3.

From Fig. 3, for each curve (corresponding the shortest

path length d) with the increasing of p, the random is

increasing, and the degree dependence relationship is

becoming more and more complex, so the network’s DDE

is increasing. Further, the DDE values are increasing much

more quickly when p is small. It can be explained that the

degree dependence relationship grows quickly when p is

not too big, and when p is bigger than a threshold the

degree dependence relationship will not get much order-

less. The shortest path lengths is becoming shorter and

shorter with the increasing of p. For example, in this

experiment the longest shortest path length is d = 4 when

p = 0.2. This appearance is also accordance with the WS

small-world networks’ characteristics, which also confirms

the reasonableness of the proposed DDE descriptor.

At last, the DDE curves of WS small-world networks

with different p on the log–log coordinate is shown in

Fig. 4. And all of the curves approach to straight lines well,

which is also an interesting phenomenon to be studied

deeply in the future.

7 Conclusions

A quantitative statistical characteristic DDE descriptor for

complex networks is proposed in this paper. In the pro-

gress, we put forward the degree dependence matrices

under different shortest path lengths, and then extract

DDEs from the matrices. At last the reasonableness is

demonstrated through simulation experiments. Simulation

results show that the DDE can reasonably reflect the

complexity of degree dependence relationship and corre-

sponding characteristic, which can be seen as a meaningful

quantitative characteristic of complex networks, and it can

supply better accordance for modeling and simulation of

complex networks.
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