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Abstract The compliance of an integrated approach,

principal component analysis (PCA), coupled with Tagu-

chi’s robust theory for simultaneous optimization of cor-

related multiple responses of wire electrical discharge

machining (WEDM) process for machining SiCP rein-

forced ZC63 metal matrix composites (MMCs) is investi-

gated in this work. The WEDM is proven better for its

efficiency to machine MMCs among others, while the

particulate size and volume percentage of SiCp with the

composite are the utmost important factors. These improve

the mechanical properties enormously, however reduce the

machining performance. Hence the WEDM experiments

are conducted by varying the particulate size, volume

fraction, pulse-on time, pulse-off time and wire tension. In

the view of quality cut, the most important performance

indicators of WEDM as surface roughness (Ra), metal

removal rate (MRR), wire wear ratio (WWR), kerf (Kw)

and white layer thickness (WLT) are measured as respon-

ses. PCA is used as multi-response optimization technique

to derive the composite principal component (CPC) which

acts as the overall quality index in the process. Consequently,

Taguchi’s S/N ratio analysis is applied to optimize the CPC.

The derived optimal process responses are confirmed by the

experimental validation tests results. The analysis of vari-

ance is conducted to find the effects of choosing process

variables on the overall quality of the machined component.

The practical possibility of the derived optimal process

conditions is also presented using SEM.

Keywords ZC63/SiCP metal matrix composites � Wire

electrical discharge machining (WEDM) � Principal

component analysis (PCA)-Taguchi method (TM) �
Analysis of variance (ANOVA)

1 Introduction

Ceramic reinforced metal matrix composites (MMCs) as

advanced materials strike the aerospace and automobile

industries with their enhanced mechanical properties. The

magnesium based MMCs possess the superior physical and

mechanical properties, such as excellent specific strength,

wear resistance, hardness, higher corrosion resistance, low

thermal expansion, excellent strength to weight ratio, etc.

[1–3] However, the presence of discontinuously distributed

hard ceramic particulate in the matrix made them highly

difficult-to-cut using conventional machining methods like

turning, milling, drilling, etc. Hence the applications of

these composites have been limited in the regular com-

mercial applications. Müller et al. [4] also noticed some

reasons lowering the applications of ceramic reinforced

MMCs when using conventional machining processes,

which are the higher production costs, the complexity of

the machining.

The parameters such as chemical compositions, prop-

erties of the reinforcement and matrix, dispersion, fabri-

cation methods and conditions, etc. have significant

influence on the mechanical properties and its machin-

ability. Many investigations have been successfully con-

ducted and reported on the variations of the mechanical

properties under several aforesaid conditions. However,
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controlling the machining variables to achieve the best

production has been considered as a highly difficult task for

the manufacturing industries today. The presence of hard

particles in the matrix intermittently hides cutting edge, for

example, an abrasive in grinding wheel on the tool surface

causes the relentless abrasion of cutting tool in due course

resulting in poor surface quality of the machined compo-

nent. Narahari et al. [5] highlighted some issues during

machining Al-SiCP composites cast with conventional high

speed steel and tungsten carbide tools as 25 % reduced tool

life than that of unreinforced alloy and further reduction in

tool life for the further increase in SiCP content beyond

20 % due to the abrasion of the tool. Manna et al. [6, 7]

investigated the optimal combination of process parameters

for better surface roughness (Ra) during Al/SiC-MMC

turning. It shows that it is a challenging aspect to produce

good surface quality for Al/SiC-MMC components in

turning due to the adhesion of these particles when cutting

tool edge. However, the non-conventional machining

methods, such as laser beam machining [8], electrochem-

ical machining [9], water jet machining [10], electric dis-

charge machining [11], are proven effective with the

capability to cut the materials regardless of their hardness

and machine these composites. Usually the machine tool

manufacturer provides the machine tool operational details

along with the tooling information and other machining

parameters corresponding to the generally used materials in

the industries. However these details are still not adequate

for machining the advanced materials like MMCs. It

became complicated to select the suitable conditions for

efficient machining due to the stochastic process mecha-

nisms in the non-traditional machining processes [12].

Many research works have been reported focusing on

the electric discharge machining (EDM) of MMCs. Kart-

hikeyan et al. [13] developed mathematical models for

optimizing EDM LM25/SiC MMCs process. Recently, the

pulse duration and the percent volume fraction of SiC are

considered as process variables to find the optimal values

of metal removal rate (MRR), the tool wear rate (TWR)

and Ra. The optimal cutting conditions are determined in

order to determine the economical machining of this pro-

cess in this investigation. Ramulu et al. [14] reported the

surface integrity of SiCP/Al composite in EDM. George

et al. [15] considered the EDM process parameter including

pulse current, gap voltage and pulse-on-time to optimize

the responses of electrode wear rate (EWR) and MRR

while machining carbon–carbon composite. It was found

that the lower values of parameters substantially reduced

the EWR, while the higher values resulted in higher MRR

within this experimentation region. Sameh et al. [16]

reported the effect of pulse on time, peak current, average

gap voltage and the percent volume fraction of SiC present

in the aluminium matrix on Ra, MRR and EWR while

machining Al/SiCP in EDM. Ra was increased with

increasing pulse on time, SiC percentage, peak current and

gap voltage, while the increased MMR was observed for

the increased value of pulse on time, peak current and gap

voltage. The higher values of both pulse time and peak

current levels resulted in the increase of the EWR. Roux

et al. [17] investigated the surface integrity of the EDMed

Al/SiC/15 % MMC. It was found that the pulse energy is

highly significant on Ra while for reinforcement is negli-

gible. Hung et al. [18] presented a report on the EDM of

Al/SiCp that the Ra was considerably affected by the cur-

rent, and the effect of voltage and on-time was negligible.

Senthilkumar et al. [9] reported the influence of some

predominant electrochemical machining (ECM) process

parameters, such as the applied voltage, electrolyte con-

centration, electrolyte flow rate and tool feed rate on the

MRR and Ra during machining cast LM25 Al/10 %SiC

composites. In this investigation the increased MMR was

reported for the increased levels of any of the considered

machining parameters. However, the higher Ra is reported

for the higher level of machining parameters except applied

voltage. This is due to the excessive heating of electrolyte

for the higher voltages that increase Ra. Some non-tradi-

tional methods such as EDM and ECM have certain limi-

tations in the linear cutting and elaborate preparation of

pre-shaped electrode (tool), and huge and costly equip-

ments are needed to make the complex contours during

machining.

On the other hand, the wire electrical discharge

machining (WEDM) is proven as an effective and eco-

nomical method for machining MMCs into complex con-

tours [19, 20]. It is a thermo-electrical process where the

metal removal takes place in a series of electric sparks

discharges at the interface of continuously supplied wire

(electrode) and the workpiece in the presence of dielectric

medium in its working principle. The presence of abrasive

deteriorates the electrical and thermal conductivity of

MMCs, decreasing the MRR during machining [21]. Dis-

charge current, pulse-on time, pulse-off time, and voltage

are the most commonly used control parameters that are

significant for high speed machining of alloys [22]. How-

ever the parameters including volume fraction, particulate

size distribution also have considerable influence on the

machining performance while machining MMCs. Yan

et al. [23] observed the increased trend of Ra with the

increased volume fraction of the reinforcement. They also

noted that the increased volume fraction of reinforcement

resulted in wire breakage. Meanwhile the ceramic rein-

forcement improves the mechanical properties greatly.

According to Ref. [24], the Ra of MMCs machined using

WEDM was found to be significantly different from that of
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unreinforced alloy. Manna et al. [25] determined the opti-

mal WEDM process parameter settings during Al/SiC-

MMC machining. Pulse peak voltage, pulse on-time, pulse

off-time, peak current, wire feed rate, wire tension, spark

gap set voltage are considered as process control parame-

ters while the MMR, Ra, gap current and spark gap are

deemed as process responses. The optimum process

parameters were determined for effective machining using

the Gauss elimination method. Rozenek et al. [26] thought

the current, voltage and pulse-on time as significant

parameters for cutting rate and surface finish during

machining SiC and Al2O3 particulate-reinforced alumin-

ium matrix composites using WEDM. Huang et al. [27]

proposed a strategy to find the optimal multi-cut WEDM

process planning including the number of machining

operations and their corresponding machining-parameters

setting for each operation.

These investigations on WEDM present the detailed

variability of the performance measures including Ra,

MRR, wire wear ratio (WWR) and kerf (Kw) while

machining MMCs. Some works also suggest the optimal

machining conditions for minimum Ra, maximum MRR

and minimum WWR. Very few were focused on Kw as

WEDM responses while machining MMCs. However, the

white layer thickness (WLT) is still not completely

understood while machining MMCs in WEDM. The par-

ticulate size of SiC and its percentage as the process

variables of WEDM have not been considered up to now.

The aim of present work was to investigate five process

responses including Ra, MRR, WWR, Kw and WLT toward

optimization of WEDM of ZC63/SiCP with due consider-

ation of particulate size, volume fraction, pulse-on time,

pulse-off time and wire tension as process variables.

Hence, the work presents the total performance compliance

of the machining process to improve the machinability.

2 Principal component analysis (PCA)

PCA is a multivariate statistical approach introduced by

Pearsion [28] and further developed by Hotelling [29]. The

present problem consists of five process quality measure

and is found with correlation between them. As a result, the

analysis of all these multiple quality characteristics for the

optimal settings of the process is found to be a highly

difficult task [30]. However, PCA can convert these mul-

tiple correlated responses data into several uncorrelated

quality indices. A mathematical function is then formulated

by gathering all or some quality indices called composite

principal component (CPC) which stands for the overall

quality of the process. Finally, the CPC can be used to

determine the optimal conditions. In order to make all the

responses with different dimensions at diverse ranges of the

system unique, PCA is usually used in the data pre-pro-

cessing. The procedural steps involved in PCA are given as

follows [31].

Step 1 Array the measured multiple responses during

machining

A ¼

y11 y12 y13 . . . y1k

y21 y22 y23 . . . y2k

y31 y32 y33 . . . y3k

..

. ..
. ..

. ..
. ..

.

yi1 yi1 yi1 . . . yi1

2
666664

3
777775
; ð1Þ

where i is the number of experimental runs, k the number

of the response, A the S/N ratio of each response.

Step 2 Normalize the multiple responses array

The responses are normalized using the following

formulae:

The lower-the-better (LB) is the criterion

xiðkÞ ¼
max yiðkÞ � yiðkÞ

max yiðkÞ �min yiðkÞ
: ð2Þ

The higher-the-better (HB) is the criterion

xiðkÞ ¼
yiðkÞ �min yiðkÞ

max yiðkÞ �min yiðkÞ
; ð3Þ

where xi(k) is the normalised value of kth response, min

yi(k) the smallest value of yi(k) for kth response, and max

yi(k) the largest value of min yi(k) for kth response. x is the

normalized array.

x ¼

x11 x12 x13 . . . x1k

x21 x22 x23 . . . x2k

x31 x32 x33 . . . x3k

..

. ..
. ..

. ..
. ..

.

xi1 xi2 xi3 . . . xik

2
666664

3
777775
: ð4Þ

Step 3 Calculate the variance–covariance matrix M from

the normalized data

M ¼

N11 N12 N13 . . . N1k

N21 N22 N23 . . . N2k

N31 N32 N33 . . . N3k

..

. ..
. ..

. ..
. ..

.

Ni1 Ni2 Ni3 . . . Nik

2
666664

3
777775
; ð5Þ

Nk;l ¼
Cov xiðkÞ; xiðlÞð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var xiðkÞð Þ � Var xiðlÞð Þ
p ; ð6Þ

where l = 1, 2, 3, � � � ; k, and Cov(xi(k), xi(l)) is the

covariance of sequences xi(k) and xi(l).

Step 4 Calculate the eigen values and eigen vectors from

the correlation coefficient array and denoted by kj

and Vj respectively.
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Step 5 Evaluate the principal components wj:

The eigen vector Vj represents the weighting factor of j

number quality characteristics of the jth principal compo-

nent. For example, if Qj represents the jth quality charac-

teristic, the jth principal component wj will be treated as a

quality indicator with the required quality characteristic.

wj ¼ V1jQ1 þ V2jQ2 þ � � � þ VjjQj

� �1=j¼
Xk

j¼1

Vj � Qj

� �1=j
;

ð7Þ

where w1 is the first principal component, w2 the second

principal component, and so on. The principal components

are aligned in descending order with respect to variance, and

therefore the w1 accounts for the most variance in the data.

Step 6 Evaluate the CPC w:

The CPC w represents the index of multi-composite

quality for multi-quality responses. It is defined as the

combination of principal components with their individual

eigen values.

3 Taguchi method (TM)

TM is an effective tool to simultaneously deal with the

optimization of multiple responses influenced by multiple

variables. It can minimize the number of experimental runs

without considerable data loss and become an extensively

adopted method to solve some complex problems in

manufacturing. In this method, the performance charac-

teristic is represented by S/N ratio and the largest value of

S/N ratio is required. These are the logarithmic functions of

desired output and served as objective function in the

optimization process. There are three types of S/N ratio as

the LB, the HB, and the normal-the-better. The S/N ratio

with a LB characteristic can be expressed as [32]:

(i) LB

S

N
¼ �10 log

1

n

Xn

i¼1

y2
i

 !
: ð8Þ

(ii) HB

S

N
¼ �10 log

1

n

Xn

i¼1

1

y2
i

 !
: ð9Þ

(iii) Normal-the-better

S

N
¼ �10 log

1

ns

Xn

i¼1

y2
i

 !
: ð10Þ

In Eqs. (8)–(10), yi is the ith value of measured response,

n the total number of runs, and s the standard deviation.

4 Proposed methodology: PCA integrated TM

The experimentally measured response data are converted

into a set of individual components to find the optimal

combination of variables by using PCA. However, there

are still two obvious shortcomings for the PCA method

[33]. Firstly, if there exists one eigen value that is greater

than 1, the corresponding principal component will be

selected to represent the actual responses [34] based on

Kasier’s criterion. The eigen vector corresponding to the

largest eigen value can be used to replace the actual

responses for further analysis. However, now the stochastic

manufacturing systems may result in more than one prin-

cipal component and may have more than one eigenvalue

greater than 1, and the determination of feasible solution

corresponding to the each response is not guaranteed in

such cases. Secondly, the derived CPC based on optimal

set of variable cannot be assured to replace multi-response

as the chosen principal component, in which fewer varia-

tions can be explained by total variation [30]. However,

the PCA integrated with TM makes the methodology more

practical and efficient for solving multi-response optimi-

zation problems [35]. Many researchers have been using

this integrated methodology to find the optimal set of

process variables in their work. Fung et al. [36] used PCA-

TM to optimize the injection-molding conditions of fiber-

reinforced PBT and Gauri et al. [37] used it to determine

the optimal set of WEDM variables.

In this paper, PCA-TA method is used to determine the

optimum levels of WEDM process parameters for

machining ZC63/SiCP MMC and L27 orthogonal array is

used in the experimentation design. Five process responses

viz., Ra, MRR, WRR, Kw and WLT are considered as the

WEDM performance measures. Thus, the multi-response

case, PCA was implemented to convert the correlated

responses to a set of interrelated components and then to

evaluate the principal components. Therefore, the CPC was

derived as the combination of principal components with

their individual eigen values. Then the Taguchi’s robust

HB S/N criterion is employed to optimize the CPC to

determine the optimal settings of the process variables.

Finally, the analysis of variance (ANOVA) was used to

study the significance of the chosen process variable

parameter for multiple responses problem.

5 Experimental procedures

5.1 Materials

ZC63 magnesium alloy (Zn—5.5–6.5, Cu—2.4–3.0, Mn—

0.25–075, Simax—0.2, Nimax—0.01, other—0.30, Mg—

balance) is selected as matrix in this investigation as it has be
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found a wide variety of applications in aerospace and auto-

mobile industries [38]. Particulate silicon carbide of sizes 25,

50 and 75 lm is considered as reinforcement at its different

volumes such as 5 %, 10 % and 15 % respectively.

5.2 Stir casting

The samples of ZC63/SiCP were prepared using stir casting

technique developed by Golmakaniyoon et al. [39], which

has been proven as the simple, cost effective and the most

suitable method to produce bulk MMCs. The required

quantities of SiCP (in 5 %, 10 %, 15 % Vol.) of each size

were taken in powder containers heated to about 200 �C

and maintained for about 30 min. Then ZC63 cast alloy

was melted in a steel crucible about 675–700 �C which is

above the liquidus state of the matrix alloy for 30 min. The

molten metal was stirred to create a vortex, and the pre-

heated SiC particles were quickly added into the molten

alloy while stirring. Then stirring was continued for 30 min

at the hold temperature. Castings were produced using tilt-

casting technique for minimizing the melt turbulence and

the quick emergence of entrapped air. The whole experi-

ments were carried out with the protection of 0.5 %

SF6 ? N2. Total 27 castings were prepared in 9 varieties

each with 3 numbers varying the particulate size and

volume fraction of reinforcement. Figure 1 shows the SEM

of all levels SiCP in ZC36 matrix alloy.

5.3 WEDM experimental parameters and procedures

Initially the robust Taguchi’s design of experiments (DOE)

is employed to minimize the number of experimental runs

and the experiments are designed for an L27 orthogonal

array consisting of 27 experimental runs [40]. Then the

machining was conducted on a five-axis CNC-WEDM (CT

520A). The details of work specimens, the electrode and

the other machining conditions are listed in Table 1. The

levels of process variables are selected based on the liter-

ature and the pilot experiment, as shown in Table 2. The

design of experimental matrix is presented in Table 3.

5.4 Machining of ZC63/SiCP MMCs and responses

measurement

Ra, MRR, WWR, Kw and WLT are considered as

machining responses since these are responsible factors

indicating the efficiency, quality and quantity of the

WEDM process. MITUTOYO surface roughness tester was

used to measure Ra with 0.8 mm cut-off value. Six mea-

surements were taken at six different locations in the

direction perpendicular to the cutting, and their average

value was considered. The weight of the work piece was

measured before and after machining, and MRR was

Fig. 1 Distribution of SiCP in ZC63 alloy matrix a 25 lm in size and 5 % in volume fraction, b 50 lm in size and 10 % in volume fraction,

c 75 lm in size and 15 % in volume fraction

Table 1 Machining conditions

No. Description

1 Work piece (anode): ZC63/SiCp

2 Tool (cathode): brass wire of diameter 250 lm

3 Work piece height: 6 mm

4 Cutting length: 75 mm

5 Angle of cut: vertical

6 Location of work piece: centre to the table

7 Servo reference voltage: 35 V

8 Average voltage gap maintained: 40 V

9 Die-electric temperature: 25 �C

10 Die-electric fluid: distilled water

Table 2 Control factors and their levels

No. Variable Notation Levels

-1 0 1

1 Particulate size/lm X1 25 50 75

2 Volume of SiC/% X2 5 10 15

3 Pulse-on time/ls X3 6 8 10

4 Pulse-off time/ls X4 25 35 45

5 Wire tension/g X5 1 5 9
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estimated as the ratio of the weight difference of the work

piece before and after machining to the machining time.

The machining time is taken from the continuously updated

CNC system for each cut. For WWR measurement, the

weight of the wire spool was measured before the

machining, and the weight of discarded wire after

machining for each experiment in the design matrix was

measured. Then WWR was calculated as the ratio of the

weight loss of wire after machining to the weight of wire

before machining. The weights of the wire before

machining and after machining were measured using an

electronic balance with high accuracy and recorded as the

response value of WWR. Kw and WLT were measured by

using Computerized Optical Microscope (model GX51

inverted microscope) with the magnification range of

20 lm. These were measured at six different locations

along the machined length in the perpendicular direction

and the averages of them were considered as the Kw and

WLT. The measured responses are listed in Table 4.

6 Simultaneous optimization of correlated multiple

responses

The experimentally measured data are normalized using the

Eqs. (1) and (2) to minimize the redundancy and dependency

between the responses. Equation (2) is used to normalize the

minimization responses of Ra, WWR, Kw and WLT while

Eq. (3) is used to normalize the maximization MRR

responses. The normalized values results are listed in

Table 5. Then the variance–covariance factors for normal-

ized matrix is calculated as listed in Table 6. The account-

ability proportion (AP) in Table 6 represents the account

degree of the respective response on the process generally

called principal components. It is clear from the Table 6 that

the values of w1, w2, w3, w4 and w5 are 58 %, 23 %, 11 %,

5 % and 1 % represents the principal component values of

Ra, MRR, WWR, Kw and WLT respectively. The individual

principal components wj are calculated using Eq. (7) and

listed in Table 7. Therefore, by accumulating these CPCs, w
is then derived for each experimental run as listed in Table 8.

Table 3 Design of experimental matrix: Taguchi’s L27 orthogonal

array

No. Coded control factor

X1 X2 X3 X4 X5

1 -1 -1 -1 -1 -1

2 -1 -1 0 0 0

3 -1 -1 1 1 1

4 -1 0 -1 0 0

5 -1 0 0 1 1

6 -1 0 1 -1 -1

7 -1 1 -1 1 1

8 -1 1 0 -1 -1

9 -1 1 1 0 0

10 0 -1 -1 0 1

11 0 -1 0 1 -1

12 0 -1 1 -1 0

13 0 0 -1 1 -1

14 0 0 0 -1 0

15 0 0 1 0 1

16 0 1 -1 -1 0

17 0 1 0 0 1

18 0 1 1 1 -1

19 1 -1 -1 1 0

20 1 -1 0 -1 1

21 1 -1 1 0 -1

22 1 0 -1 -1 1

23 1 0 0 0 -1

24 1 0 1 1 0

25 1 1 -1 0 -1

26 1 1 0 1 0

27 1 1 1 -1 1

Table 4 Experimentally measured responses

No. Ra/lm MRR/(g�min-1) WWR Kw/mm WLT/lm

1 0.67 0.074 0.002 0.322 3.556

2 0.99 0.079 0.017 0.376 3.561

3 1.38 0.083 0.056 0.406 3.665

4 0.92 0.067 0.004 0.328 3.449

5 1.15 0.047 0.023 0.358 3.529

6 1.22 0.099 0.053 0.364 3.581

7 1.26 0.029 0.014 0.318 3.511

8 1.17 0.071 0.022 0.341 3.553

9 1.70 0.089 0.069 0.358 3.471

10 1.09 0.056 0.010 0.348 3.538

11 0.88 0.045 0.015 0.355 3.527

12 1.47 0.114 0.055 0.379 3.760

13 0.80 0.027 0.005 0.299 3.509

14 1.23 0.073 0.022 0.348 3.555

15 1.73 0.092 0.073 0.360 3.574

16 1.35 0.050 0.013 0.328 3.532

17 1.69 0.054 0.041 0.335 3.536

18 1.59 0.058 0.058 0.335 3.540

19 1.12 0.029 0.016 0.321 3.711

20 1.56 0.079 0.033 0.348 3.561

21 1.49 0.093 0.064 0.351 3.675

22 1.49 0.055 0.021 0.329 3.537

23 1.25 0.057 0.032 0.331 3.539

24 1.75 0.062 0.050 0.340 3.444

25 1.37 0.038 0.024 0.302 3.520

26 1.71 0.028 0.041 0.317 3.510

27 2.41 0.088 0.090 0.342 3.570
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Hence, the values of w serve as an overall quality index for

each individual run which represents all the multiple

responses measures of the WEDM process. Thus, the

problem is converted into single objective optimization

problem with minimization of the CPC.

7 Results and discussions

The identified levels of optimal control variables become

X1-1, X2-0, X3-1, X4-1, X5-1. In the next step, these optimal

process conditions are predicted and conformed by con-

ducting the experimental runs to the optimal levels of the

variables. The same experimental setup is used to conduct

the validation experiments. The confirmation tests results

were compared with those of the proposed method, as

listed in Table 9.

ANOVA is conducted for the CPC values to understand

the significance of each individual process variables on the

responses. Table 10 shows the result of ANOVA. From

Table 10 it can be observed that the p value is less than

0.05, which indicates that the variable is considered to be

statistically significant at 95 % confidence level. It is also

Table 5 Normalization of experimental data

No. Ra/lm MRR/(g�min-1) WWR Kw/mm WLT/lm

1 1.000 0.540 1.000 0.785 0.646

2 0.816 0.598 0.830 0.280 0.630

3 0.592 0.644 0.386 0.000 0.301

4 0.856 0.460 0.977 0.729 0.984

5 0.724 0.230 0.761 0.449 0.731

6 0.684 0.828 0.420 0.393 0.566

7 0.661 0.023 0.864 0.822 0.788

8 0.713 0.506 0.773 0.607 0.655

9 0.408 0.713 0.239 0.449 0.915

10 0.759 0.333 0.909 0.542 0.703

11 0.879 0.207 0.852 0.477 0.737

12 0.540 1.000 0.398 0.252 0.000

13 0.925 0.000 0.966 1.000 0.794

14 0.678 0.529 0.773 0.542 0.649

15 0.391 0.747 0.193 0.430 0.589

16 0.609 0.264 0.875 0.729 0.722

17 0.414 0.310 0.557 0.664 0.709

18 0.471 0.356 0.364 0.664 0.696

19 0.741 0.023 0.841 0.794 0.155

20 0.489 0.598 0.648 0.542 0.630

21 0.529 0.759 0.295 0.514 0.269

22 0.529 0.322 0.784 0.720 0.706

23 0.667 0.345 0.659 0.701 0.699

24 0.379 0.402 0.455 0.617 1.000

25 0.598 0.126 0.750 0.972 0.759

26 0.402 0.011 0.557 0.832 0.791

27 0.000 0.701 0.000 0.598 0.601

Table 6 Analysis of (covariance matrix) eigen values, eigen vectors,

AP and cumulative accountability proportion (CAP) computed for the

five major quality indicators

w1 w2 w3 w4 w5

Eigen

vectors

0.317 -0.587 -0.175 0.073 -0.720

-0.573 -0.293 -0.437 0.609 0.155

0.577 -0.457 -0.120 0.067 0.663

0.400 0.378 0.269 0.782 -0.118

0.281 0.466 -0.831 -0.092 -0.064

Eigen

values

0.16997 0.06810 0.03447 0.01557 0.00516

AP 0.58 0.232 0.118 0.053 0.018

CAP 0.58 0.812 0.929 0.982 1.000

Table 7 Principal component analysis for experimental observations

No. w1 w2 w3 w4 w5

1 1.080 -0.604 -0.857 1.023 -0.107

2 0.684 -0.634 -0.952 0.640 -0.018

3 0.126 -0.572 -0.681 0.434 -0.090

4 1.140 -0.350 -1.090 0.888 -0.046

5 0.922 -0.330 -0.805 0.528 -0.081

6 0.301 -0.424 -0.897 0.838 -0.168

7 1.245 -0.112 -0.663 0.690 -0.047

8 0.809 -0.385 -0.820 0.826 -0.036

9 0.295 0.038 -1.051 0.747 -0.136

10 0.989 -0.426 -0.826 0.678 -0.001

11 1.050 -0.442 -0.831 0.553 -0.139

12 -0.071 -0.697 -0.511 0.872 0.000

13 1.474 -0.236 -0.669 0.841 -0.194

14 0.757 -0.399 -0.836 0.788 0.001

15 0.145 -0.100 -0.792 0.778 -0.126

16 1.041 -0.223 -0.731 0.768 0.050

17 0.740 -0.007 -0.685 0.710 -0.004

18 0.617 0.028 -0.681 0.731 -0.166

19 1.068 -0.454 -0.156 0.731 -0.076

20 0.580 -0.260 -0.802 0.809 0.066

21 0.184 -0.348 -0.545 0.898 -0.146

22 0.922 -0.162 -0.720 0.785 0.059

23 0.871 -0.203 -0.739 0.787 -0.117

24 0.680 0.151 -0.962 0.693 -0.046

25 1.152 -0.010 -0.619 0.861 -0.077

26 0.998 0.189 -0.576 0.651 -0.067

27 0.006 0.301 -0.645 0.839 0.000
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observed that from the chosen process variables, particulate

size, pulse-on time and wire tension are significant process

parameters on the overall performance of the process. The

individual percentage contribution of each variable in the

process performance is presented in Fig. 2.

Figure 3 reveals the optimal combination set of process

variables, namely, particulate size 25 lm, volume fraction

of reinforcement 10 %, pulse-on time 6 ls, pulse-off time

25 ls and wire tension 1 gms.

Figure 4 reveals the best surface finish with little dam-

age, which is due to pits resulted by the removal of SiC

particles and their residuals. Figure 5 shows the continuous

Kw with little localized irregularities due to the unsterilized

spark and the irregularly dropped SiC particle around the

cutting path. Figure 6 shows the unremitted recast layer

(white layer) over the machined surface for the optimum

values of control variables. Figure 7 presents the un-con-

siderably worn wire surface after machining at the obtained

optimal machining variables during confirmation test. On

the whole, the microscopic examination results are con-

vinced the predicted results from the proposed method.

8 Conclusions

(i) The resulted values of the optimization variables are

observed as 25 lm of particulate size, 10 % volume of

Table 8 Calculation of CPC (overall quality index) and corre-

sponding S/N ratios

No. CPC w S/N ratio (HB)

1 1.272 2.090

2 1.169 1.356

3 1.001 0.009

4 1.277 2.124

5 1.136 1.108

6 1.125 1.023

7 1.199 1.576

8 1.166 1.334

9 1.121 0.992

10 1.181 1.445

11 1.183 1.460

12 1.086 0.717

13 1.279 2.137

14 1.155 1.252

15 1.051 0.432

16 1.177 1.416

17 1.087 0.725

18 1.071 0.596

19 1.138 1.123

20 1.113 0.930

21 1.051 0.432

22 1.150 1.214

23 1.146 1.184

24 1.136 1.108

25 1.197 1.562

26 1.124 1.015

27 1.039 0.332

Table 9 Results of confirmatory experiment

Process variable Level Optimal settings

Prediction Experimental

Particulate size/lm -1 25 25

Volume fraction of SiCp/% 0 10 10

Pulse-on time/ls -1 6 6

Pulse-off time/ls -1 25 25

Wire tension/g -1 1 1

S/N ratio of w 2.243 2.444

Value of w 1.290 1.325

Optimal process responses

Ra/lm MRR/(g�min-1) WWR Kw/mm WLT/lm

0.691 0.068 0.020 0.307 3.276

Table 10 ANOVA for the composite quality indicator w

Source DF Seq. SS Adj. SS Adj. MS F P Rank

X1 2 0.007729 0.007729 0.003865 3.61 0.050 3

X2 2 0.005334 0.005334 0.002667 2.49 0.114 4

X3 2 0.07882 0.07882 0.03941 36.83 0.001 1

X4 2 0.000019 0.000019 0.000009 0.01 0.991 5

X5 2 0.017626 0.017626 0.008813 8.24 0.003 2

Error 16 0.017119 0.017119 0.00107

Total 26 0.126646

7.05%
4.87%

71.96%

0.02%

16.10%

Particulare Size Volume of SiCp Pulse-on time

Pulse-off time Wire tension

Fig. 2 Percentage contribution of variables on CPC
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SiCP, 6 ls of pulse-on time, 25 ls of pulse-off time

and 1 gms of wire tension for overall quality of the

process.

(ii) The resulted values of the process responses for

optimum variables are: Ra of 0.691 lm, MRR of

0.068 g/min, WRR of 0.020, Kw of 0.307 mm and

3.276 lm of WLT.

(iii) The results of ANOVA reveal that particulate size,

pulse-on time and wire tension has physical significant

on the overall quality of the process and pulse-off time

and volume fraction of SiCP are not important.

(iv) The process variables of particulate size (7.05 %),

volume fraction of SiCP (4.87 %), pulse-on time

(71.96 %), pulse-off time (0.02 %) and wire tension

(16.10 %) are vital to the overall performance of the

process (on CPC). Particularly pulse-on time has

greater significance than the rest of the process

variables.
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Fig. 3 S/N ratio plot of CPC

Fig. 4 SEM of the machined MMC surface at 25 lm of particulate

size, 10 % volume of SiCP, 6 ls of pulse-on time, 25 ls of pulse-off

time and 1 gms of wire tension

Fig. 5 SEM of Kw for the machined MMC at 25 lm of particulate

size, 10 % volume of SiCP, 6 ls of pulse-on time, 25 ls of pulse-off

time and 1 gms of wire tension
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(v) The experimental validation test is conducted and the

results are found with good agreement based on the

obtained process conditions.

(vi) In the determined optimal process response, the

analysis of the micrographs of the machined MMCs

and wire are also presented to test the practical

possibility of the obtained optimal results and the

proposed method. On the whole, the microscopic

examination results also convince the predicted

results from the proposed method.

Hence, the proposed methodology is proven effectively

for the simultaneous optimization of multiple correlated

performance characteristics of WEDM process for

machining ZC63/SiCP MMCs. Further, the proposed

integrated methodology could be also applied for different

machining process on different materials in different

machining conditions so as to automate the machining

process based on the chosen optimal values.
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