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Abstract
In this paper, the problem of guidance andmotion control of mobile robots is addressed and solved within the novel framework
of the mixed finite-time/H∞ control theory of nonlinear quadratic systems (NLQSs). Starting from a NLQS describing
the dynamics of omnidirectional mobile platforms, the main tasks performed for controlling in closed loop the motion
of omnidirectional robots can be conveniently formulated as a mixed finite-time/H∞ control problem. A robust motion
controller, which can effectively rejects disturbances deviating the robot platform from a planned path, can be designed
after choosing a linear state-feedback structure for the controller. The synthesis problem is solved through some sufficient
conditions contemplating both norm-bounded disturbances and sets constraining initial and terminal conditions, together
with a finite-time bound on the output transient. Therefore, for all the allowable uncertainties, in presence of nonzero initial
conditions and exogenous disturbance inputs which are possible within an unstructured environment, the motion control
tasks can be accomplished through optimalH∞ performance by simultaneously guaranteeing that the NLQS, which governs
in closed loop the robot platform, is finite-time bounded. Finally, the applicability and control performance of the design
approach have been evaluated through numerical simulations.

Keywords Nonlinear quadratic systems · Omnidirectional robots · Planning · Guidance and motion control · Bounded
disturbance · Finite-time boundedness · LMIs

1 Introduction

This paper investigates the performance of a novel method-
ology for controlling nonlinear quadratic systems (NLQSs),
based on a mixed approach combining finite-time control
(FTC) and H∞ control theory.

As for FTC, finite-time stability (FTS) can be traced back
to the papers [1–3]; roughly speaking, given a zero-input
dynamical system, FTS requires that the state trajectories,
starting from any initial condition belonging to a preassigned
inner set surrounding the origin, remains confined into a
given outer set in a finite-time interval. The study of FTS has
seen a resurgence in interest over the past twenty-five years,
and numerous references on the topic have been made avail-
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able in the literature (see, for instance, the book by Amato et
al. [4] and the bibliography therein).

While FTS looks at the trajectories behavior in the absence
of inputs, the definition of finite-time boundedness (FTB),
given in [5], requires that the state remains boundedwhenever
both nonzero initial conditions and the presence of external
disturbances are simultaneously assumed; the initial state
is still unknown and constrained to belong to a prespeci-
fied set (typically an ellipsoid), while the disturbance has to
be the member of a well defined class of input signals. A
sufficient condition for FTB has been given, for linear time-
invariant (LTI) systems under disturbances generated by an
exo-system, in [5] where the properties of quadratic Lya-
punov functions have been exploited. More recently, through
an approach based on operator theory, a necessary and suffi-
cient condition for FTBhas beenprovided in [6], by assuming
that the disturbance is a square-integrable signal; moreover,
such condition deals with the more general setting of linear
time-varying systems.

Within FTC, the definition of FTB can be seen as the
generalization of the concept of input–output (IO)-FTS (see
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[7, 8]) when the initial condition is nonzero; for this reason
FTB is a strongest property than IO-FTS, since it guarantees
state boundedness in the simultaneous presence of distur-
bance inputs and nonzero initial conditions.

To highlight the novelty of our contribution in the con-
text of existing literature, we recall that, so far, the prevalent
approach to FTC has been often referred to linear systems,
e.g., see [9–13] and the book [14]. Some relevant applica-
tions to the context of NLQSs concern robotic control tasks
[15], biomolecular systems [16, 17] and epidemiological pro-
cesses [18]; to this regard, see also the recent paper by Nesci
et al. [19] for further theoretical advancements.

In a different context, the standard H∞ control prob-
lem is solved by minimizing the H∞-norm of the operator
between the disturbance and the system output, see [20]. In
this framework, the role of the transients is discarded since
theminimization of the output energy, which can be achieved
through the optimization of theH∞ norm, cannot guarantee
further constraints on the output peaks over finite-time inter-
vals. In [21], the position control of a robotic manipulator
having a planar kinematic chain has been recently framed
into the H∞ control of time-varying polytopic NLQSs.

The combination of the above-mentioned control tech-
niques has led to the definition of IO-FTS with aH∞ bound,
originally stated in [22] for (uncertain) linear time-invariant
systems, in order to provide simultaneous constraints which
guarantee that the system output is energy bounded and its
instantaneous values are point-wise bounded over a finite
interval of time. The control technique proposed in [22] has
been tested in a real engineering application, namely the
vibration control of vehicle active suspensions (see [23]),
since the mixed design conditions allow to improve the ride
comfort and safety of the vehicle, through an attenuation of
the perturbations due to road asperities on the dynamics of
the car body, in the presence of further constraints on the
maximum allowable excursion of the suspension stroke and
thresholds on the saturating force actuators.

In this work, we aim at controlling a three-wheeled omni-
directional mobile robot, using a mixed FTB/H∞ approach.
As shown in the following sections, the robot dynamics can
be described by means of a nonlinear quadratic dynamical
model. Since, the results developed in [22] are only applica-
ble to the class of linear systems, a key contribution of this
work is to extend the results provided in [22] to the design
of a state-feedback controller for NLQSs. Furthermore, we
also replace the IO-FTS requirement, used in [22], with a
FTB one, which enables taking into account also a constraint
on the initial conditions of the system. Therefore, in the fol-
lowing, the proposed methodology is referred as the mixed
FTB/H∞ approach which—over finite-time interval—will
guarantee, in the presence of an unknown initial condition
and exogenous disturbances, a point-wise bound on the sys-

tem state together with the satisfaction of a quadratic-integral
performance measure.

Indeed, whenever a FTC point of view is exploited to
approach to the H∞ control problem, a performance index,
which can take into explicit account the robustness proper-
ties versus all the allowable initial conditions of the system
state, can be straightforwardly considered. To this regard, the
work [24] contemplates nonzero conditions in the definition
of aH∞ performance measure of the form 1

sup
w∈Lnw

2 (�),x0∈X0

⎧
⎨

⎩

[
‖y(·)‖2� + xT (T )Sx(T )

‖w(·)‖2� + xT0 Rx0

]1/2
⎫
⎬

⎭
< γ ,

(1)

where Ln
2(�) denotes the set of square integrable vector-

valued signals with n components defined in the set �, and,
given z(·) ∈ Ln

2(�),

‖z(·)‖� :=
[∫

�

zT (t)z(t)dt

]1/2

(2)

represents the classical 2-norm in Ln
2(�). In (1), γ is a pos-

itive scalar, x(T ) is the state vector at the terminal time T ,
and x0 is the initial state vector taken from X0 ⊂ R

n repre-
senting a set of allowable initial conditions; the matrices R
and S weight the initial and terminal states, respectively.

The left hand side in (1) can be regarded as the induced
norm of the linear operator generated by the closed-loop
system, which maps the pair (x(0), w) to (x(T ), y), see
[24]. The H∞ performance bound expressed by condition
(1) implies—under uncertainty of the initial condition—a
constraint on the sensitivity of the system response, in terms
of both terminal state and output energy, to energy-bounded
disturbance input w(·) and uncertainty in the initial condi-
tions.

To reach our goal, we shall follow amachinery that is rem-
iniscent of the papers [25, 26], where the authors proposed
some sufficient conditions for the finite-time stabilization
via linear state feedback of NLQSs in order to minimize a
quadratic cost function. To this regard, the recent work [27]
has dealt with finite-time boundedness and stabilization of
NLQSs in the presence of disturbance inputs; some state-
dependent conditions, which are based on annihilators (see
[28]) and Finsler’s lemma, have been provided therein.

A preliminary version of the theoretical results provided
in the present paper has been presented in [29].

The reminder of this paper is as follows. Section2provides
some preliminary definitions and the problem statement. In

1 Notation: The symbolLnw

2 (�) denotes the subspace of vector-valued
functions in R

nw which are square-integrable over the time interval
� := [0, T ] with Euclidean vector norm ‖ f ‖� = [∫

�
‖ f (σ )‖2dσ ]1/2
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Sect. 3, the guidance and motion control of omnidirectional
mobile robots is formulated within the framework of mixed
FTB/H∞ control of NLQSs. A sufficient condition for the
existence of a mixed FTB/H∞ controller, which represents
the main contribution of this work, is reported in Sect. 4.
The applicability and usefulness of the conceived design
methodology are shown in Sect. 5, whereas the conclusions
are reported in Sect. 6.

2 Mixed FTB/H∞ control of NLQSs

2.1 Definition of nonlinear quadratic systems with
disturbance input

Let us define a NLQS as

ẋ = Ax + B(x)x + Fu + N (x)u + Gw , x(0) = x0 (3a)

y = Cx , (3b)

where x(t) ∈ R
n is the system state, u(t) ∈ R

p is the control
input, w(t) ∈ R

nw is an exogenous disturbance,

B(x) = (
BT
1 x BT

2 x . . . BT
n x

)T
, (4)

with Bi ∈ R
n×n , i = 1, . . . , n, and

N (x) = (
NT
1 x NT

2 x . . . NT
n x

)T
,

with Ni ∈ R
n×m , i = 1, . . . , n .

With a time interval taken as � := [0, T ], it assumed that
the disturbance input w(·) belongs to the class of square-
integrable signals

W := {w(t) ∈ Lnw

2 (�) : ‖w(t)‖2� ≤ d , d > 0} . (5)

2.2 Problem statement

The mixed FTB/H∞ control problem is stated here for
NLQSs; a linear state feedback controller is adopted in the
form

u(t) = Kx(t) , (6)

where K ∈ R
m×n is the control gain matrix. By intercon-

necting system (3) with the controller (6), the closed-loop
system is obtained as

ẋ = Acl x + Bcl(x)x + Gw (7a)

y = Cx , (7b)

where

Acl := A + FK , Bcl(x) := B(x) + N (x)K . (8)

Preliminarily to the definition of the mixed FTB/H∞ con-
trol problem, it is needed to recall from [5, 6] the definition
of FTB.

Definition 1 (Finite-time boundedness) Given the time inter-
val � := [0, T ], some positive definite matrices �0 and �,
such that � < �0, system (3), with u(t) = 0, is said to be
finite-time bounded wrt (�, �0, �) if, for any disturbance
w(·) ∈ W , the following holds

xT0 �0x0 ≤ 1 ⇒ xT (t)�x(t) < 1,∀t ∈ �.

♦

Within the mixed FTB/H∞ control theory, both the anal-
ysis and synthesis problems can exploit the following cost
function

J (�, R, S) :=‖y(·)‖2� + xT (T )Sx(T )

− γ 2
(
‖w(·)‖2� + xT0 Rx0

)
, (9)

where γ > 0 is theH∞-performance gain. The cost function
(9) defines a quadratic-integral performance index weighting
the energies of the output and disturbance input, respectively.
Moreover, the matrices R and S, which are positive defi-
nite, weight the effects that both the uncertainty of the initial
conditions and of the terminal state have on the transient
performance.

Through a formalization in terms ofL2-gain, it is possible
to extend theH∞-norm control to NLQSs (see [25]). There-
fore, given � and the scalar γ > 0, the existence of a state
feedback control law in the form (6), such that

J (�, R, S) < 0 ,∀w(·) ∈ W , x0 ∈ X0 , (10)

implies that

sup
w∈W,x0∈X0

⎧
⎨

⎩

[
‖y(·)‖2� + xT (T )Sx(T )

‖w(·)‖2� + xT0 Rx0

]1/2
⎫
⎬

⎭
< γ.

The definition of the performance index in (10) is well-
posed under the hypothesis that the NLQS exhibits FTB;
therefore, in the presence of any exogenous disturbance
w(·) ∈ W , over the interval �, the system state remains
bounded for a prescribed set of initial conditions.

The ellipsoidal sets, which are induced by the matrices �0

and � in Definition 1, are defined as
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E0 := {x ∈ R
n : xT�0x ≤ 1, �0 > 0} , (11a)

E� := {x ∈ R
n : xT�x < 1, 0 < � < �0} . (11b)

To clarify the relationship betweenFTBand theH∞-norm
performance index (9), the following definition is needed.

Definition 2 Consider system (3) subject to a disturbance
w(·) ∈ W . Given the time interval �, the cost index (9),
a positive scalar γ , the ellipsoidal sets (11) and the positive
definite matrices R and S, the controller (6) is said to be a
mixed FTB/H∞ controller for the NLQS (3) if the following
hold:

(i) The closed-loop system (7) is FTB wrt (�0, �,�);
(ii) The performance index (9) satisfies, for the closed-loop

system (7),

J (�, R, S) < 0,∀w(·) ∈ W, x0 ∈ E0.

♦

Remark 1 The concept of mixed FTB/H∞, which contem-
plates both nonzero initial conditions and L2 norm-bounded
disturbances, is a novelty for NLQSs. Moreover, to extend
prior results available only for linear systems, we propose
a sufficient condition assuring simultaneously, for a NLQS
under study, both a prescribed H∞ performance index over
finite time and FTB. Instead, in the case of mixed IO-
FTS/H∞ for linear systems, some distinct conditions, on
H∞ and IO-FTS, respectively, are separately invoked (see
Amato et al. [14, p. 71]). 	

2.3 Some preliminary lemmas

Some technical lemmas, which are useful to derive the main
result, are presented in what follows.

Lemma 1 Consider the NLQS (3) subject to any disturbance
input w(·) ∈ W . Given the time interval � := [0, T ], the
performance measure (9), a positive scalar γ , the ellipsoidal
sets (11) and the positive definite matrices R and S, assume
there exist a symmetric positive definite matrix Q, a positive
scalar α and a matrix K , such that

(
x
w

)T (
�(x) PG
GT P −γ 2 I

) (
x
w

)

< 0 , ∀x ∈ E� (12a)

S < P < γ 2R (12b)
� < P < �0 (12c)

(
1

λmin(Q)
+ dγ 2

)

eαT ≤ 1 , (12d)

where

�(x) := PAcl + AT
cl P + PBcl (x) + BT

cl (x)P + CTC , (13)

P = �
1
2
0 Q

−1�
1
2
0 , and λmin(·) indicates the minimum eigen-

value of the argument. Then, the state feedback controller (6)
is a mixed FTB/H∞ controller for the NLQS (3). �

Proof Let us consider a quadratic Lyapunov function v(x) =
xT Px ; its time derivative along the trajectories of the closed-
loop system reads

v̇(x) = xT
{
PAcl + AT

cl P + PBcl(x) + BT
cl (x)P

}
x

+ xT PGw + wT GT Px . (14)

The cost function (9), for any trajectory x(·) starting from
x0 ∈ E0, is such that

J (�, R, S)

:=
∫

�

(
y(τ )T y(τ ) − γ 2wT (τ )w(τ) + v̇(x(τ ))

)
dτ

+ xT (T )Sx(T ) − γ 2xT0 Rx0 −
∫

�

v̇(x(τ ))dτ

=
∫

�

(
y(τ )T y(τ ) − γ 2wT (τ )w(τ) + v̇(x(τ ))

)
dτ+

+ xT (T )Sx(T ) − γ 2xT0 Rx0 − xT (T )Px(T ) + xT0 Px0

=
∫

�

(
y(τ )T y(τ ) − γ 2wT (τ )w(τ) + v̇(x(τ ))

)
dτ

+ xT (T ) (S − P) x(T ) + xT0

(
P − γ 2R

)
x0

<

∫

�

(yT (τ )y(τ ) − γ 2wT (τ )w(τ) + v̇(x(τ )))dτ , (15)

where the last inequality follows from the fact that the matri-
ces S − P and P − γ 2R are both negative definite in view
of (12b).

From (15), a sufficient condition for J (·, ·, ·) < 0 is

v̇(x(t)) < −yT (t)y(t)+γ 2w(t)Tw(t), ∀t∈�, w(·) ∈ W .

(16)

The satisfaction of condition ii) in Definition 2 can be
inferred after recognizing that, from (14), condition (12a)
implies (16) over � if any trajectory x(·) starting from x0 ∈
E0 remains confined in the set E�.

Now, we are ready to show that (12a) and (12d) assure
condition i) of Definition 2. Since, in the first block at the
left hand side of condition (12a), we have that CTC > 0, it
is readily seen that

(
PAcl + AT

cl P + PBcl(x) + BT
cl (x)P PG

GT P −γ 2 I

)

< 0 ,

∀x ∈ E� . (17)
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By adding −αP to the first block at the LHS of (17), the
above inequality implies

(
PAcl + AT

cl P + PBcl(x) + BT
cl (x)P − αP PG

GT P −γ 2 I

)

< 0 , ∀x ∈ E� . (18)

Condition (18) implies that

v̇(x(t)) < αv(x(t)) + γ 2w(t)Tw(t) , ∀t ∈ � . (19)

Given the candidate Lyapunov function, the induced ellip-
soidal set is defined as

E := {x ∈ R
n : xT Px < 1} . (20)

Condition (12c) guarantees

E0 ⊂ E ⊂ E� . (21)

Following similar arguments to those ones of the proof of
Theorem 1 in [26], by contradiction, we shall show that any
trajectory starting from E0 cannot exit E for any t ∈ �.

Indeed, let us assume the existence a time instant t
 ∈ �

such that x(t
) belongs to the boundary of E , it follows that

xT (t
)Px(t
) = 1 . (22)

From the inclusions x(0) ∈ E0 ⊂ E and continuity over
time of the state trajectories, it is always possible to find a
time instant 0 < t̃ ≤ t
 such that

(i) xT (t̃)Px(t̃) = 1 ;
(ii) x(t) ∈ E ∀t ∈ [0, t̃] .

From (12c), condition (19) is fulfilled for all t ∈ [0, t̃] if
E ⊂ E�. By multiplying both sides of (19) by e−αt , we
obtain

d

dt
(e−αtv(x(t))) < e−αtγ 2wT (t)w(t);

after integrating the above inequality from 0 to t , with t ∈
[0, t̃], it is readily obtained that

v(x) < eαt
(

v(x(0)) + γ 2
∫ t

0
e−ασ wT (σ )w(σ)dσ

)

.

(23)

From conditions (23) and (12d), it follows, for all t ∈ [0, t̃],

v(x(t)) = x(t)T Px(t)

< eαt
(

x(0)T Px(0) + γ 2
∫ t

0
e−ασ wT (σ )w(σ)dσ

)

= eαt
(
x(0)T�

1/2
0 Q−1�

1/2
0 x(0)

+γ 2
∫ t

0
e−ασ wT (σ )w(σ)dσ

)

≤ eαt
(
λmax (Q

−1)x(0)T�0x(0)

+γ 2
∫ t

0
e−ασ wT (σ )w(σ)dσ

)

≤ eαT
(
λmax (Q

−1) + dγ 2
)

≤ 1 . (24)

The satisfaction of (24) at t = t̃ implies

xT (t̃)Px(t̃) < 1 , (25)

which contradicts (22). Therefore, a time point t
 ∈ � sat-
isfying (22) does not exist, and x(t) cannot exit the set E for
t ∈ [0, T ]. The proof follows from the fact that E is a subset
of E�.

Although Lemma 1 provides a sufficient condition guar-
anteeing that a mixed FT B/H∞ controller for the NLQS (3)
exists, it cannot be exploited in practice, since the LHS of the
LMI (12a) depends on x . The effort of the next section will
be devoted to translate conditions (12) into a set of algebraic
LMIs.

To this end, we need to recall the following lemmas.

Lemma 2 ([30]) Consider the positive definite matrix P ∈
R
n×n, and a vector ν such that ‖ν‖ = 1. Then, any point on

the boundary of the ellipsoid (20) can be parameterized as
x = P−1/2�ν, with � any matrix such that �T� = I . �

Lemma 3 ([31])Given any scalar ε > 0, a triplet of matrices
of compatible dimensions �, � and �, with �T� ≤ I , then

��� + �T�T�T ≤ ε−1��T + ε�T�.

�

3 Formulation of the control problem for
omnidirectional mobile robots

3.1 NLQSmodeling of three-wheeled robot
platforms

In [32], the authors have derived the motion equations of
omnidirectional mobile robot platforms consisting of three
lateral orthogonal-wheel assemblies distributed at an equal
distance from the center of gravity of the robot. Each assem-
bly is configured to reproduce the behavior of an ideal
spherical wheel. As an alternative, three mechanic wheels
could be adopted without the necessity of complex wheel
assemblies (see Fig. 1).
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Fig. 1 Kinematics of the three-wheeled omnidirectional mobile robot

Through the on-board installation of an inertial measure-
ment unit (IMU), it is possible to acquire all the feedback
variables required for the implementation of a tracking con-
trol law (6) for the omnidirectional platform. Therefore, by
adopting the mobile reference system in Fig. 1, the state vec-

tor can be taken as x = (
ẋm ẏm φ̇

)T
.

Starting from the motion equations expressed in the
mobile reference system on the robot frame (see Watanabe
et al. [32, p. 319]), the dynamics of a three-wheeled omnidi-
rectional robot can be described through a NLQS (3), where
the matrices in the state equations (3a) are given by

A =

⎛

⎜
⎜
⎝

a1 0 0 0
0 a1 0 0
0 0 a3 0
0 0 −1 0

⎞

⎟
⎟
⎠ ,

B1 =

⎛

⎜
⎜
⎝

0 0 0 0
0 0 −a2/2 0
0 −a2/2 0 0
0 0 0 0

⎞

⎟
⎟
⎠ ,

B2 =

⎛

⎜
⎜
⎝

0 0 a2/2 0
0 0 0 0

a2/2 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ , B3 = 04×4,

N1 = 04×3, N2 = 04×3, N3 = 04×3,

G =

⎛

⎜
⎜
⎝

g
g
0
0

⎞

⎟
⎟
⎠ , F =

⎛

⎜
⎜
⎝

−b1 −b1 2b1√
3b1 −√

3b1 0
b2 b2 b2
0 0 0

⎞

⎟
⎟
⎠ . (26)

with

Fig. 2 Block scheme representation of the guidance and tracking con-
trol system of the omnidirectional robot

a1 = − 3c

3Iw + 2Mr2
, a2p = 2Mr2

3Iw + 2Mr2
,

a3 = − 3cL2

3IwL2 + Ivr2
, b1 = kr

3Iw + 2Mr2
,

b2 = kr L

3IwL2 + Ivr2
,

g = 1

3Iw + 2Mr2
a2 = 1 − a2p. (27)

The parameter Iv is the moment of inertia of the robot, Iw is
the moment of inertia of the wheel around the driving shaft,
c the viscous friction factor of the wheel, m the mass of the
robot, L the distance between any wheel assembly and the
center of gravity of the robot, k the driving gain factor, r the
radius of the wheel and ui , i = 1, . . . , 3, are the driving input
torque on each wheel.

3.2 Guidance and tracking control system

The application to the quadratic model of a three-wheeled
omnidirectional of the proposed mixed FTB/H∞ control
framework can help to evaluate its usefulness in a real case-
study.

The main components and line signals of the closed-loop
system implementing the guidance and tracking control of
the robot are represented in the block diagram of Fig. 2. In
an unstructured environment, the robot can proceed forward
along a desired direction by keeping the cruise velocity; in the
presence of an obstacle or in the case of an unwanted config-
uration of the robot, the guidance controller must update the
set-point values of the rotational and translation velocities,
which are sent to the tracking controller, to reconfigure the
path of the robot platform. The presence of an obstacle along
the forward direction of the path can be detected through an
array of optical or ultrasonic sensors placed on the anterior
portion of the robot frame.
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3.3 Mixed FTB/H∞ tracking controller

The control problem for the motion tracking of the omnidi-
rectional robot can be conveniently formulated as a mixed
FTB/H∞ control problem.

Indeed, to effectively attenuate the impact of the exoge-
neous inputs and uncertainty on the initial conditions over
finite time, and to robustly follow the planned path, the
tracking controller has to compensate some bounded-energy
disturbances, also when such perturbations are of short dura-
tion and large magnitude. In this case, to gain the desired
robustness, the control performance has to be mandatorily
optimized over the transient.

Both the robustness and accuracy of the tracking control
performance can be optimized after defining aH∞ cost func-
tion (9), in order to minimize the sensitivity of the tracking
error to the energy-bounded disturbances perturbing the tra-
jectory of the omnidirectional robot.Moreover, by specifying
in (9) a set of non-null initial conditions of the kinematic vari-
ables, on which themixed FTB/H∞ control performance has
to be guaranteed, it is possible to enlarge the operating range
of the closed-loop control system.

By exploiting the results presented in Sect. 4, after recast-
ing the quadratic model of a guidance and tracking control
system of omnidirectional mobile robots in the form (7), it is
possible to design a state-feedback tracking controller having
the properties stated in Definition 2.

4 Mixed FTB/H∞ controller design

According to Definition 2, the existence of a mixed FTB/H∞
controller for NLQSs can be proved through the sufficient
condition provided by the following Theorem.

Theorem 1 Given the NLQS (3) subject to any disturbance
w(·) ∈ W , the time interval �, the performance measure
(9), a positive scalar γ , a pair of positive definite matrices R
and S, and the admissible sets E0 and E� defined in (11), let

X = �
− 1

2
0 Q�

− 1
2

0 , and assume there exist positive scalars α

and ε, a matrix L and a positive definite matrix Q such that

(
� I
I X

)

< 0 (28a)

(
�0 I
I X

)

> 0 (28b)

(
S I
I X

)

< 0 (28c)

(
γ 2R I
I X

)

> 0 (28d)

(
1

λmin(Q)
+ dγ 2

)

eαT ≤ 1 (28e)

⎛

⎜
⎜
⎝

AX + FL + (AX + FL)T + ε I G XCT �

GT −γ 2 I 0 0
CX 0 −I 0
�T 0 0 −ε�̂

⎞

⎟
⎟
⎠

< 0 , (28f)

with � := (
(B1X + N1L)T . . . (BnX + NnL)T

)
and �̂ =

I ⊗ � ; then, letting K = LX−1, (6) is a mixed FTB/H∞
control law.

Proof Starting again from the candidate Lyapunov function
v(x) = xT Px and the set (20) induced by v(x), Lemma 1
provides the main arguments used in this proof.

First, by exploiting the results in Lemmas 2 and 3 and
after recognizing an affine structure in the involved matrix
functions, we shall show that (28f) implies (12a).

To this aim, as first intermediate step, it is needed to show
that (28a) and (28b) imply (21). Exploiting Schur comple-
ments (see Boyd et al. [33, p. 7]), from (28a) we obtain
that X−1 > �; in the same way, we have that (28b) implies
X−1 < �0. From the inversion P = X−1, inclusions (21)
hold.

Now we prove that (28f) implies (12a). Condition (12a)
is assured if
(

�(x) PG
GT P −γ 2 I

)

< 0 , ∀x ∈ E� , (29)

with �(x) given in (13). Through pre- and post-multiplying
of the LHS in (29) by

(
P−1 0
0 I

)

then letting X = P−1 and K P−1 = L and applying Schur
complements, condition (29) can be equivalently rewritten

⎛

⎝
AX+FL+(AX + FL)T+�x+xT�T G XCT

GT −γ 2 I 0
CX 0 −I

⎞

⎠

< 0 , ∀x ∈ E� , (30)

where � := (
(B1X + N1L)T . . . (BnX + NnL)T

)
.

Note that since E� is a convex set and the left hand side in
(30) depends linearly on x , condition (30) holds for all x in the
set E� if and only if it is satisfied on the boundary of E�. Now,
by virtue of Lemma 2, any point x on such boundary can be
parameterized as x = �−1/2Uv,UTU = I , ‖v‖ = 1 , and
therefore, for any positive ε, we have

�x + xT�T = ��−1/2Uv + vTUT�−1/2�T

≤ ε−1��T + εvTUTUv

≤ ε−1��T + ε I (31)
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From (30) and (31), by exploiting Schur complement
arguments, it is readily seen that condition (28f) implies
(12a). Moreover, through further application of the Schur
complements, the satisfaction of (12b) follows from (28c)
and (28d). With E ⊂ E� in force and from (28e), the proof
follows.

Remark 2 Note that condition (28e) can be satisfied by
imposing

Q ≥ 1

e−αT − dγ 2 I .

For a fixed value of α, the conditions of Lemma 1 can
be solved as a LMI optimization problem; a one-parameter
search is used to find an optimal value for α. 	

5 Control law design and simulation results

Thanks to the omnidirectionality of the robot platform, the
commands which are updated by the guidance controller
can be independently actuated through the following acts
of motion:

• Orientation: the robot must rotate around its vertical axis
in order to give to themobile reference system the desired
orientation.

• Linear motion: the robot is commanded to follow a
straight line keeping the desired direction.

The task that we shall accomplish for the testing of the
control performance—in closed loop—is the tracking of a
straight line along a desired direction, which consists of a
basic movement for the navigation in an unstructured envi-
ronment.

Therefore, to robustly follow the desired direction by fol-
lowing a rectilinear path at cruise velocity, zero set-point
values can be assumed for the linear transversal and rotational
velocities, taking into account that the output components of
themodel consist of two translation velocities ẋm and ẏm with
respect to the transversal xm− and longitudinal ym− axes,
respectively, and the rotation velocity φ̇ about the z-axis of
the robot platform.

We want the robot to move freely along the vertical axis,
rejecting disturbances that would cause it to depart from its
planned path. In order to maintain the planned direction, it is
important to ensure that the controller is sufficiently robust to
guarantee that the velocity ẋm has a value sufficiently close
to zero over finite-time.

The values of the physical parameters in (26)–(27) are
taken as

Iv = 11.25 kgm2, Iw = 0.02108 kgm2, c = 5.983 kg/s

M = 9.4 kg, L = 0.178m, k = 1.0, r = 0.0245m,

and zero initial conditions are assumed.
The proposed framework enables to optimize the con-

trol action by prescribing a maximum amplitude of each
component of u(t); thus, the loop shaping method has been
implemented. Define then the transfer function that weights
the sensitivity function as

Y (s)

U (s)
= s/Mmax + wB

s + wBMmin
(32)

where Mmax = 2 dB is the high-frequency gain, Mmin =
1/100 dB is the low-frequency gain and wB = 1 rad/s is
the gain crossover frequency. The corresponding differential
equations are

{
ξ̇ = −wBMminξ + wB( Mmin

Mmax
+ 1)ν

z = ξ + 1
Mmax

ν
(33)

From the series interconnection between (3) and (33) the
augmented system reads

(
ẋ
ξ̇

)

=
(

A + B(x) ∅
wB( Mmin

Mmax
+ 1)C −wBMmin

) (
x
ξ

)

+
(
F + N (x)

∅
)

u +
(
G
∅

)

w (34)

(
y
z

)

=
(

C ∅
1

Mmax
C I

) (
x
ξ

)

(35)

To accelerate the system response, the variable to be con-
trolled was chosen to be an order of magnitude more than the
gain crossover frequency

C = (
10 0 0 0

)
,

A time bound T = 100 is chosen, with the matrices in
(11) given by

�0 =

⎛

⎜
⎜
⎜
⎜
⎝

95.19 0 0 0 0
0 95.19 0 0 0
0 0 95.19 0 0
0 0 0 95.19 0
0 0 0 0 95.19

⎞

⎟
⎟
⎟
⎟
⎠

,

� =

⎛

⎜
⎜
⎜
⎜
⎝

0.4 0 0 0 0
0 0.48 0 0 0
0 0 0.40 0 0
0 0 0 0.48 0
0 0 0 0 0.40

⎞

⎟
⎟
⎟
⎟
⎠

,

A bounded-energy disturbance belonging to the class of
signal in (5), with d = 1.5 · 103, is assumed to be in input to
the control system.The input signal is a step having an unitary
amplitude. Such perturbation can represent an external force
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Fig. 3 Control Input of the closed-loop system with loop shaping on
mixed H∞/FTS

generating a lateral drift on the robot wheels, e.g., due to an
alteration in thewheels grip and frictionwith the ground. This
implies that the robot trajectory can be modified relatively to
the rectilinear path.

The controller is designed on the basis of the result in The-
orem 1. Therefore, a maximum allowableH∞-performance
gain is chosen as γ = 3.1, in order to guarantee robustness
against disturbance input and possible uncertainties starting
from non-null initial conditions. The matrices, which weight
initial and terminal conditions, are chosen as

R =

⎛

⎜
⎜
⎜
⎜
⎝

0.5 0 0 0 0
0 0.5 0 0 0
0 0 0.5 0 0
0 0 0 0.5 0
0 0 0 0 0.5

⎞

⎟
⎟
⎟
⎟
⎠

·, (36)

S =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0 0 0
0 12 0 0 0
0 0 1 0 0
0 0 0 12 0
0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

· 10−4 (37)

With � = [0, 100], through the MOSEK optimization
toolbox within the Matlab LMI environment, a solution for
the mixed FTB/H∞ controller is found, with

K =
⎛

⎝
21.64 −53.94 −108.26 0.47 −10.16
44.98 66.72 −108.96 0.48 10.16

−66.55 −12.99 −108.63 0.48 −0.13

⎞

⎠ ,

Q =

⎛

⎜
⎜
⎜
⎜
⎝

19.81 0 0 0 0
0 20 0 0 −0.19
0 0 19.84 0.03 0
0 0 0.03 19.84 0
0 −0.19 0 0 20

⎞

⎟
⎟
⎟
⎟
⎠

.

As it is shown in Figs. 3 and 4, by rejecting the disturbance,
the output is able to give a reference-tracking result that is
satisfactory, despite the velocity along x is slightly greater

Fig. 4 Closed-loop system output velocity profiles with loop shaping
on mixed H∞/FTS

Fig. 5 Closed-loop system response with loop shaping on H∞/FTS
control and 5% parametric variation on a1 and a2

than zero. Therefore, the controller achieves the attenuation
of the effect of the disturbance on the control system output.

By simulating the system response, in a set of tests gener-
ated from the combination of different initial conditions and
disturbance inputs, the expected performance of closed-loop
system has been validated.

In addition, a robustness analysis based on parametric
variation was conducted. The velocities were calculated
assuming a 5% variation in a1 and a2. Figure5 demonstrates
that the speed along x is unchanged, whereas the speed along
y exhibits a deviation of 0.5. Figure6 depicts essentially the
same scenario, assuming a 10% variation for parameters a1
and a3 and a 5% variation for parameter a2.

The simulation results demonstrate the benefit of com-
bining H∞ and FTC constraints. Through γ it is possible
to optimize the control performance, over finite-time hori-
zon, both in terms of the energy of the system output and
its robustness versus L2 norm-bounded disturbances. More-
over, the loop shaping technique allows the simultaneous
optimization of the control effort.
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Fig. 6 Closed-loop system response with loop shaping on H∞/FTS
control and 10% parametric variation on a1 and a3 and 5% on a2

6 Conclusions

In thiswork, an extension of themixedFTC/H∞ theory to the
class of NLQSs has been provided; its concrete applicability
has been evaluated in the context of the guidance/tracking
control system design for omnidirectional mobile robots.

The main methodological contribution concerns a suffi-
cient condition ensuring the mixed FTB/H∞ closed-loop
performance for a given NLQS under linear state feed-
back control. A mixed FTB/H∞ law is designed through
the solution of a LMIs optimization problem. The designed
controller can guarantee, other than FTB, a prescribed
H∞ performance, which can be optimized—over finite-time
horizon—on the basis of a versatile set of constraints, involv-
ing both bounds on the systemoutput togetherwith initial and
terminal conditions, as shown by a design application con-
cerning the closed-loop control of a omnidirectional mobile
robot characterized by a three-wheeled frame. Indeed, the
dynamic equations in the mobile reference system of such
robot have been described through a NLQS.

The optimality and robustness of control performance,
achievable in a closed-loop control scheme by the proposed
design methodology, have been validated through numeri-
cal simulations. Through the robotic application, it has been
possible to show the advantages provided by the proposed
FTB/H∞ control approach. Moreover, by complementing
the design methodology with a loop shaping technique, an
improved disturbance rejection has been achieved under the
minimization of the control effort.
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