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Abstract
The stochastic time-fractional diffusion equation can be accounted for a logical description of models with subdiffusion. This
work is dedicated to the study of existence and uniqueness of the solution of stochastic time-fractional diffusion equation
perturbed with a nonlinear source term. The method of Faedo–Galerkin approximations is employed in order to arrive at the
estimate and to establish existence of solution by assuming that the noise coefficient and the nonlinear source term satisfy the
required assumptions like Lipschitz continuity and linear growth condition.
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1 Introduction

Fractional calculus is a wide spread theory having appli-
cations in varied areas like mechanics, engineering, bio-
chemistry and even in medicine. Many models that involve
the characterization of memory effects into them cannot be
modeled efficiently using integer-order equations. Fractional
differential equations can help in such circumstances by
incorporating the effects due to the memory into the system.

In the case of diffusion process, the mean square dis-
placement is a quantity entitled to measure the dispersion
of random particles and rate at which they diffuse. In classi-
cal models, they exhibit a linear relationwith time, that is, the
larger the time, the particles diffuse more faster. But in var-
ious processes, like diffusion on fractals, it can be observed
that the mean square displacement develops logarithmically
for large times. Since the classical integer order diffusion
equation works well only in homogeneous medium, its time-
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fractional counterpart is more advantageous in modeling of
phenomena with subdiffusion.

Fractional operators are highly efficient to model anoma-
lous diffusion which is exhibited by systems in which
displacement and time have a nonlinear relationship between
them. In [1], the efficiency of fractional approach inmodeling
subdiffusion is validated due to natural exhibition of unusual
dynamics by the system in the case of behaviors like slow
dispersion, slow approach to the stationary state andmemory
effects. There are ample applications of such systems like in
modeling growth of tumor cells which has memory effect.
In [2], analysis of a system of coupled partial differential
equations, which models tumor growth under the influence
of subdiffusion is done. The study of diffusion of fluids in
porous media with memory using time-fractional models
involving subdiffusion is done in [3]. The existence, unique-
ness and regularity of a mild solution of time-fractional
Fokker-Planck equation is proved in [4] under the assump-
tion of sufficient regularity for initial data. For more related
works on existence, one can refer to [5–7] and so on. Apart
from the analysis on the existence of solutions for fractional
partial differential equations, a quite good research on numer-
ical analysis is being carried out recently. For mathematical
model describing Belousov–Zhabotinsky reaction, [8] dis-
cusses consequences of generalizing the model within the
fractional order and also studies the boundedness, stability,
existence, and other dynamical conditions.
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The time-fractional diffusion equation is given by

∂tφ = div(m∂1−α
t ∇φ) + f (t, φ), (1.1)

with initial conditionφ(0) = φ0 andhomogeneousNeumann
condition at the boundary. In (1.1), φ denotes the concentra-
tion, m > 0 is the diffusion coefficient and f is a nonlinear
source term. The derivative on right hand side is Riemann–
Liouville fractional derivative and on taking convolution, the
equation can be equivalently written using Caputo fractional
derivative on the left hand side. The form with Riemann–
Liouville derivative can simplify the estimates as done in [6].
Though in recent years there are many fractional operators
being introduced, we prefer using these classical operators
since either the new operators lack mathematical reasoning
or they are just an extension of these classical operators [9].

The inclusion of the concept of uncertainty into mod-
els is proved to provide better approximations to their real
life physical phenomenon. These types of situations arise
in modeling the population of species with relative mem-
ory of distribution of resources. The basic idea is to model
the random disturbances created in the environment using a
stochastic term denoted by random noise. Based on the prop-
erty of disturbances affecting the system, the noise term is
chosen accordingly. On considering the Gaussian noise, we
bring the effects of continuous disturbances into account.
Some works involving the analysis of stochastic partial
differential equations perturbed by Gaussian noise include
[10, 11]. The stochastic counterpart of fractional differential
equations help in efficiently elucidating complex dynamics
exhibited due to hereditary effects of systems in areas like
visco-elasticity and signal processing. The study of stochas-
tic fractional equation remains not much explored with few
works done on the existence of solutions as in [12–14]. In
[15], the comparison between two stochasticmodels of Euro-
pean option pricing, one with time derivative replaced with
fractional derivative and the other with noise term given by
fractional Brownian motion, is made. The model with frac-
tional derivative was proved to be efficient than the one with
fractional Brownian motion.

In this work, we consider the time-fractional diffusion
equation perturbed by Brownian-type noise which results in
a stochastic version of (1.1). The novelty of this equation is
that it models subdiffusion and therefore it is evident to real-
ize the necessity to provide an analytic proof for existence of
its solution. Using Galerkin approximations, the problem is
projected on to a finite-dimensional space and in turn gain-
ing an approximate solution for the projected equation. An
a-priori estimate of this solution paves the way to compute
the solution of our original problem.

The aim of this work is to establish the existence and
uniqueness of solution of the stochastic time-fractional dif-
fusion equation. The flow of this paper is as follows. In the

next section, we introduce the basic mathematical concepts,
inequalities and assumptions required for the proof. The last
section is dedicated for the proof of our main result by ini-
tially establishing the energy estimates and establishing the
convergence of approximations to the original solution by
use of fractional Gronwall–Bellman-type inequality.

2 Mathematical model

Let O ⊂ R
2. The stochastic time-fractional diffusion equa-

tion perturbed by a parameter ε > 0 is given by

∂tφ
ε = div(m∂1−α

t ∇φε) + f (t, φε)

+ √
εσ (t, φε)∂tW (t),

with φε(0) = φ0 and
∂φε

∂ν
= 0. (2.1)

Here

• ν : outward normal to boundary ∂O,
• W (t): independentWiener process defined on a complete
filtered probability space (�,F ,Ft ,P),

• σ(t, φε): noise coefficient satisfying conditions stated
later.

The corresponding deterministic equation is given in (1.1).
Here, the fractional order α satisfies 0 < α < 1. For a func-
tion F , we denote

∂1−α
t F = ∂t (gα ∗ F),

where gα is defined as gα(t) = tα−1

	(α)
(also refer [16]). The

operator ∗ denotes the convolution with respect tot the time
variable is denoted by I α ,

(gα ∗ ϕ)(t) =
∫ t

0
gα(t − s)ϕ(s)ds, for some ϕ ∈ L

1(0, T ).

We now introduce the function spaces. We define the spaces
V and H in the Gelfand triple V ↪→ H ↪→ V ′ as

• The Lebesgue space H = L
2(O) with the norm ‖ · ‖H

defined by

(φ,ψ) =
∫
O

φ(x)ψ(x)dx, ‖φ‖H = √
(φ, φ).

• The Sobolev space V = H
1(O)with norm ‖ · ‖V defined

by

‖φ‖2V =
∫
O

|φ(x)|2dx +
∫
O

|∇φ(x)|2dx .

123



100 C. S. Sridevi et al.

Here, H and V are Hilbert spaces which naturally occur
and guarantee the existence of orthonormal normal basis
required for Galerkin approximations. For a Banach space
X , the Bochner space [17] is defined

L
p(0, T ; X) =

{
φ : (0, T ) → X : φ is strongly measurable,

‖φ‖p
Lp(0,T ;X)

=
∫ T

0
‖φ(t)‖p

Xds < ∞
}

.

For p = ∞, we define L∞(0, T ; X) with ‖φ‖L∞(0,T ;X) =
ess supt∈(0,T ) ‖φ(t)‖X . The fractional Sobolev–Bochner space
for a Banach space X is defined as

W
α,p(0, T ; X) = {φ ∈ L

p(0, T ; X) : ∂1−α
t φ ∈ L

p(0, T ; X)}.

For the case p = 2, Wα,2(0, T ; X) = H
α(0, T ; X). Let

Q be the covariance operator of H -valued Wiener process
W (t) such that it is strictly positive, symmetric and trace
class operator on H . Define H0 = Q1/2H . Then, H0 is a
Hilbert space with scalar product

(φ,ψ)0 = (Q−1/2φ, Q−1/2ψ), for φ,ψ ∈ H0.

Let LQ be the space of linear operators S such that SQ1/2

is a Hilbert–Schmidt operator from H to H with the norm
‖S‖LQ = trace(SQS∗). The following assumptions made,
especially on the noise coefficient σ(t, φ) and the nonlinear
source term f (t, φ) will be helpful for the proof of existence
and uniqueness and in computing energy estimates.

Assumption 2.1 We assume the following conditions on the
nonlinear term f and initial concentration φ0.

(i) O ⊂ R
2 is a bounded-Lipschitz domain and T > 0 is

finite.
(ii) f ∈ L

∞(0, T ; H) is Lipschitz and the initial concentra-
tion φ0 ∈ V .

Assumption 2.2 The functionσ ∈ C([0, T ]×V ;LQ(H0; H))

satisfy ∀ t ∈ [0, T ], ∃ K1 > 0 and K2 > 0 such that

(A1) ‖σ(t, φ)‖2LQ
≤ K1(1 + ‖∇φ‖2H ),

for all φ ∈ V .

(A2) ‖σ(t, φ) − σ(t, ψ)‖2LQ
≤ K2‖∇(φ − ψ)‖2H ,

for φ,ψ ∈ V .

3 Existence results

The results on existence and uniqueness of the solution for
(2.1) are discussed in this section. The process φε(t, ω) is

said to be a weak solution of (2.1) if it satisfies the initial
condition φ0 and for test function ψ of required regularity,

(φε(t), ψ) − (φ0, ψ) =
∫ t

0[(
div(m∂1−α

t ∇φε) + f (t, φε), ψ
)]
ds

+ √
ε

∫ t

0
(σ (s, φε(s))dW , ψ).

Some results required for the proof of existence are stated
initially. It is well known that not all rules that apply for
integer order are applicable to fractional calculus too. The
chain rule of the integer order calculus cannot be considered
for the fractional derivatives. The ensuing proposition gives
a counterpart for the chain rule for semiconvex functions
in fractional setting. A function f : R → R is said to be
semiconvex if for some λ ∈ R, the function x → f (x) −
λ
2 |x |2 is convex.
Proposition 3.1 Let V be a Banach space such that V ↪→
L
2(O) ↪→ V ′ forms aGelfand triple. Let u ∈ H

α(0, T ;V ′)∩
L

∞(0, T ;V) with u0 ∈ L
2(O) and E ∈ C1(R), a λ-convex

function with λ ∈ R. If E ′(u) ∈ L
2(0, T ;V), then we have

for all t ∈ (0, T )

∫ t

0

(
〈∂α

t u, E ′(u)〉V − λ〈∂α
t u, u〉V

)
ds ≥ g1−α

∗
∫
O

[
E(u) − E(u0)

]
dx

+ λ

2
g1−α ∗ (‖u‖2H − ‖u0‖2H

)
, (3.1)

gα ∗ 〈∂α
t u, E ′(u)〉V − λg ∗ 〈∂α

t u, u〉V
≥

∫
O

[
E(u) − E(u0)

]
dx

+ λ

2

(‖u‖2H − ‖u0‖2H
)
. (3.2)

The proof of the above proposition is given in [18]. For a spe-
cial case of E(·) = 1

2 | · |2 in Hilbert space, one can refer [19].
The following lemma is a corollary of fractional Gronwall–
Bellman-type inequality which is required in the proof of
existence.

Lemma 3.1 Let u, v ∈ L
1(0, T ;R≥0) and a, b > 0. If u and

v satisfy

u(t) + gα ∗ v(t) ≤ a + b(gα ∗ u)(t) a.e t ∈ (0, T ),

then we have

u(t) + v(t) ≤ a · C(α, b, T ) a.e t ∈ (0, T ). (3.3)

For proof, refer [18]. We now state the Itô formula.
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Theorem 3.1 (Itô formula) [20] Assume that � is an LQ-
valued process stochastically integrable in [0, T ], φ is an
H-valued predictable process Bochner integrable on [0, T ],
P-a. s., and X(0) is an F0-measurable H-valued random
variable. Then, the following process

X(t) = X(0) +
∫ t

0
φ(s)ds +

∫ t

0
�(s)dW (s), t ∈ [0, T ],

is well defined. Assume that a function F : [0, T ]× H → R.
Then, for all t ∈ [0, T ],

F(t, X(t)) = F(0, X(0))

+
∫ t

0
[Fs(s, X(s)) + (Fx (s, X(s)), φ(s))]ds

+
∫ t

0
(Fx (s, X(s)),�(s)dW (s))

+ 1

2

∫ t

0
Tr [Fxx (s, X(s))(�(s)Q1/2)(�(s)Q1/2)∗]ds.

(3.4)

The Burkholder–Davis–Gundy inequality is used to break
down the stochastic integral and produces a simplified inte-
gral term. Let M = (M(t), t ≥ 0) be a Brownian integral
with the drift of the form

M(t) =
∫ t

0
F j (s)dW j (s),

where each F j ∈ L
2[0, T ] for all t ≥ 0, 1 ≤ j ≤ d. Let the

quadratic variation process, denoted as ([M, M](t), t ≥ 0),
be defined by

[M, M](t) =
d∑
j=1

∫ t

0
F j (s)2ds.

Lemma 3.2 (Burkholder–Davis–Gundy Inequality)For every
p ≥ 1, there is a constant Cp ∈ (0,∞) such that for
any real-valued square integrable cádlág martingale M with
M(0) = 0, and for any T ≥ 0,

C−1
p E[M, M]p/2T ≤ E sup

0≤t≤T
|M |p ≤ CpE[M, M]p/2T .

The following theorem is the main result of this work
which states the existence and uniqueness of the solution for
(2.1).

Theorem 3.2 Let Assumptions 2.1 and 2.2 hold. Then, there
exists ε0 > 0 such that for ε ∈ [0, ε0] there exists a path-
wise unique weak solution φε for the stochastic fractional
diffusion equation (2.1) such that

φε ∈ H
α(0, T ; V ′) ∩ L

∞(0, T ; V ),

satisfying the energy inequality

E

(
‖φε‖2

L∞(0,T ;V )

)
≤ εC(E‖φ0‖2V + ‖ f ‖2

L∞([0,T ],H)),

(3.5)

where C is an appropriate constant.

From here, ‖ · ‖ denotes the norm in H unless specifically
mentioned. We use Faedo–Galerkin method of approxima-
tion to establish the existence and uniqueness. This is an
efficient tool employed to prove existence results since it
reduces the problem to finite dimension and use orthonormal
basis for approximating their solutions. Let {ϕn}n≥1: com-
pleteONBof H corresponding to theLaplacian operatorwith
Neumann boundary condition and Hn = span(ϕ1, · · · , ϕn)

and Pn : H → Hn be an orthogonal projection onto Hn . Let
Wn = PnW and σn = Pnσ . Then for ψ ∈ Hn , consider the
equation in Hn ,

(
∂tφ

ε
n, ψ

) = (
div(m∂1−α

t ∇φε
n) + f (t, φε

n), ψ
)

+ √
ε
(
σn(t, φ

ε
n) ∂tWn, ψ

)
, (3.6)

with φε
n(0) = Pnφ(0). Here we observe that as n → ∞,

φε
n(0) = Pnφ(0) → φ0 in V . If ψ ∈ V , then f ∈

L
∞(0, T ; H) implies that by Lipschitz condition satisfied

by the coefficients, from theory of fractional ODES, as in
[6], we have a solution to Eq. (3.6) on [0, Tn] such that

φε
n ∈ H

α(0, Tn; Hn) ∩ L
∞(0, Tn; Hn).

It implies that there is a stopping time Tn ≤ T such that for
t < Tn , (3.6) holds and for t ↑ Tn < T , |φε

n(t)| → ∞. We
now prove Tn = T and estimate φε

n for all n and ε ∈ [0, ε0]
for some ε0 > 0. For N > 0, take

τN = inf{t : |φε
n(t)| ≥ N } ∧ T .

Proposition 3.2 Under Assumptions 2.1 and 2.2, there exists
ε ≥ 0, such that Tn = T and there exists a unique solution
φε
n ∈ H

α(0, T ; Hn) ∩ L
∞(0, T ; Hn) satisfying (3.5) for an

appropriate constant C.

Proof Wefirst prove the estimate (3.5) for φε
n . Applying Itô’s

formula for ‖φε
n‖2, we get

‖φε
n(t)‖2 = ‖φε

n(0)‖2

+ 2
∫ t

0

(
div(m∂1−α

s ∇φε
n(s)) + f (s, φε

n(s)), φ
ε
n(s)

)
ds

+ ε

∫ t

0
‖σn(s, φε

n(s))‖2LQ
ds

+ 2
√

ε

∫ t

0

(
φε
n(s), σn(s, φ

ε
n(s)) dWn(s)

)
.
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‖φε
n(t)‖2 + 2

∫ t

0

(
m∂1−α

s ∇φε
n(s),∇φε

n

)
ds

= ‖φε
n(0)‖2 + 2

∫ t

0

(
f (s, φε

n(s)), φ
ε
n(s)

)
ds

+ ε

∫ t

0
‖σn(s, φε

n(s))‖2LQ
ds

+ 2
√

ε

∫ t

0

(
φε
n(s), σn(s, φ

ε
n(s)) dWn(s)

)
.

Using (3.1) in Proposition 3.1, for E(u) = |u|2
2 , α = 1 − α

and λ = 0, we get

2
∫ t

0

(
m∂1−α

s ∇φε
n(s),∇φε

n(s)
)
ds ≥ mgα

∗
(
‖∇φε

n(t)‖2 − ‖∇φε
n(0)‖2

)
.

Substituting the above estimate, we have

‖φε
n(t)‖2 + mgα ∗ ‖∇φε

n(t)‖2
≤ ‖φε

n(0)‖2 + mgα ∗ ‖(∇φε
n)(0)‖2

+ 2
∫ t

0

(
f (s, φε

n(s)), φ
ε
n(s)

)
ds

+ ε

∫ t

0
‖σn(s, φε

n(s))‖2LQ
ds

+ 2
√

ε

∫ t

0

(
φε
n(s), σn(s, φ

ε
n(s)) dWn(s)

)
.

Using Assumptions and Young’s inequality,

‖φε
n(t)‖2 + mgα ∗ ‖∇φε

n(t)‖2
≤ ‖φε

n(0)‖2 + mgα ∗ ‖(∇φε
n)(0)‖2

+
∫ t

0
[‖ f (s, φε

n(s))‖2 + ‖φε
n(s)‖2]ds

+ εK1

∫ t

0
(1 + ‖∇φε

n(s)‖2)ds

+ 2
√

ε

∫ t

0

(
φε
n(s), σn(s, φ

ε
n(s)) dWn(s)

)
.

Taking supremum over time and then taking expectation,

E sup
0≤t≤T∧τN

{
‖φε

n(t)‖2 + mgα ∗ ‖∇φε
n(t)‖2

}

≤ E

{
‖φε

n(0)‖2 + mgα ∗ ‖(∇φε
n)(0)‖2

}

+ E

∫ T∧τN

0
[‖ f (s, φε

n(s))‖2 + ‖φε
n(s)‖2]ds

+ εK1E

∫ T∧τN

0
(1 + ‖∇φε

n(s)‖2)ds

+ 2
√

εE sup
0≤t≤T∧τN

∫ t

0

(
φε
n(s), σn(s, φ

ε
n(s)) dWn(s)

)
.

For the stochastic integral term, using Burkholder–Davis–
Gundy inequality, Young’s inequality and (A1) gives,

2
√

εE sup
0≤t≤T∧τN

∫ t

0

(
σn(φ

ε
n(s))dWn, φ

ε
n(s)

)

≤ 2
√

εC1E

{∫ T∧τN

0
‖σn(s, φε

n(s))‖2LQ
‖φε

n(s)‖2ds
}1/2

≤ 2
√

εC1E

{
sup

0≤t≤T∧τN

‖φε
n(t)‖2

∫ T∧τN

0
‖σn(s, φε

n(s))‖2LQ
ds

}1/2

≤ 1

2
E sup

0≤t≤T∧τN

‖φε
n(t)‖2 + εC2K1E

∫ T∧τN

0
(1 + ‖∇φε

n(s)‖2)ds.

Combining, we get

E sup
0≤t≤T∧τN

{
‖φε

n(t)‖2 + 2mgα ∗ ‖∇φε
n(t)‖2

}

≤ 2E

{
‖φε

n(0)‖2 + mgα ∗ ‖(∇φε
n)(0)‖2

}

+ 2E
∫ T∧τN

0
[‖ f (s, φε

n(s))‖2 + ‖φε
n(s)‖2]ds

+ 2εK1(1 + C2)E

∫ T∧τN

0
(1 + ‖∇φε

n(s)‖2)ds.

Using (3.3) from Lemma 3.1, we get

E sup
0≤t≤T∧τN

{
‖φε

n(t)‖2 + 2m‖∇φε
n(t)‖2

}

≤ C(T )E

{
‖φε

n(0)‖2 + m‖(∇φε
n)(0)‖2

+
∫ T∧τN

0
‖ f (s, φε

n(s))‖2ds + εK1(1 + C2)T

}
.

Then, for ε ≥ 0,

E

(
‖φε

n(t)‖2L∞(0,T ;V )

)

≤ εC · E
(

‖φε
n(0)‖2V + ‖ f ‖2

L∞([0,T ];H)

)
.

Here τN → Tn as N → ∞ and for {Tn < T },
sup0≤s≤τN

|φε
n(s)| → ∞. Hence P(Tn < T ) = 0 and so for

large N , τN = T and φε
n ∈ H

α(0, T ; Hn) ∩ L
∞(0, T ; Hn).

Hence the proof. ��
Proof of Theorem 3.2 Let OT = [0, T ] × O. The theorem is
proved by splitting it into several steps.

Step 1 From energy estimate obtained in Proposition 3.2,
forφε

n , there exist a subsequence also denoted by {φε
n}n≥0 and

processesφε ∈ H
α(0, T ; V ′)∩Lp(0, T ; H)∩L∞([0, T ], V ),

Fε ∈ L
2(0, T ; V ′) and Sε ∈ L

2(0, T ;LQ) such that
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(i) φε
n → φε strongly in Lp(0, T ; H),

(ii) ∂1−α
t ∇φε

n → ∂1−α
t ∇φε weakly in L2(0, T ; V ′),

(iii) φε
n is weak

∗-converging to φε in L∞(0, T ; V ),
(iv) f (t, φε

n) → Fε in L2(OT , V ′),
(v) σn(t, φε

n) → Sε in L2(OT ,LQ).

As a consequence of Proposition 3.2, we get (i)-(iii). To prove
that the limit φε satisfies the weak formulation of (2.1), we
integrate (3.6) and then decompose their terms using known
inequalities. Using Young’s inequality,

∫ T

0
〈 f (s, φε

n(s)), ψ〉ds

≤
∫ T

0
[‖ f (s, φε

n)‖2 + ‖ψ‖2]ds < ∞.

The above estimate with (i) proves (iv). From Assumption
2.2,

E

∫ T

0
‖σn(s, φε

n(s))‖2LQ
ds ≤ K1E

∫ T

0
(1 + ‖∇φε

n(s)‖2)ds < ∞.

This implies (v). Since as n → ∞, Pnφ0 = φε
n(0) → φ0 in

H , we have φε satisfies

φε(T ) = φ0 +
∫ T

0
div(m∂1−α

s ∇φε(s))ds +
∫ T

0
Fε(s)ds

+ √
ε

∫ T

0
Sε(s)dW (s). (3.7)

Step 2
It now remains to prove that Fε(s) = f (s, φε(s)) and

Sε(s) = σ(s, φε(s)). By Fatou’s lemma,

E{‖φε(T )‖2} ≤ lim inf
n

E{‖φε
n(T )‖2}. (3.8)

Applying Itô’s formula to (3.6),

‖φε
n(T )‖2 = ‖φε

n(0)‖2

+ 2
∫ T

0

(
div(m∂1−α

s ∇φε
n(s)), φ

ε
n(s)

)
ds

+ 2
∫ T

0

(
f (s, φε

n(s)), φ
ε
n(s)

)
ds

+ ε

∫ T

0
‖σn(s, φε

n(s))‖2LQ
ds + I (t),

where

I (t) = 2
√

ε

∫ T

0

(
σn(s, φ

ε
n(s))dWn(s), φ

ε
n(s)

)
.

Here since I (t) is a local martingale with zero average,

E{I (t)} = 2
√

εE

∫ T

0

(
σn(s, φ

ε
n(s))dWn(s), φ

ε
n(s)

) = 0.

Therefore, we get,

E
(‖φε

n(T )‖2) = E‖φε
n(0)‖2

+ 2E
∫ T

0

(
div(m∂1−α

s ∇φε
n(s)), φ

ε
n(s)

)
ds

+ 2E
∫ T

0

(
f (s, φε

n(s)), φ
ε
n(s)

)
ds + εE

∫ T

0
‖σn(s, φε

n(s))‖2LQ
ds.

Similarly from (3.7),

E‖φε(T )‖2 ≤ E‖φε(0)‖2

+ 2E
∫ T

0

(
div(m∂1−α

s ∇φε(s)), φε(s)
)
ds

+ 2E
∫ T

0

(
Fε(s), φε(s)

)
ds

+ εE

∫ T

0
‖Sε(s)‖2LQ

ds.

Using the above two estimates in (3.8),

2E
∫ T

0

(
div(m∂1−α

s ∇φε(s)), φε(s)
)
ds

+ 2E
∫ T

0

(
Fε(s), φε(s)

)
ds + εE

∫ T

0
‖Sε(s)‖2LQ

ds

≤ lim inf
n
E

{
2

∫ T

0

(
div(m∂1−α

s ∇φε
n(s)), φ

ε
n(s)

)
ds

+ 2
∫ T

0

(
f (s, φε

n(s)), φ
ε
n(s)

)
ds

+ ε

∫ T

0
‖σn(s, φε

n(s))‖2LQ
ds

}
. (3.9)

For a corresponding test function ψ , we have

{
2E

∫ T

0

(
div(m∂1−α

s ∇(φε
n(s) − ψ(s))), φε

n(s) − ψ(s)
)
ds

+ εE

∫ T

0
‖σn(s, φε

n(s)) − σn(s, ψ(s))‖2LQ
ds

+ 2E
∫ T

0

(
f (s, φε

n(s)) − f (s, ψ(s)), φε
n(s) − ψ(s)

)
ds

}
≤ 0.

(3.10)

By subtracting (3.10) from right hand side of (3.9), we get

2E
∫ T

0

(
div(m∂1−α

s ∇φε(s)), φε(s)
)
ds
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+ 2E
∫ T

0

(
Fε(s), φε(s)

)
ds + εE

∫ T

0
‖Sε(s)‖2LQ

ds

≤ lim inf
n
E

{
2

∫ T

0

(
div(m∂1−α

s ∇φε
n(s)), ψ(s)

)
ds

+ 2
∫ T

0

(
div(m∂1−α

s ∇ψ(s)), φε
n(s)

)
ds

− 2
∫ T

0

(
div(m∂1−α

s ∇ψ(s)), ψ(s)
)
ds

+ 2
∫ T

0

(
f (s, ψ(s)), φε

n(s) − ψ(s)
)
ds

+ 2
∫ T

0

(
f (s, φε

n(s)), ψ(s)
)
ds

+ ε

∫ T

0

(
2σn(s, φ

ε
n(s)) − σn(s, ψ(s)), σn(s, ψ(s))

)
ds

}
.

Applying limit as n → ∞,

2E
∫ T

0

(
div(m∂1−α

s ∇φε(s)), φε(s)
)
ds

+ 2E
∫ T

0

(
Fε(s), φε(s)

)
ds + εE

∫ T

0
‖Sε(s)‖2LQ

ds

≤ lim inf
n
E

{
2

∫ T

0

(
div(m∂1−α

s ∇φε(s)), ψ(s)
)
ds

+ 2
∫ T

0

(
div(m∂1−α

s ∇ψ(s)), φε(s)
)
ds

− 2
∫ T

0

(
div(m∂1−α

s ∇ψ(s)), ψ(s)
)
ds

+ 2
∫ T

0

(
f (s, ψ(s)), φε(s) − ψ(s)

)
ds

+ 2
∫ T

0

(
Fε(s), ψ(s)

)
ds

+ ε

∫ T

0

(
2Sε(s) − σ(s, ψ(s)), σ (s, ψ(s))

)
ds

}
.

and rearranging,

E

{
2

∫ T

0

(
div(m∂1−α

s ∇φε(s)), φε(s) − ψ(s)
)
ds

− 2
∫ T

0

(
div(m∂1−α

s ∇ψ(s)), φε(s) − ψ(s)
)
ds

+ 2
∫ T

0

(
Fε(s) − f (s, ψ(s)), φε(s) − ψ(s)

)
ds

+ ε

∫ T

0
‖Sε(s) − σ(s, ψ(s))‖2LQ

ds

}
≤ 0.

Taking ψ = φε in the above inequality, we get Sε(t) =
σ(t, φε(t)). Now we get

2E

[ ∫ T

0

(
Fε(s) − f (s, ψ(s)), φε(s) − ψ(s)

)
ds

]
≤ 0.

(3.11)

Let ψ = φε − μψ̃, for μ > 0. From Assumption 2.1, since
f is Lipschitz,

(
f (s, ψ(s)) − f (s, φε(s)), μψ̃(s)

) ≤ μ2C‖ψ̃(s)‖2.

Then from (3.11),

E

[ ∫ T

0

{
2μ〈Fε(s) − f (s, φε(s)), ψ̃(s)〉

}
ds

]
≤ 0.

Since ψ̃ is arbitrary, Fε(t) = f (t, φε(t)). Hence, from the
convergence we get,

φε(T ) = φ0 +
∫ T

0
div(m∂1−α

s ∇φε(s))ds

+
∫ T

0
f (s, φε(s))ds + √

ε

∫ T

0
σ(s, φε(s))dW (s).

E

(
‖φε‖2

L∞(0,T ;V )

)
≤ εC(E‖φ0‖2V + ‖ f ‖L∞([0,T ],H)).

Hence the existence of solution is proved.
Step 3
In order to proveuniqueness, considerψε ∈ H

α(0, T ; V ′)∩
L

∞([0, T ], V ) be another solution of (2.1). Then, ϑ =
φε − ψε satisfies

dϑ(t) = div(m∂1−α
t ∇ϑ(t)) + [ f (t, φε(t))

− f (t, ψε(t))]dt + √
ε[σ(t, φε) − σ(t, ψε)dW ].

Applying Itô’s formula, using (3.3) and Assumptions 2.1
and 2.2,

‖ϑ(t)‖2 + mgα ∗ ‖∇ϑ(t)‖2
≤ ‖ϑ(0)‖2 + mgα ∗ ‖∇ϑ(0)‖2

+ 2
∫ t

0

(
f (s, φε(s)) − f (s, ψε(s)), φε(s) − ψε(s)

)
ds

+ ε

∫ t

0
‖σ(s, φε(s)) − σ(s, ψε(s))‖2LQ

ds

+ 2
√

ε

∫ t

0

(
ϑ(s), [σ(s, φε(s)) − σ(s, ψε(s))]dW (s)

)
.

Using Assumptions and Young’s inequality,

‖ϑ(t)‖2 + mgα ∗ ‖∇ϑ(t)‖2
≤ ‖ϑ(0)‖2 + mgα ∗ ‖(∇ϑ)(0)‖2

+
∫ t

0

[
‖ f (s, φε(s)) − f (s, ψε(s))‖2 + ‖ϑ(s)‖2

]
ds

+ εK2

∫ t

0
‖∇ϑ(s)‖2ds

+ 2
√

ε

∫ t

0

(
ϑ(s),

[
σ(s, φε(s)) − σ(s, ψε(s))

]
dW (s)

)
.
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Taking supremum over time T and then taking expectation,

E sup
0≤t≤T

{
‖ϑ(t)‖2 + mgα ∗ ‖∇ϑ(t)‖2

}

≤ E

{
‖ϑ(0)‖2 + mgα ∗ ‖(∇ϑ)(0)‖2

+
∫ T

0

[
‖ f (s, φε(s)) − f (s, ψε(s))‖2 + ‖ϑ(s)‖2

]
ds

}

+ εK2E

∫ T

0
‖∇ϑ(s)‖2ds + 2

√
εE sup

0≤t≤T∫ t

0

(
ϑ(s),

[
σ(s, φε(s)) − σ(s, ψε(s))

]
dW (s)

)
.

UsingBurkholder–Davis–Gundy inequality and simplifying,

2
√

εE sup
0≤t≤T

∫ t

0

([
σ(s, φε(s)) − σ(s, ψε(s))

]
dW (s), ϑ(s)

)

≤ 2
√

εC1E{
sup

0≤t≤T
‖ϑ(t)‖2

∫ T

0
‖σ(s, φε(s)) − σ(s, ψε(s))‖2LQ

ds

}1/2

≤ 1

2
E sup

0≤t≤T
‖ϑ(t)‖2 + εC2K2E

∫ T

0
‖∇ϑ(s)‖2ds.

Combining, we get

E sup
0≤t≤T

{
‖ϑ(t)‖2 + 2m‖∇ϑ(t)‖2

}
≤ C(T )E‖ϑ(0)‖2V .

Hence ‖ϑ(t)‖2 = 0 for all t ∈ [0, T ] since ϑ(0) = 0. ��
Thus, the existence and uniqueness is proved inHα(0, T ;

V ′) ∩ L
∞(0, T ; V ).

4 Conclusion

A stochastic time-fractional equation that models subdiffu-
sion process is considered, and a study on existence and
uniqueness of its solution is carried out. For this purpose, the
nonlinear source term ( f ) and the noise coefficient (σ ) are
assumed to essentially satisfy Lipschitz continuity. A series
of inequalities are used to arrive at our results. Burkholder–
Davis–Gundy inequality is formally used to reduce the
stochastic integral, and fractional Gronwall–Bellman-type
inequality is used in the place of integer order Gronwall
lemma. Having established the existence of solution, analy-
sis of many further concepts is open. This leads to numerical
computation of solution of this stochastic fractional equation.
Further, one can study large and moderate deviation princi-
ples for this stochastic equation which analyses the behavior
of the system for larger time.
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