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Abstract
In this article, we consider a class of systems of multiple delay differential equations (MDDEs).We first define a characteristic
matrix equation that can be used to analyze the stability of the equilibrium of a system ofMDDEs. Then we construct a matrix
based on the coefficients of the characteristic matrix equation and use the spectrum of this matrix to derive necessary and
sufficient conditions for the system to be stable. Next we discuss a comparison of the stability equivalency between a system
of delay differential equations (DDEs) to the system of MDDEs and relate our results to distributed delay systems (DDSs).
Numerical examples are given to justify our theory.
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1 Introduction

Studying the stability of delay differential equations (DDEs)
has become increasingly important in recent times; see [1–6]
and the growing body of literature in the field. In the past
few years, there has been a significant amount of research
focused on MDDEs; see [3, 7–12], as well as their appli-
cations in various fields such as the dynamics of electrical
power systems, macroeconomic models, electricity market
models, and more, as outlined in [8, 13–19]. In addition to
these areas, there has been an increasing interest in studying
other types of systems that exhibit memory effects, including
systems of fractional differential and difference equations, as
well as systems of fractional nabla difference equations, as
highlighted in [20–22]. Conventional approaches for the sta-
bility analysis of DDEs are based on Lyapunov functional
method (LFM) and techniques that require the solution of
a linear matrix inequality (LMI) problem; see [23–25]. The
complexity to construct the Lyapunov function and the heavy
computational burden to solve the LMI problem limit the
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application of LFMs on engineering fields. Moreover, as
LFMs provide only sufficient but not necessary conditions
for system stability, they tend to be conservative. There also
exist a variety of frequency-domain approaches to solve the
stability of DDEs, [2, 4, 26–30].Most of these techniques are
based on the solution of an eigenvalue problem. This consists
in estimating the dominant modes of the DDEs through the
solution of the characteristic equation of the system. In [6, 10,
16, 17], a general eigenvalue analysis approach is developed
to solve the stability of large system described by a set of
delay differential algebraic equations (DDAEs). Compared
to LFMs, eigenvalue-based approaches are less computation-
ally intensive and provide a more accurate stability analysis.
For this reason, we consider an eigenvalue-based approach
also in this paper.

In this article, we will firstly provide stability criteria for
a class of systems of DDEs with multiple delays based on
eigenvalue analysis. Additionally, we explore the relation-
ship between the stability of a DDE system with one delay
and a system of MDDEs. This discussion offers a fresh per-
spective and novel insights that may inspire future research
in this field. We are interested in the evaluation of the small
signal stability of a nonlinear system of MDDEs in the fol-
lowing form:

Ẏ = f (Y ,Y (t − τ1),Y (t − τ2), . . . ,Y (t − τn)),

where τi > 0 is constant time delay, Y ∈ R
m are the state

variables, f : R
(n+1)×m �→ R

m are the differential equa-
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tions and can be implicit with its partial derivatives at an
equilibrium point to be singular matrices, i.e., det

( ∂ f
∂K

) = 0,
∀K = Y ,Y (t − τ1),Y (t − τ2), . . . ,Y (t − τn) and Ẏ not to
be zero columns.

We consider only small disturbances, e.g., disturbances
whose effects on the stability of a given equilibrium point
can be studied through the linearized set of the equations
that model the system. If we consider small disturbances,
e.g., disturbances whose effects on the stability of a given
equilibrium can be studied through the linearized set of the
equations that model the system. The linearized systems of
MDDEs have the form:

Ẏ = fY δY + fYd1 δYd1 + · · · + fYdn δYdn .

where δY = Y − Yeq , Yeq is equilibrium and fẎ full rank at
an equilibrium. The characteristic equation is then given by

det

(

λ fẎ − fY −
n∑

k=1

e−λτk fYdk

)

= 0,

and its characteristic roots will provide the necessary infor-
mation for small signal stability of the system of MDDE. To
sum up the small signal stability of the nonlinear MMDE at
a given equilibrium can be studied from the following linear
system MDDE:

Ẏ (t) = A0Y (t) +
n∑

k=1

AkY (t − τk). (1)

with characteristic equation

det

(

λIm − A0 −
n∑

k=1

e−λτk Ak

)

= 0. (2)

where

A0 = fY , Ak = fYdk .

A necessary and sufficient condition for the equilibrium
solution to be asymptotically stable is that the roots of the
characteristic equation all have negative real parts; see [3].

In the remainder of the paper Im denotes the identity matrix
m × m, 0i, j the zero matrix of i rows, j columns, and ‖ · ‖
a natural norm. The remainder of this paper is organized as
follows. In Sect. 2, we present a theorem that establishes a
stability criterion for MDDE systems in the form of (1). In
Sect. 3, we explore the stability equivalence between systems
of DDEs and systems of MDDEs and discuss the relevance
of our findings for DDSs. Section4 is devoted to numer-
ical examples, which demonstrate the effectiveness of our
approach. Finally, we summarize our key findings in theCon-
clusions section.

2 Stability analysis of multiple delay systems

In this section, we present our main results. We will use the
following definition:

Definition 2.1 A square matrix A is called stable if every
eigenvalue of A has strictly negative real part.

Initially we consider τk = kτ in (1) and provide the fol-
lowing Theorem:

Theorem 2.1 We consider system (1) with τk = kτ . Then the
following conditions must hold for delay-independent stabil-
ity of (1):

1. The matrix A0 is stable;
2. The matrix A0 + ∑n

k=1 Ak is stable;
3. The spectral radius of Aω is less than 1, ∀ω > 0, where

Aω =

⎡

⎢⎢⎢⎢⎢
⎣

( jωIm − A0)
−1A1 ( jωIm − A0)

−1A2 . . . ( jωIm − A0)
−1An−1 ( jωIm − A0)

−1An

Im 0m,m . . . 0m,m 0m,m

0m,m Im . . . 0m,m 0m,m
...

...
. . .

...
...

0m,m 0m,m . . . Im 0m,m

⎤

⎥⎥⎥⎥⎥
⎦

.

Proof If τ → ∞ then (2) takes the form

det(λIm − A0) = 0.

Hence, thematrix A0 has to be stable in order to have stability
for (1) at the equilibrium state. If τ = 0 then (2) takes the
form

det(λIm − A0 − A1 − · · · − An) = 0,

123



A discussion of stability analysis for systems of differential equations with multiple… 1281

which means that the matrix A0 + ∑n
k=1 Ak has to be stable

in order to have stability for (1) at the equilibrium state. By
applying the Fourier transform F(Y ) = �(ω) into (1), we
get:

jω�(ω) = A0�(ω) + A1e
− jωτ�(ω)

+A1e
− jω2τ�(ω) + · · · + Ane

− jωnτ�(ω),

or, equivalently,

[ jωIm − A0 −
n∑

k=1

Ake
− jωkτ ]�(ω) = 0m,1.

Then det( jωIm − A0 − ∑n
k=1 Ake− jωkτ ) = 0 is the charac-

teristic equation of (1). We adopt the following notation:

x1(t) = Y (t),
x2(t) = Y (t − τ),

x3(t) = Y (t − 2τ),

. . . ,

xn−1(t) = Y (t − (n − 2)τ ),

xn(t) = Y (t − (n − 1)τ ).

Furthermore

x1(t − τ) = Y (t − τ),

x2(t − τ) = Y (t − 2τ),

x3(t − τ) = Y (t − 3τ),
...

xn−1(t) = Y (t − (n − 1)τ )

Anxn(t − τ) = AnY (t − nτ) = Ẏ −
n−1∑

k=0
AkY (t − kτ),

or, equivalently,

x1(t − τ) = x2(t),
x2(t − τ) = x3(t),
x3(t − τ) = x4(t),
...

xn−1(t − τ) = xn(t)

Anxn(t − τ) = x ′
1(t) −

n−1∑

k=0
Akxk+1(t),

or, equivalently, in matrix form

GX(t − τ) = F1X
′(t) + F2X(t),

where

X(t) =

⎡

⎢⎢⎢
⎢⎢
⎣

x1(t)
x2(t)
x3(t)

...

xn(t)

⎤

⎥⎥⎥
⎥⎥
⎦

,

G =

⎡

⎢⎢
⎢⎢⎢
⎣

Im 0m,m . . . 0m,m 0m,m

0m,m Im . . . 0m,m 0m,m
...

...
. . .

...
...

0m,m 0m,m . . . Im 0m,m

0m,m 0m,m . . . 0m,m An

⎤

⎥⎥
⎥⎥⎥
⎦

,

and F1, F2 are given by

F1 =

⎡

⎢⎢⎢⎢⎢
⎣

0m,m 0m,m 0m,m . . . 0m,m

0m,m 0m,m 0m,m . . . 0m,m
...

...
...

. . .
...

0m,m 0m,m 0m,m . . . 0m,m

Im 0m,m 0m,m . . . 0m,m

⎤

⎥⎥⎥⎥⎥
⎦

,

F2 =

⎡

⎢⎢⎢⎢⎢
⎣

0m,m Im 0m,m . . . 0m,m

0m,m 0m,m Im . . . 0m,m
...

...
...

. . .
...

0m,m 0m,m 0m,m . . . Im
−A0 −A1 −A2 . . . −An−1

⎤

⎥⎥⎥⎥⎥
⎦

.

It is worth noting that the system under consideration is
a set of DDAEs. Therefore, since we have established the
equivalence of the two systems, we can conclude that the
characteristic equation of (1) is

det( jωF1 + F2 − e− jωτG) = 0.

Let Fω := F( jω) = jωF1 + F2. We have that:

Fω =

⎡

⎢⎢⎢⎢⎢
⎣

0m,m Im 0m,m . . . 0m,m

0m,m 0m,m Im . . . 0m,m
...

...
...

. . .
...

0m,m 0m,m 0m,m . . . Im
jωIm − A0 −A1 −A2 . . . −An−1

⎤

⎥⎥⎥⎥⎥
⎦

.

Then the characteristic equation of theDDAEs can bewritten
as:

det(Fω − e− jωτG) = 0.

Let ρ(·) be spectral radius of a matrix. Using Theorem 2.1
in [3] we get that ∀ω > 0, if ρ(F−1

ω [e− jωτG]) < 1, then the
set of DDAEs is stable independent of delay, where
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F−1
ω =

⎡

⎢⎢⎢
⎢⎢
⎣

( jωIm − A0)
−1A1 ( jωIm − A0)

−1A2 . . . ( jωIm − A0)
−1An−1 ( jωIm − A0)

−1

Im 0m,m . . . 0m,m 0m,m

0m,m Im . . . 0m,m 0m,m
...

...
. . .

...
...

0m,m 0m,m . . . Im 0m,m

⎤

⎥⎥⎥
⎥⎥
⎦

,

and

F−1
ω G =

⎡

⎢⎢
⎢⎢⎢
⎣

( jωIm − A0)
−1A1 ( jωIm − A0)

−1A2 . . . ( jωIm − A0)
−1An−1 ( jωIm − A0)

−1An

Im 0m,m . . . 0m,m 0m,m

0m,m Im . . . 0m,m 0m,m
...

...
. . .

...
...

0m,m 0m,m . . . Im 0m,m

⎤

⎥⎥
⎥⎥⎥
⎦

.

Note that ∀ω > 0:

ρ(F−1
ω [e− jωτG]) = ρ(e− jωτ F−1

ω G) = |e− jωτ |ρ(F−1
ω G)

= ρ(F−1
ω G).

Let Aω = F−1
ω G. Since the set of DDAEs is equivalent to

(1), we have that ∀ω > 0 if ρ(Aω) < 1 holds then (1) is
stable independent of delay. 	


3 Discussion on the equivalency of MDDEs to
a system of DDEs and DDSs

We consider now the system of DDEs:

Ẏ (t) = A0Y (t) + AY (t − τ). (3)

where A, Ai ∈ R
m×m , i =, 1, . . . , n, Y : [0,+∞] →

R
m×1, and A0 ∈ R

m×m is stable matrix. In the following
discussion we will attempt to relate systems (1), (3) for small

disturbances, i.e.,
∥∥
∥
∑n

k=1 AkY (s − τk) − AŶ (s − τ)

∥∥
∥ < ε,

and investigate their stability such that if (3) is asymptoti-
cally stable, then (1) is also asymptotically stable.An implicit
solution of system (1) is given by:

Y (t) = eA0t c +
∫ t

0
eA0(t−s)

n∑

k=1

AkY (s − τk)ds,

or, equivalently, if we apply the Weierstrass canonical form;
see [22],

Y (t) = PeJt Qc +
∫ t

0
PeJ (t−s)Q

n∑

k=1

AkY (s − τk)ds,

Similarly, an implicit solution of (3) is given by:

Ŷ (t) = eA0t c +
∫ t

0
eA0(t−s)AŶ (s − τ)ds,

whereby applying the Weierstrass canonical form we get:

Ŷ (t) = PeJt Qc +
∫ t

0
PeJ (t−s)QAŶ (s − τ)ds.

Thematrices P , Q have as columns the left, and right respec-
tively linear independent eigenvectors of A0, while J is the
Jordan matrix of the eigenvalues of A0. By subtracting these
two solutions we get:

Y (t) − Ŷ (t)

=
∫ t

0
PeJ (t−s)Q

n∑

k=1

AkY (s − τk)ds

−
∫ t

0
PeJ (t−s)QAŶ (s − τ)ds,

or, equivalently,

Y (t) − Ŷ (t)

=
∫ t

0
PeJ (t−s)Q

[
n∑

k=1

AkY (s − τk) − AŶ (s − τ)

]

ds.

By applying a natural norm we get:

‖Y (t) − Ŷ (t)‖

=
∥∥
∥∥∥

∫ t

0
PeJ (t−s)Q

[
n∑

k=1

AkY (s − τk) − AŶ (s − τ)

]

ds

∥∥
∥∥∥

,
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whereby using the property of the norm we have that:

‖Y (t) − Ŷ (t)‖ ≤ ε‖P‖‖Q‖
∫ t

0
‖eJ (t−s)‖ds. (4)

If λi is an eigenvalue of A0 with algebraic multiplicity pi ,
the Jordan matrix has the form:

J := Jp1(λ1) ⊕ · · · ⊕ Jpν (λν),

where

Jpi (λi ) =

⎡

⎢
⎢⎢⎢⎢
⎣

λi 1 . . . 0 0
0 λi . . . 0 0
...

...
. . .

...
...

0 0 . . . λi 1
0 0 . . . 0 λi

⎤

⎥
⎥⎥⎥⎥
⎦

∈ C
pi×pi , i = 1, 2, ..., ν.

In addition:

eJ t := eJp1 (λ1)t ⊕ · · · ⊕ eJpν (λν)t ,

where

eJpi (λi t) =

⎡

⎢⎢⎢
⎢⎢⎢⎢
⎣

eλi t eλi t t eλi t t
2

2! . . . eλi t t
p
i
pi !

0 eλi t eλi t t . . . eλi t t pi−1

(pi−1)!
...

...
. . .

...
...

0 0 . . . eλi t eλi t t
0 0 . . . 0 eλi t

⎤

⎥⎥⎥
⎥⎥⎥⎥
⎦

∈ C
pi×pi ,

i = 1, 2, . . . , ν.

By taking the norm ‖·‖1 of eJ t we have
∥∥∥eJ t

∥∥∥
1

= max1≤i≤ν

∥∥∥eJpi (λi t)
∥∥∥
1

= max1≤i≤ν

pi∑

l=0

eλi t t
l

l! ,

Hence
∥∥∥eJ (t−s)

∥∥∥
1

= max1≤i≤ν

∥∥∥eJpi (λi (t−s))
∥∥∥
1

= max1≤i≤ν

pi∑

l=0

eλi (t−s) (t − s)l

l! . (5)

Let

ε‖P‖‖Q‖ = M, ∀0 ≤ t . (6)

By using (5), (6) into (4) we get:

‖Y (t) − Ŷ (t)‖ ≤ Mmax1≤i≤ν

pi∑

l=0

∫ t

0
eλi t t

l

l! ds,

and hence for λi < 0 we get:

‖Y (t) − Ŷ (t)‖ → 0, for t → +∞.

In the following remark we discuss the possibility of A =
g(Ai ) for certain cases.

Remark 3.1 We discussed the stability equivalency between
a system of DDEs with one delay and a system of MDDEs.
The significance of this aspect was to devise a new con-
cept that can provide novel perspectives for researchers. By
exploring this idea in our discussion, we aim to pave the way
for future research to advance the concept of stability equiv-
alence. We considered only small disturbances. Let in (1),
(3), τk = τ ± ε̃k , k = 1, 2, . . . , n, with 0 < τ, ε̃k << 1.
Then sτk ∼= sτ ± εk, k = 1, 2, . . . , n, 0 < εk � 1, and
e−sτk ∼= cke−sτ , k = 1, 2, . . . , n, 1 < ck � 2. Hence
in this special case by applying the Laplace transform into
(1), (3) we can observe that the real parts of the rightmost
eigenvalues of (3) should also converge to that of (1) if
A = ∑n

k=1 ck Ak . Consequently, one of the practical options
for A is A = g(Ak) = c

∑n
k=0 Ak , where c ∈ R

+. The
proof of Theorem 2.5 in [3] provides the necessary and
sufficient condition to ensure that for the special case that
A = g(Ak) = ∑n

k=0 Ak , there exists a τ ≤ τ̄ such that the
systems (1), (3) have the same stability assertion. Hence, for
the case that A = g(Ak) = c

∑n
k=0 Ak , particularly c = 1 is

an appropriate selection to apply the idea described above,
and one can obtain that the MDDE system (1) is asymptoti-
cally stable if the single delay system (3) with A = ∑n

k=0 Ak

and τ ≤ τ̄ =
∑n

k=1 τk

n
is asymptotically stable.

The results discussed and obtained in Sect. 3 can also be
used for the stability analysis of DDSs in the following form:

Ẏ (t) = A0Y (t) + A1

∫ τmax

τmin

π(ξ)Y (t − ξ)dξ, (7)

where π(·) is the probability distribution of ξ that satisfies
the following property:

1

τmax − τmin

∫ τmax

τmin

π(ξ)dξ = 1,

and π(ξ) is a non-negative function.
From [28, 31, 32], we know that the DDS in the form of

(7) has the same spectrum as the comparison system:

Ẏ (t) = A0Y (t) + A1κ h lim
zm→∞

zm∑

z=0

π(�z)Y (t − �z),
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where

h = τmax − τmin

zm
,

�z = τmin + z h,

and κ is a weighting parameter decided by the interpolation
method used.

With zm truncated at a finite value, one obtains the follow-
ing system:

Ẏ (t) = A0Y (t) + A1κ h
zm∑

z=0

π(�z)Y (t − �z) , (8)

which is a system of MDDEs in the form of (1), and its
spectrum can be studied according to Theorem 2.1, and the
discussions in this section. Hence, with a proper interpolation
method and a fixed zm , the critical eigenvalues of the DDS
(7) converge to those of system (8).

4 Numerical examples

In this section, we provide numerical examples to illustrate
the theory presented in Sects. 2 and 3.

Example 4.1 We consider the system of MDDEs (1) for n =
2 and

A0 =
[−200 0

0 −100

]
,

Ai = i · 10−3
[−1 1

0 −1

]
, i = 1, 2.

To utilize Theorem 2.1, the following steps should be fol-
lowed. Step 1 we compute the matrix jω − A0:

jω − A0 =
[
jω + 200 0

0 jω + 100

]
.

Step 2 we compute the matrices ( jω − A0)
−1A1, ( jω −

A0)
−1A2:

( jω − A0)
−1A1 =

[
− 0.0001

jω+200
0.0001
jω+200

0 − 0.0001
jω+100

]

,

and

( jω − A0)
−1A2 =

[
− 0.0002

jω+200
0.0002
jω+200

0 − 0.0002
jω+100

]

.

Table 1 The stability assertions of (9) according to Theorem 2.1

Scenario a0 a1 a2 a3 ρ(Aω)

S1 −0.1 −5 −2 −1 49.6

S2 −1 −5 −2 −1 4.6135

S3 −10 −5 −2 −1 0.5

S4 −10 −5 −2 −5 0.8977

S5 −10 −5 −2 −10 1.1194

Step 3 we form the matrix Aω:

Aω =

⎡

⎢⎢⎢
⎣

− 0.0001
jω+200

0.0001
jω+200 − 0.0002

jω+200
0.0002
jω+200

0 − 0.0001
jω+100 0 − 0.0002

jω+100
1 0 0 0
0 1 0 0

⎤

⎥⎥⎥
⎦

.

Obviously the matrices A0, A0 + ∑2
k=1 Ak are both sta-

ble since all their eigenvalues real and negative; in addition,
ρ(Aω) = 0.0014 < 1 and hence from Theorem 2.1 the sys-
tem of MDDEs is delay independent stable.

Example 4.2 We consider now the DDS (7) with:

τmax = τ̃ , τmin = 0, π(ξ) = 2ξ

τ̃
.

Then if zm = 2„ for the comparison system (8) we have:

h = τ̃

2
, �z = z

τ̃

2
, π(�z) = z.

Hence by setting κ = 2
τ̃
the DDS (8) takes the form:

Ẏ (t) = A0Y (t) + A1
2

τ̃

τ̃

2

2∑

z=0

zY

(
t − z

τ̃

2

)
,

or, equivalently, by setting τ = τ̃
2 :

Ẏ (t) = A0Y (t) +
2∑

i=0

i A1Y (t − iτ),

which is the system of MDDEs (1) for n = 2 and Ai = i A1.
Let

A0 =
[−200 0

0 −100

]
, A1 = ·10−3

[−1 1
0 −1

]
, i = 1, 2.

Then thematrices A0, A0+∑2
k=1 Ak are both stable since all

their eigenvalues real and negative, and in addition ρ(Aω) =
0.0014 < 1. Thus, by applying Theorem 2.1, it can be con-
cluded that the systemofMDDEs is delay independent stable.
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Table 2 The rightmost
eigenvalues of the different
scenarios, where λk are the
rightmost eigenvalues of (9); λ
are the rightmost eigenvalues of
(10)

Scenario a1 a3 c τ λk λ

S1 − 1 − 5 1.15 0.1893 0.4170 ± j6.4632 0.4170 ± j8.4958

S2 1 − 5 1.55 0.1882 0.4377 ± j5.5037 0.4377 ± j8.5581

S3 − 1 5 0.65 0.1794 1.1564 1.1564

S4 − 5 1 1.0 0.0846615 −9.2201 −9.2201 ± j9.2008

S5 − 5 − 1 1.0 0.1339 −1.9848 ± j8.5376 −1.9848 ± j10.2259

S6 − 2 − 2 1.0 0.15922 −2.1677 ± j7.1038 −2.1676 ± j8.1640

S7 2 − 2 1.0 0.186735 −1.2480 ± j6.5457 −1.2480 ± j7.4538

S8 − 2 2 0.8 0.08073 −1.7415 −1.7415

Since the DSS is interconnected with the system of MDDEs,
it also inherits the same property of delay independence sta-
bility.

Example 4.3 We consider the following MDDE:

Ẏ (t) = a0y(t)+a1y(t−τ1)+a2y(t−τ2)+a3y(t−τ3) (9)

1. Let τ1 = 0.1, τ2 = 0.2 and τ3 = 0.3. Table 1 considers
several scenarios that satisfy conditions (i) and (ii) of
Theorem 2.1.
S3 and S4 in Table 1 are delay independent stable accord-
ing to Theorem 2.1.

2. We consider now system (9) with a0 = 0.1, a2 = −2,
τ1 = 0.1, τ2 = 0.2 and τ3 = 0.3. According to the
discussion in the previous section, there exist a single
delay system:

Ẏ (t) = a0y(t) + ay(t − τ), (10)

where a = c
∑n

k=1 ak . Table 2 shows several examples
& scenarios, and the results are based on the discussion
in Sect. 3.

5 Conclusions

In this article, we derived simple and practical conditions
for the small signal stability analysis of the MDDE system
(1). Furthermore, we explored the connection between the
stability analysis of MDDEs and that of DDEs. In addition
to MDDEs, we discussed how the stability criterion can be
extended to DDSs. We demonstrated the applicability of our
approach with numerical examples, which showed that the
proposed method is effective. In summary, this article pro-
vided a comprehensive approach for small signal stability
analysis of MDDEs and DDSs. Our findings have significant
practical implications for the design and analysis of these
types of systems.

As a future direction, we plan to expand the scope of our
research to encompass other types of systems that exhibit

memory effects, such as systems of fractional differential
and difference equations, see [21, 22]. Additionally, we
intend to explore promising applications where delays are
significant, such as in the dynamics of electrical power sys-
tems,macroeconomicmodels, and electricitymarketmodels,
among others; see [8, 13, 15, 18]. Furthermore, we aim to
extend our theoretical findings to systems that employ for-
ward operators. Specifically, we plan to investigate systems
where instead of a vector with delay in the form Y (t − τ), a
vector with delay in the form Y (t + τ) is used, as discussed
in [20, 33]. There is already some research in progress in
these areas, and we hope to contribute to these efforts with
our work.
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