Discrete relaxation equations of arbitrary order with periodic boundary conditions

Sangeeta Dhawan ${ }^{1}$ (D) Jagan Mohan Jonnalagadda ${ }^{1}$ (D)

Received: 21 March 2023 / Revised: 4 May 2023 / Accepted: 10 May 2023 / Published online: 28 May 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract

Two simple nabla fractional relaxation equations with related periodic boundary conditions are addressed in this article. Firstly, we construct the corresponding Green's functions and obtain some of their properties. Through relevant fixed-point theorems with adequate restrictions, we provide sufficient conditions for the existence of solutions to the problems under consideration. To further illustrate how applicable previous findings are, we also offer a few examples.

Keywords Nabla fractional difference • Relaxation equation • Periodic boundary condition • Green's function • Fixed point • Existence of a solution

Mathematics Subject Classification 39A12 • 39A27 • 39A60

1 Introduction

The concept of fractional derivative [1,2] is a generalization of the classical derivative to an arbitrary noninteger order. Fractional differential equations are applicable in various fields of science and engineering, such as mechanics, economics, control systems, physics, chemistry, biology, medicine, atomic energy, information theory, oscillation theory, conservative systems, stability and instability of geodesic on Riemannian manifolds, dynamics in Hamiltonian systems, and many other allied areas. In particular, problems concerning the qualitative analysis of linear and nonlinear fractional differential equations have received the attention of many authors; see [3-8] and the references therein.

On the other hand, nabla fractional calculus is an integrated theory of arbitrary order sums and differences in the backward sense. The concept of nabla fractional difference traces back to the works of many famous researchers in the

[^0]last 2 decades. For a detailed introduction, we refer to the recent monographs [9-11] and the references therein.

Since 2010, there has been an increasing interest in analyzing nabla fractional boundary value problems. To name a few notable works, we refer to [12-19]. In this line, we investigate two simple nabla fractional periodic boundary value problems. Specifically, we shall consider the following nabla fractional relaxation equations associated with periodic boundary conditions:
$\left\{\begin{array}{l}\left(\nabla_{\rho(0)}^{\delta} y\right)(x)=\vartheta y(x)+f(x, y(\rho(x))), \quad x \in \mathbb{N}_{1}^{T}, \\ y(0)=y(T),\end{array}\right.$
and
$\left\{\begin{array}{l}\left(\nabla_{0 *}^{\delta} y\right)(x)=\vartheta y(x)+f(x, y(\rho(x))), \quad x \in \mathbb{N}_{1}^{T}, \\ y(0)=y(T),\end{array}\right.$
where $0<\delta<1 ;-1<\vartheta<0 ; T \in \mathbb{N}_{2} ; f: \mathbb{N}_{1}^{T} \times \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function; $\nabla_{\rho(0)}^{\delta} y$ and $\nabla_{0 *}^{\delta} y$ denote the RiemannLiouville and the Caputo nabla fractional differences of y of order δ, respectively.

The structure of the current article is as follows: Preliminaries for discrete fractional calculus are found in Sect. 2. In Sect. 3, we construct the corresponding Green's functions
and obtain some of their properties. Using relevant fixedpoint theorems and some appropriate restrictions on ϑ and f, we derive sufficient conditions for the existence of solutions to (1.1) and (1.2) in Sect. 4. Additionally, in Sect. 5, we give a few examples to show how the findings in Sect. 4 can be used.

2 Preliminaries

Represent by $\mathbb{N}_{\mu}=\{\mu, \mu+1, \mu+2, \ldots\}$ and $\mathbb{N}_{\mu}^{\nu}=\{\mu, \mu+$ $1, \mu+2, \ldots, v\}$ for any $\mu, \nu \in \mathbb{R}$ such that $\nu-\mu \in \mathbb{N}_{1}$.

Definition 2.1 [10, 20] For $x, k \in \mathbb{R}$ and $t \in \mathbb{R} \backslash \mathbb{Z}^{-}$, define
$H_{t}(x, k)=\frac{(x-k)^{\bar{t}}}{\Gamma(t+1)}=\frac{\Gamma(x-k+t)}{\Gamma(x-k) \Gamma(t+1)}$,
provided the RHS is well defined. Here, Γ (.) denotes the Gamma function.

Definition 2.2 [10] For $y: \mathbb{N}_{k+1} \rightarrow \mathbb{R}$ and $\delta>0$, the $\delta^{\text {th }}$-order nabla fractional sum of y based at k is given by
$\left(\nabla_{k}^{-\delta} y\right)(x)=\sum_{\xi=k+1}^{x} H_{\delta-1}(x, \rho(\xi)) y(\xi), \quad x \in \mathbb{N}_{k}$,
where $\rho(\xi)=\xi-1$.
Definition 2.3 [10] Let $y: \mathbb{N}_{k+1} \rightarrow \mathbb{R}, \delta>0, n \in \mathbb{N}_{1}$ with $n-1<\delta \leq n$. The $\delta^{\text {th }}$-order Riemann-Liouville nabla fractional difference of y based at k is given by
$\left(\nabla_{k}^{\delta} y\right)(x)=\left(\nabla^{n}\left(\nabla_{k}^{-(n-\delta)} y\right)\right)(x), \quad x \in \mathbb{N}_{k+n}$.
Definition 2.4 [10] Let $y: \mathbb{N}_{k-n+1} \rightarrow \mathbb{R}$ and $\delta>0$. The δ th-order Caputo nabla fractional difference of y based at k is given by
$\left(\nabla_{k *}^{\delta} y\right)(x)=\left(\nabla_{k}^{-(n-\delta)}\left(\nabla^{n} y\right)\right)(x), \quad x \in \mathbb{N}_{k+1}$,
where $n=\lceil\delta\rceil$.
Next is the composition rule of nabla fractional sum, which will be applicable in the following section.

Theorem 2.1 [10] Assume $\delta, \gamma>0, y: \mathbb{N}_{k+1} \rightarrow \mathbb{R}, n \in \mathbb{N}_{1}$ with $n-1<\delta \leq n$. Then,
(1) $\left(\nabla_{k}^{-\delta}\left(\nabla_{k}^{-\gamma} y\right)\right)(x)=\left(\nabla_{k}^{-(\delta+\gamma)} y\right)(x), \quad x \in \mathbb{N}_{k}$.
(2) $\left(\nabla_{k}^{\delta}\left(\nabla_{k}^{-\gamma} y\right)\right)(x)=\left(\nabla_{k}^{\delta-\gamma} y\right)(x), \quad x \in \mathbb{N}_{k+n}$.

Definition 2.5 [10] Let $\alpha>0, \beta \in \mathbb{R}$ and $-1<\vartheta<1$. The discrete Mittag-Leffler function is defined by
$e_{\vartheta, \alpha, \beta}(x, k)=\sum_{j=0}^{\infty} \vartheta^{j} H_{\alpha j+\beta}(x, k), \quad x \in \mathbb{N}_{k}$.
Clearly,
$e_{\vartheta, \alpha, \beta}(x, \rho(x))=\frac{1}{1-\vartheta}, \quad x \in \mathbb{N}_{k}$.
Theorem 2.2 [10] Assume $0<\delta<1$ and $-1<\vartheta<1$. The homogeneous difference equation
$\left(\nabla_{\rho(k)}^{\delta} y\right)(x)=\vartheta y(x), \quad x \in \mathbb{N}_{k+1}$,
has a general solution
$y(x)=C e_{\vartheta, \delta, \delta-1}(x, \rho(k)), \quad x \in \mathbb{N}_{k}$.
Here, C is an arbitrary constant.
Theorem 2.3 [21] Assume $0<\delta<1$ and $-1<\vartheta<1$. The homogeneous difference equation
$\left(\nabla_{k^{*}}^{\delta} y\right)(x)=\vartheta y(x), \quad x \in \mathbb{N}_{k+1}$,
is given by
$y(x)=C e_{\vartheta, \delta, 0}(x, k), \quad x \in \mathbb{N}_{k}$.
Here C is an arbitrary constant.
Theorem 2.4 Assume $0<\delta<1,|\vartheta|<1$ and h is a realvalued function defined on \mathbb{N}_{k+1}. Then, the nonhomogeneous difference equation
$\left(\nabla_{\rho(k)}^{\delta} y\right)(x)=\vartheta y(x)+h(x), \quad x \in \mathbb{N}_{k+1}$,
has a general solution
$y(x)=C e_{\vartheta, \delta, \delta-1}(x, \rho(k))+\sum_{\xi=k+1}^{x} e_{\vartheta, \delta, \delta-1}(x, \rho(\xi)) h(\xi), \quad x \in \mathbb{N}_{k}$,
where C is an arbitrary constant.
Proof Denote by
$w(x)=\sum_{\xi=k+1}^{x} e_{\vartheta, \delta, \delta-1}(x, \rho(\xi)) h(\xi), \quad x \in \mathbb{N}_{k}$.
We show that w satisfies (2.5), that is,
$\left(\nabla_{\rho(k)}^{\delta} w\right)(x)=\vartheta w(x)+h(x), \quad x \in \mathbb{N}_{k+1}$.

To see this, for $x \in \mathbb{N}_{k}$, consider

$$
\begin{align*}
w(x)= & \sum_{\xi=k+1}^{x} e_{\vartheta, \delta, \delta-1}(x, \rho(\xi)) h(\xi) \\
= & \sum_{\xi=k+1}^{x}\left[\sum_{j=0}^{\infty} \vartheta^{j} H_{\delta j+\delta-1}(x, \rho(\xi))\right] h(\xi) \\
= & \sum_{j=0}^{\infty} \vartheta^{j}\left[\sum_{\xi=k+1}^{x} H_{\delta j+\delta-1}(x, \rho(\xi)) h(\xi)\right] \\
= & \sum_{j=0}^{\infty} \vartheta^{j}\left[\sum_{\xi=k}^{x} H_{\delta j+\delta-1}(x, \rho(\xi)) h(\xi)\right. \\
& \left.-H_{\delta j+\delta-1}(x, \rho(k)) h(k)\right] \\
= & \sum_{j=0}^{\infty} \vartheta^{j}\left[\left(\nabla_{\rho(k)}^{-(\delta j+\delta)} h\right)(x)\right] \\
& -h(k) \sum_{j=0}^{\infty} \vartheta^{j} H_{\delta j+\delta-1}(x, \rho(k)) \\
= & \sum_{j=0}^{\infty} \vartheta^{j}\left[\left(\nabla_{\rho(k)}^{-(\delta j+\delta)} h\right)(x)\right]-h(k) e_{\vartheta, \delta, \delta-1}(x, \rho(k)) \tag{2.8}
\end{align*}
$$

Now, for $x \in \mathbb{N}_{k+1}$, consider

$$
\begin{aligned}
&\left(\nabla_{\rho(k)}^{\delta} w\right)(x) \\
&= \nabla_{\rho(k)}^{\delta}\left[\sum_{j=0}^{\infty} \vartheta^{j}\left[\left(\nabla_{\rho(k)}^{-(\delta j+\delta)} h\right)(x)\right]\right. \\
&\left.-h(k) e_{\vartheta, \delta, \delta-1}(x, \rho(k))\right] \quad(\text { By Using (2.8)) } \\
&= \sum_{j=0}^{\infty} \vartheta^{j}\left[\left(\nabla_{\rho(k)}^{\delta}\left(\nabla_{\rho(k)}^{-(\delta j+\delta)} h\right)\right)(x)\right] \\
&-h(k)\left[\nabla_{\rho(k)}^{\delta} e_{\vartheta, \delta, \delta-1}(x, \rho(k))\right] \\
&= \sum_{j=0}^{\infty} \vartheta^{j}\left[\left(\nabla_{\rho(k)}^{-\delta j} h\right)(x)\right] \\
&-h(k)\left[\vartheta e_{\vartheta, \delta, \delta-1}(x, \rho(k))\right] \quad(\text { By Using Theorems } 2.1 \& 2.2) \\
&= h(x)+\sum_{j=1}^{\infty} \vartheta^{j}\left[\left(\nabla_{\rho(k)}^{-\delta j} h\right)(x)\right]-\vartheta e_{\vartheta, \delta, \delta-1}(x, \rho(k)) h(k) \\
&= h(x)+\vartheta\left[\sum_{j=0}^{\infty} \vartheta^{j}\left[\left(\nabla_{\rho(k)}^{-(\delta j+\delta)} h\right)(x)\right]\right. \\
&\left.-e_{\vartheta, \delta, \delta-1}(x, \rho(k)) h(k)\right] \\
&= \vartheta w(x)+h(x) . \quad(\operatorname{By} \operatorname{Using}(2.8))
\end{aligned}
$$

The proof is complete.
Theorem 2.5 Assume $0<\delta<1,|\vartheta|<1$ and h is a realvalued function defined on \mathbb{N}_{k+1}. Then, the nonhomogeneous
difference equation

$$
\begin{equation*}
\left(\nabla_{k *}^{\delta} y\right)(x)=\vartheta y(x)+h(x), \quad x \in \mathbb{N}_{k+1}, \tag{2.9}
\end{equation*}
$$

has a general solution

$$
\begin{equation*}
y(x)=C e_{\vartheta, \delta, 0}(x, k)+\sum_{\xi=k+1}^{x} e_{\vartheta, \delta, \delta-1}(x, \rho(\xi)) h(\xi), \quad x \in \mathbb{N}_{k}, \tag{2.10}
\end{equation*}
$$

where C is an arbitrary constant.
Proof Denote by

$$
w(x)=\sum_{\xi=k+1}^{x} e_{\vartheta, \delta, \delta-1}(x, \rho(\xi)) h(\xi), \quad x \in \mathbb{N}_{k}
$$

We show that w satisfies (2.9), that is,

$$
\begin{equation*}
\left(\nabla_{k *}^{\delta} w\right)(x)=\vartheta w(x)+h(x), \quad x \in \mathbb{N}_{k+1} \tag{2.11}
\end{equation*}
$$

For $x \in \mathbb{N}_{k}$, consider

$$
\begin{align*}
w(x) & =\sum_{\xi=k+1}^{x} e_{\vartheta, \delta, \delta-1}(x, \rho(\xi)) h(\xi) \\
& =\sum_{\xi=k+1}^{x}\left[\sum_{j=0}^{\infty} \vartheta^{j} H_{\delta j+\delta-1}(x, \rho(\xi))\right] h(\xi) \\
& =\sum_{j=0}^{\infty} \vartheta^{j}\left[\sum_{\xi=k+1}^{x} H_{\delta j+\delta-1}(x, \rho(\xi)) h(\xi)\right] \\
& =\sum_{j=0}^{\infty} \vartheta^{j}\left(\nabla_{k}^{-(\delta j+\delta)} h\right)(x) . \tag{2.12}
\end{align*}
$$

Now, for $x \in \mathbb{N}_{k+1}$, consider

$$
\begin{aligned}
& \left(\nabla_{k *}^{\delta} w\right)(x)=\left(\nabla_{k}^{-(1-\delta)}(\nabla w)\right)(x) \\
& =\nabla_{k}^{-(1-\delta)} \nabla\left[\sum_{j=0}^{\infty} \vartheta^{j}\left(\nabla_{k}^{-(\delta j+\delta)} h\right)(x)\right] \quad(\text { By Using (2.12)) } \\
& =\nabla_{k}^{-(1-\delta)}\left[\sum_{j=0}^{\infty} \vartheta^{j}\left(\nabla\left(\nabla_{k}^{-(\delta j+\delta)} h\right)\right)(x)\right] \\
& =\nabla_{k}^{-(1-\delta)}\left[\sum_{j=0}^{\infty} \vartheta^{j}\left(\nabla_{k}^{(1-\delta j-\delta)} h\right)(x)\right] \quad \text { (By Using Theorem 2.1) } \\
& =\sum_{j=0}^{\infty} \vartheta^{j}\left(\nabla_{k}^{-(1-\delta)}\left(\nabla_{k}^{-(\delta j+\delta-1)} h\right)\right)(x) \\
& =\sum_{j=0}^{\infty} \vartheta^{j}\left(\nabla_{k}^{-\delta j} h\right)(x)(\text { By Using Theorem 2.1) } \\
& =h(x)+\sum_{j=1}^{\infty} \vartheta^{j}\left(\nabla_{k}^{-\delta j} h\right)(x)
\end{aligned}
$$

$$
\begin{aligned}
& =h(x)+\vartheta\left[\sum_{j=0}^{\infty} \vartheta^{j}\left(\nabla_{k}^{-(\delta j+\delta)} h\right)(x)\right] \\
& =h(x)+\vartheta w(x) .
\end{aligned}
$$

The proof is complete.
Lemma 2.6 [21-25] Let $0<\delta<1$ and $-1<\vartheta<0$. Then,
(1) $0<e_{\vartheta, \delta, \delta-1}(x, \rho(k)) \leq 1$;
(2) $0<e_{\vartheta, \delta, 0}(x, k) \leq 1$,
for $x \in \mathbb{N}_{k}$.

3 Green's functions and their properties

In this section, we construct the Green's functions for the following linear boundary value problems
$\left\{\begin{array}{l}\left(\nabla_{\rho(0)}^{\delta} y\right)(x)=\vartheta y(x)+h(x), \quad x \in \mathbb{N}_{1}^{T}, \\ y(0)=y(T),\end{array}\right.$
and
$\left\{\begin{array}{l}\left(\nabla_{0 *}^{\delta} y\right)(x)=\vartheta y(x)+h(x), \quad x \in \mathbb{N}_{1}^{T}, \\ y(0)=y(T),\end{array}\right.$
corresponding to (1.1) and (1.2), respectively, and deduce their properties. Here $h: \mathbb{N}_{1}^{T} \rightarrow \mathbb{R}$.

Theorem 3.1 The boundary value problem (3.1) has a unique solution
$y(x)=\sum_{\xi=1}^{T} \mathcal{G}_{R L}(x, \xi) h(\xi), \quad x \in \mathbb{N}_{0}^{T}$,
where
$\mathcal{G}_{R L}(x, \xi)= \begin{cases}\mathcal{G}_{R L_{1}}(x, \xi), & x \in \mathbb{N}_{0}^{\rho(\xi)}, \\ \mathcal{G}_{R L_{2}}(x, \xi), & x \in \mathbb{N}_{\xi}^{T} .\end{cases}$
Here
$\mathcal{G}_{R L_{1}}(x, \xi)=\frac{e_{\vartheta, \delta, \delta-1}(x, \rho(0))}{\left[\frac{1}{1-\vartheta}-e_{\vartheta, \delta, \delta-1}(T, \rho(0))\right]} e_{\vartheta, \delta, \delta-1}(T, \rho(\xi))$,
and
$\mathcal{G}_{R L_{2}}(x, \xi)=\mathcal{G}_{R L_{1}}(x, \xi)+e_{\vartheta, \delta, \delta-1}(x, \rho(\xi))$.

Proof From Theorem 2.4, the nonhomogeneous difference equation in (3.1) has a general solution
$y(x)=C e_{\vartheta, \delta, \delta-1}(x, \rho(0))+\sum_{\xi=1}^{x} e_{\vartheta, \delta, \delta-1}(x, \rho(\xi)) h(\xi), \quad x \in \mathbb{N}_{0}$.

Using the boundary condition $y(0)=y(T)$ in (3.7) and rearranging the terms, we get
$C=\frac{1}{\left[\frac{1}{1-\vartheta}-e_{\vartheta, \delta, \delta-1}(T, \rho(0))\right]} \sum_{\xi=1}^{T} e_{\vartheta, \delta, \delta-1}(T, \rho(\xi)) h(\xi)$.

Substituting the expression for C from (3.8) in (3.7), we obtain (3.3). The proof is complete.

Theorem 3.2 The boundary value problem (3.2) has a unique solution
$y(x)=\sum_{\xi=1}^{T} \mathcal{G}_{C}(x, \xi) h(\xi), \quad x \in \mathbb{N}_{0}^{T}$,
where
$\mathcal{G}_{C}(x, \xi)= \begin{cases}\mathcal{G}_{C_{1}}(x, \xi), & x \in \mathbb{N}_{0}^{\rho(\xi)}, \\ \mathcal{G}_{C_{2}}(x, \xi), & x \in \mathbb{N}_{\xi}^{T} .\end{cases}$

Here
$\mathcal{G}_{C_{1}}(x, \xi)=\frac{e_{\vartheta, \delta, 0}(x, 0)}{\left[1-e_{\vartheta, \delta, 0}(T, 0)\right]} e_{\vartheta, \delta, \delta-1}(T, \rho(\xi))$,
and
$\mathcal{G}_{C_{2}}(x, \xi)=\mathcal{G}_{C_{1}}(x, \xi)+e_{\vartheta, \delta, \delta-1}(x, \rho(\xi))$.
Proof From Theorem 2.5, the nonhomogeneous difference equation in (3.2) has a general solution
$y(x)=C e_{\vartheta, \delta, 0}(x, 0)+\sum_{\xi=1}^{x} e_{\vartheta, \delta, \delta-1}(x, \rho(\xi)) h(\xi), \quad x \in \mathbb{N}_{0}$.

Using the boundary condition $y(0)=y(T)$ in (3.13) and rearranging the terms, we get

$$
\begin{equation*}
C=\frac{1}{\left[1-e_{\vartheta, \delta, 0}(T, 0)\right]} \sum_{\xi=1}^{T} e_{\vartheta, \delta, \delta-1}(T, \rho(\xi)) h(\xi) \tag{3.14}
\end{equation*}
$$

Substituting the expression for C from (3.14) in (3.13), we obtain (3.9). The proof is complete.

Remark 1 Note that

$$
\begin{aligned}
\sum_{\xi=1}^{x} e_{\vartheta, \delta, \delta-1}(x, \rho(\xi)) & =\sum_{\xi=1}^{x}\left[\sum_{j=0}^{\infty} \vartheta^{j} H_{\delta j+\delta-1}(x, \rho(\xi))\right] \\
& =\sum_{j=0}^{\infty} \vartheta^{j}\left[\sum_{\xi=1}^{x} H_{\delta j+\delta-1}(x, \rho(\xi))\right] \\
& =\sum_{j=0}^{\infty} \vartheta^{j} H_{\delta j+\delta}(x, 0)=e_{\vartheta, \delta, \delta}(x, 0) .
\end{aligned}
$$

Lemma 3.3 $\mathcal{G}_{R L}(x, \xi)$ has the following properties:
(1) $\mathcal{G}_{R L}(x, \xi)>0,(x, \xi) \in \mathbb{N}_{0}^{T} \times \mathbb{N}_{1}^{T}$;
(2) $\sum_{\xi=1}^{T} \mathcal{G}_{R L}(x, \xi)=\frac{e_{\vartheta, \delta, \delta-1}(x, \rho(0))}{\left[\frac{1}{1-\vartheta}-e_{\vartheta, \delta, \delta-1}(T, \rho(0))\right.} e_{\vartheta, \delta, \delta}(T, 0)$ $+e_{\vartheta, \delta, \delta}(x, 0), \quad x \in \mathbb{N}_{0}^{T}$.

Proof The proof of 3.3 follows from Lemma 2.6. To prove 3.3, for $x \in \mathbb{N}_{0}^{T}$, consider

$$
\begin{aligned}
& \sum_{\xi=1}^{T} \mathcal{G}_{R L}(x, \xi)=\sum_{\xi=1}^{x} \mathcal{G}_{R L_{2}}(x, \xi)+\sum_{\xi=x+1}^{T} \mathcal{G}_{R L_{1}}(x, \xi) \\
& \quad=\sum_{\xi=1}^{T} \mathcal{G}_{R L_{1}}(x, \xi)+\sum_{\xi=1}^{x} e_{\vartheta, \delta, \delta-1}(x, \rho(\xi)) \\
& \quad=\frac{e_{\vartheta, \delta, \delta-1}(x, \rho(0))}{\left[\frac{1}{1-\vartheta}-e_{\vartheta, \delta, \delta-1}(T, \rho(0))\right]} \\
& \sum_{\xi=1}^{T} e_{\vartheta, \delta, \delta-1}(T, \rho(\xi))+\sum_{\xi=1}^{x} e_{\vartheta, \delta, \delta-1}(x, \rho(\xi)) \\
& \quad=\frac{e_{\vartheta, \delta, \delta-1}(x, \rho(0))}{\left[\frac{1}{1-\vartheta}-e_{\vartheta, \delta, \delta-1}(T, \rho(0))\right]} \\
& e_{\vartheta, \delta, \delta}(T, 0)+e_{\vartheta, \delta, \delta}(x, 0) \quad(\text { By Remark1 }) .
\end{aligned}
$$

The proof is complete.
Lemma 3.4 $\mathcal{G}_{C}(x, \xi)$ has the following properties:
(1) $\mathcal{G}_{C}(x, \xi)>0,(x, \xi) \in \mathbb{N}_{0}^{T} \times \mathbb{N}_{1}^{T}$;
(2) $\sum_{\xi=1}^{T} \mathcal{G}_{C}(x, \xi)=\frac{e_{\vartheta, \delta, 0}(x, 0)}{\left[1-e_{\vartheta, \delta, 0}(T, 0)\right]} e_{\vartheta, \delta, \delta}(T, 0)+$ $e_{\vartheta, \delta, \delta}(x, 0), \quad x \in \mathbb{N}_{0}^{T}$.

Proof The proof is similar to that of Lemma 3.3.
Remark 2 Denote by

$$
\vartheta_{1}=\max _{x \in \mathbb{N}_{0}^{T}} \sum_{\xi=1}^{T} \mathcal{G}_{R L}(x, \xi)
$$

$$
\begin{equation*}
=\max _{x \in \mathbb{N}_{0}^{T}}\left[\frac{e_{\vartheta, \delta, \delta-1}(x, \rho(0))}{\left[\frac{1}{1-\vartheta}-e_{\vartheta, \delta, \delta-1}(T, \rho(0))\right]} e_{\vartheta, \delta, \delta}(T, 0)+e_{\vartheta, \delta, \delta}(x, 0)\right] \tag{3.15}
\end{equation*}
$$

and

$$
\begin{align*}
\vartheta_{2} & =\max _{x \in \mathbb{N}_{0}^{T}} \sum_{\xi=1}^{T} \mathcal{G}_{C}(x, \xi) \\
& =\max _{x \in \mathbb{N}_{0}^{T}}\left[\frac{e_{\vartheta, \delta, 0}(x, 0)}{\left[1-e_{\vartheta, \delta, 0}(T, 0)\right]} e_{\vartheta, \delta, \delta}(T, 0)+e_{\vartheta, \delta, \delta}(x, 0)\right] . \tag{3.16}
\end{align*}
$$

4 Existence of solutions

The existence of solutions to (1.1) and (1.2) is established by the sufficient conditions set forth in this section. Theorems 3.1 and 3.2 imply the equivalence between
(i) the solutions of (1.1) and the solutions of the summation equation

$$
y(x)=\sum_{\xi=1}^{T} \mathcal{G}_{R L}(x, \xi) f(\xi, y(\rho(\xi))), \quad x \in \mathbb{N}_{0}^{T}
$$

(ii) the solutions of (1.2) and the solutions of the summation equation

$$
y(x)=\sum_{\xi=1}^{T} \mathcal{G}_{C}(x, \xi) f(\xi, y(\rho(\xi))), \quad x \in \mathbb{N}_{0}^{T}
$$

respectively. Let \mathcal{B} be the set of all real-valued functions defined on \mathbb{N}_{0}^{T}. Define the operators $S_{1}, S_{2}: \mathcal{B} \rightarrow \mathcal{B}$ by
$\left(S_{1} y\right)(x)=\sum_{\xi=1}^{T} \mathcal{G}_{R L}(x, \xi) f(\xi, y(\rho(\xi))), \quad x \in \mathbb{N}_{0}^{T}$,
$\left(S_{2} y\right)(x)=\sum_{\xi=1}^{T} \mathcal{G}_{C}(x, \xi) f(\xi, y(\rho(\xi))), \quad x \in \mathbb{N}_{0}^{T}$.
Clearly, y is a fixed point of S_{1} (or S_{2}) if and only if y is a solution of (1.1) [or (1.2)]. Observe that \mathcal{B} is equivalent to \mathbb{R}^{T+1}. We know that \mathcal{B} is a Banach space equipped with the maximum norm defined by
$\|y\|=\max _{x \in \mathbb{N}_{0}^{T}}|y(x)|$.
Let
$K=\left\{y \in \mathcal{B}: y(0)=y(T)\right.$ and $\|y\| \leq r$ for all $\left.x \in \mathbb{N}_{0}^{T}, r>0\right\}$.

Clearly, K is a nonempty bounded closed convex subset of the finite-dimensional normed space \mathcal{B}. First, we apply the Brouwer fixed-point theorem [26] to discuss the existence of solutions to (1.1) and (1.2).

Theorem 4.1 Assume that
(A1) $|f(x, y)| \leq M$ for all $(x, y) \in \mathbb{N}_{0}^{T} \times K$.

Choose

$r \geq M \vartheta_{1}$.

Then, (1.1) has a solution.
Proof To show that $S_{1}: K \rightarrow K$, take $y \in K, x \in \mathbb{N}_{0}^{T}$ and consider

$$
\begin{aligned}
\left|\left(S_{1} y\right)(x)\right| & =\left|\sum_{\xi=1}^{T} \mathcal{G}_{R L}(x, \xi) f(\xi, y(\rho(\xi)))\right| \\
& \leq \sum_{\xi=1}^{T} \mathcal{G}_{R L}(x, \xi)|f(\xi, y(\rho(\xi)))| \\
& \leq M \sum_{\xi=1}^{T} \mathcal{G}_{R L}(x, \xi) \\
& \leq M \vartheta_{1} \quad(\text { By Remark } 2) \\
& \leq r,
\end{aligned}
$$

implying that $\left|\left(S_{1} y\right)(x)\right| \leq r$ for all $x \in \mathbb{N}_{0}^{T}$. Also, $\left(S_{1} y\right)(0)=\left(S_{1} y\right)(T)$. As a result, $S_{1}: K \rightarrow K$. The continuity of S_{1} follows from the continuity of f. Thus, by Brouwer fixed-point theorem, (1.1) has a solution y in K. The proof is complete.

Theorem 4.2 Assume that (A1) holds. Choose

$r \geq M \vartheta_{2}$.

Then, (1.2) has a solution.
Proof The proof is similar to that of Theorem 4.1.
Next, we apply the Leray-Schauder nonlinear alternative [26] to discuss the existence of solutions to (1.1) and (1.2).

Theorem 4.3 Assume that

(C 1) There exist $\hat{\phi}: \mathbb{N}_{1}^{T} \rightarrow[0, \infty)$ and a nondecreasing function $\hat{\psi}:[0, \infty) \rightarrow[0, \infty)$ such that

$$
|f(x, s)| \leq \hat{\phi}(x) \hat{\psi}(|s|), \quad(x, s) \in \mathbb{N}_{1}^{T} \times \mathbb{R}
$$

(C 2) There exists $M_{1}>0$ such that

$$
\frac{M_{1}}{\vartheta_{1} \bar{\Omega} \hat{\psi}\left(M_{1}\right)}>1
$$

where

$$
\bar{\Omega}=\max _{x \in \mathbb{N}_{1}^{T}} \hat{\phi}(x)
$$

Then, the boundary value problem (1.1) has a solution defined on \mathbb{N}_{0}^{T}.

Proof We first show that S_{1} maps bounded sets into bounded sets. By (C 1), for $x \in \mathbb{N}_{0}^{T}$ and $y \in K$,

$$
\begin{aligned}
\left|\left(S_{1} y\right)(x)\right| & \leq \sum_{\xi=1}^{T} \mathcal{G}_{R L}(x, \xi)|f(\xi, y(\rho(\xi)))| \\
& \leq \sum_{\xi=1}^{T} \mathcal{G}_{R L}(x, \xi) \hat{\phi}(\xi) \hat{\psi}(|y(\rho(\xi))|) \\
& \leq \hat{\psi}(\|y\|) \sum_{\xi=1}^{T} \mathcal{G}_{R L}(x, \xi) \hat{\phi}(\xi) \\
& \leq \vartheta_{1} \bar{\Omega} \hat{\psi}(r)
\end{aligned}
$$

implying that
$\left|\left(S_{1} y\right)(x)\right| \leq \vartheta_{1} \bar{\Omega} \hat{\psi}(r)$.
Thus, S_{1} maps K into a bounded set. Since \mathbb{N}_{0}^{T} is a discrete set, it follows immediately that S_{1} maps K into an equicontinuous set. Therefore, by the Arzela-Ascoli theorem, S_{1} is completely continuous. Next, we suppose $y \in \mathcal{B}$ and that for some $0<\lambda<1, y=\lambda S_{1} y$. Then, for $x \in \mathbb{N}_{0}^{T}$, and again by (C 1),

$$
\begin{aligned}
|y(x)| & =\left|\lambda\left(S_{1} y\right)(x)\right| \\
& \leq \sum_{\xi=1}^{T} \mathcal{G}_{R L}(x, \xi)|f(\xi, y(\rho(\xi)))| \\
& \leq \sum_{\xi=1}^{T} \mathcal{G}_{R L}(x, \xi) \hat{\phi}(\xi) \hat{\psi}(|y(\rho(\xi))|) \\
& \leq \hat{\psi}(\|y\|) \sum_{\xi=1}^{T} \mathcal{G}_{R L}(x, \xi) \hat{\phi}(\xi) \\
& \leq \vartheta_{1} \bar{\Omega} \hat{\psi}(\|y\|)
\end{aligned}
$$

implying that
$\frac{\|y\|}{\vartheta_{1} \bar{\Omega} \hat{\psi}(\|y\|)} \leq 1$.

It follows from (C 2) that $\|y\| \neq M_{1}$. If we set
$U=\left\{y \in \mathcal{B}:\|y\|<M_{1}\right\}$,
then the operator $S_{1}: \bar{U} \rightarrow \mathcal{B}$ is completely continuous. From the choice of U, there is no $y \in \partial U$ such that $y=$ $\lambda S_{1} y$ for some $0<\lambda<1$. It follows from Leray-Schauder nonlinear alternative that S_{1} has a fixed point $y_{0} \in \bar{U}$, which is a desired solution of (1.1).

Theorem 4.4 Assume that (C 1) and
(C 3) There exists $M_{2}>0$ such that

$$
\frac{M_{2}}{\vartheta_{2} \bar{\Omega} \hat{\psi}\left(M_{2}\right)}>1,
$$

where

$$
\bar{\Omega}=\max _{x \in \mathbb{N}_{1}^{T}} \hat{\phi}(x)
$$

Then, the boundary value problem (1.2) has a solution defined on \mathbb{N}_{0}^{T}.
Proof The proof is similar to the proof of Theorem 4.3, so we omit it.

Now, we apply the Banach fixed-point theorem [26] to discuss the existence and uniqueness of solutions to (1.1) and (1.2).

Theorem 4.5 The conditions
(A2) f is Lipschitz w.r.t. the second variable with $\bar{\kappa}$ as the Lipschitz constant on $\mathbb{N}_{0}^{T} \times K$;
(A3) Let

$$
\max _{x \in \mathbb{N}_{0}^{T}}|f(x, 0)|=P
$$

and

$$
\max _{(x, y) \in \mathbb{N}_{0}^{T} \times K}|f(x, y)|=Q
$$

(A4) $\bar{\kappa} \vartheta_{1}<1$,
with
$r \geq \frac{P \vartheta_{1}}{1-\bar{\kappa} \vartheta_{1}}$,
or
$r \geq Q \vartheta_{1}$,
yield a unique solution for (1.1).

Proof Clearly, $S_{1}: K \rightarrow \mathcal{B}$. To show that S_{1} is a contraction mapping, take $y, w \in K, x \in \mathbb{N}_{0}^{T}$ and consider

$$
\begin{aligned}
& \left|\left(S_{1} y\right)(x)-\left(S_{1} w\right)(x)\right| \\
& \quad=\left|\sum_{\xi=1}^{T} \mathcal{G}_{R L}(x, \xi)[f(\xi, y(\rho(\xi)))-f(\xi, w(\rho(\xi)))]\right| \\
& \quad \leq \sum_{\xi=1}^{T} \mathcal{G}_{R L}(x, \xi)|f(\xi, y(\rho(\xi)))-f(\xi, w(\rho(\xi)))| \\
& \quad \leq \bar{\kappa}\|y-w\| \sum_{\xi=1}^{T} \mathcal{G}_{R L}(x, \xi) \\
& \quad \leq \bar{\kappa} \vartheta_{1}\|y-w\|
\end{aligned}
$$

implying that
$\left\|S_{1} y-S_{1} w\right\| \leq \bar{\kappa} \vartheta_{1}\|y-w\|$.

Since $\bar{\kappa} \vartheta_{1}<1, S_{1}$ is a contraction mapping. Now, we show that $S_{1}: K \rightarrow K$. Let $y \in K, x \in \mathbb{N}_{0}^{T}$ and consider

$$
\begin{aligned}
& \left|\left(S_{1} y\right)(x)\right|=\left|\sum_{\xi=1}^{T} \mathcal{G}_{R L}(x, \xi) f(\xi, y(\rho(\xi)))\right| \\
& \quad \leq \sum_{\xi=1}^{T} \mathcal{G}_{R L}(x, \xi)|f(\xi, y(\rho(\xi)))-f(\xi, 0)| \\
& \quad+\sum_{\xi=1}^{T} \mathcal{G}_{R L}(x, \xi)|f(\xi, 0)| \\
& \quad \leq \bar{\kappa} \sum_{\xi=1}^{T} \mathcal{G}_{R L}(x, \xi)|y(\rho(\xi))|+P \sum_{\xi=1}^{T} \mathcal{G}_{R L}(x, \xi) \\
& \quad \leq(\bar{\kappa} r+P) \vartheta_{1} \\
& \quad \leq r
\end{aligned}
$$

implying that $S_{1}: K \rightarrow K$. Also, consider

$$
\begin{aligned}
\left|\left(S_{1} y\right)(x)\right| & =\left|\sum_{\xi=1}^{T} \mathcal{G}_{R L}(x, \xi) f(\xi, y(\rho(\xi)))\right| \\
& \leq \sum_{\xi=1}^{T} \mathcal{G}_{R L}(x, \xi)|f(\xi, y(\rho(\xi)))| \\
& \leq Q \sum_{\xi=1}^{T} \mathcal{G}_{R L}(x, \xi) \\
& \leq Q \vartheta_{1} \\
& \leq r
\end{aligned}
$$

implying that $S_{1}: K \rightarrow K$. So, there exists a unique solution for (1.1) by Banach fixed-point theorem.

Theorem 4.6 The conditions (A2), (A3) and
(A5) $\bar{\kappa} \vartheta_{2}<1$,
with
$r \geq \frac{P \vartheta_{2}}{1-\bar{\kappa} \vartheta_{2}}$,
or
$r \geq Q \vartheta_{2}$,
yield a unique solution for (1.2).
Proof The proof is similar to the proof of Theorem 4.5, so we omit it.

Theorem 4.7 The conditions
(A6) f is Lipschitz w.r.t. the second variable with L as the Lipschitz constant on $\mathbb{N}_{0}^{T} \times \mathcal{B}$;
(A7) $L \vartheta_{1}<1$,
yield a unique solution for (1.1).
Proof Clearly, $S_{1}: \mathcal{B} \rightarrow \mathcal{B}$. To show that S_{1} is a contraction mapping, take $y, w \in \mathcal{B}, x \in \mathbb{N}_{0}^{T}$ and consider

$$
\begin{aligned}
& \left|\left(S_{1} y\right)(x)-\left(S_{1} w\right)(x)\right| \\
& \quad=\left|\sum_{\xi=1}^{T} \mathcal{G}_{R L}(x, \xi)[f(\xi, y(\rho(\xi)))-f(\xi, w(\rho(\xi)))]\right| \\
& \quad \leq \sum_{\xi=1}^{T} \mathcal{G}_{R L}(x, \xi)|f(\xi, y(\rho(\xi)))-f(\xi, w(\rho(\xi)))| \\
& \quad \leq L\|y-w\| \sum_{\xi=1}^{T} \mathcal{G}_{R L}(x, \xi) \\
& \quad \leq L\|y-w\| \vartheta_{1}
\end{aligned}
$$

implying that
$\left\|S_{1} y-S_{1} w\right\| \leq L \vartheta_{1}\|y-w\|$.
Since $L \vartheta_{1}<1, S_{1}$ is a contraction mapping. Then, there exists a unique solution for (1.1), by Banach fixed-point theorem.

Theorem 4.8 The conditions (A6) and
(A8) $L \vartheta_{2}<1$,

Table 1 Evaluation of ϑ_{1}

x	$e_{\vartheta, \delta, \delta-1}(x, \rho(0))$	$e_{\vartheta, \delta, \delta}(x, 0)$	$\sum_{\xi=1}^{10} \mathcal{G}_{R L}(x, \xi)$
0	0.909091	0	3.07902
1	0.413223	0.909091	2.30865
2	0.291134	1.32231	2.30836
3	0.230944	1.61345	2.39564
4	0.19382	1.84439	2.50084
5	0.168157	2.03821	2.60775
6	0.149141	2.20637	2.7115
7	0.134371	2.35551	2.81062
8	0.122504	2.48988	2.9048
9	0.112722	2.61239	2.99417
10	0.104493	2.72511	3.07902

yield a unique solution for (1.2).
Proof The proof is similar to the proof of Theorem 4.7, so we omit it.

5 Examples

Example 1 Consider (1.1) with $\delta=0.5, \vartheta=-0.1, T=10$ and
$f(x, z)=(0.25)\left(x+\tan ^{-1} z\right)$.
Clearly, f is Lipschitz w.r.t. the second variable with $L=$ 0.25 as the Lipschitz constant on $\mathbb{N}_{0}^{10} \times \mathcal{B}$. Table 1 shows the calculations for the evaluation of $\sum_{\xi=1}^{10} \mathcal{G}_{R L}(x, \xi)$ using Mathematica:

From Table 1, we have
$\vartheta_{1}=\max _{x \in \mathbb{N}_{0}^{10}} \sum_{\xi=1}^{10} \mathcal{G}_{R L}(x, \xi)=3.07902$.
Then, $L \vartheta_{1}<1$. All assumptions of Theorem 4.7 hold. As a result, there exists a unique solution for (1.1).

Example 2 Consider (1.2) with $\delta=0.5, \vartheta=-0.1, T=10$ and $f(x, z)=\frac{1}{11}\left(x+\tan ^{-1} z\right)$. Clearly, f is Lipschitz w.r.t. the second variable with $L=\frac{1}{11}$ as the Lipschitz constant on $\mathbb{N}_{0}^{10} \times \mathcal{B}$. Table 2 shows the calculations for the evaluation of $\sum_{\xi=1}^{10} \mathcal{G}_{C}(x, \xi)$ using Mathematica:

From Table 2, we have
$\vartheta_{2}=\max _{x \in \mathbb{N}_{0}^{10}} \sum_{\xi=1}^{10} \mathcal{G}_{C}(x, \xi)=10.4132$.

Table 2 Evaluation of ϑ_{2}

x	$e_{\vartheta, \delta, 0}(x, 0)$	$e_{\vartheta, \delta, \delta}(x, 0)$	$\sum_{\xi=1}^{10} \mathcal{G}_{C}(x, \xi)$
0	1	0	10
1	0.909091	0.909091	10
2	0.909091	1.32231	10.4132
3	0.838655	1.61345	10
4	0.815561	1.84439	10
5	0.796179	2.03821	10
6	0.779363	2.20637	10
7	0.764449	2.35551	10
8	0.751012	2.48988	10
9	0.738761	2.61239	10
10	0.727489	2.72511	10

Then, $L \vartheta_{2}<1$. All assumptions of Theorem 4.8 hold. Thus, there exists a unique solution for (1.2).

Example 3 Consider the boundary value problem
$\left\{\begin{array}{l}\left(\nabla_{\rho(0)}^{0.5} y\right)(x)=-\frac{1}{10} y(x)+x y^{2}(\rho(x)), \quad x \in \mathbb{N}_{1}^{10}, \\ y(0)=y(10) .\end{array}\right.$

Here $T=10, \delta=0.5, \vartheta=-\frac{1}{10}$ and $f(x, \xi)=x \xi^{2}$. Clearly,
$|f(x, \xi)| \leq \hat{\phi}(x) \hat{\psi}(|\xi|), \quad(x, \xi) \in \mathbb{N}_{1}^{10} \times \mathbb{R}$,
where
$\hat{\phi}(x)=x, \quad x \in \mathbb{N}_{1}^{10}$,
and
$\hat{\psi}(|\xi|)=|\xi|^{2}=\xi^{2}, \quad \xi \in \mathbb{R}$.
Also, $\hat{\phi}: \mathbb{N}_{1}^{10} \rightarrow[0, \infty)$ and $\hat{\psi}:[0, \infty) \rightarrow[0, \infty)$ is a nondecreasing function. Thus, the assumption (C 1) of Theorem 4.3 holds. Further, we have
$\bar{\Omega}=\max _{x \in \mathbb{N}_{1}^{10}} \hat{\phi}(x)=10$.
Using Mathematica, we found that $\vartheta_{1}=3.07902$. There exists $0<M_{1}<\frac{1}{31}$ such that
$\frac{M_{1}}{(3.07902)(10) M_{1}^{2}}>1$,
implying that the assumption (C 2) of Theorem 4.3 holds. Therefore, by Theorem 4.3, the boundary value problem (1.1) has a solution defined on \mathbb{N}_{0}^{10}.

Example 4 Consider the boundary value problem
$\left\{\begin{array}{l}\left(\nabla_{0 *}^{0.5} y\right)(x)=-\frac{1}{10} y(x)+x y^{2}(\rho(x)), \quad x \in \mathbb{N}_{1}^{10}, \\ y(0)=y(10) .\end{array}\right.$
Here $T=10, \delta=0.5, \vartheta=-\frac{1}{10}$ and $f(x, \xi)=x \xi^{2}$. Clearly,
$|f(x, \xi)| \leq \hat{\phi}(x) \hat{\psi}(|\xi|), \quad(x, \xi) \in \mathbb{N}_{1}^{10} \times \mathbb{R}$,
where
$\hat{\phi}(x)=x, \quad x \in \mathbb{N}_{1}^{10}$,
and
$\hat{\psi}(|\xi|)=|\xi|^{2}=\xi^{2}, \quad \xi \in \mathbb{R}$.
Also, $\hat{\phi}: \mathbb{N}_{1}^{10} \rightarrow[0, \infty)$ and $\hat{\psi}:[0, \infty) \rightarrow[0, \infty)$ is a nondecreasing function. Thus, the assumption (C 1) of Theorem 4.4 holds. Further, we have
$\bar{\Omega}=\max _{x \in \mathbb{N}_{1}^{10}} \hat{\phi}(x)=10$.
Using Mathematica, we found that $\vartheta_{2}=10.4132$. There exists $0<M_{2}<\frac{1}{101}$ such that
$\frac{M_{2}}{(10.4132)(10) M_{2}^{2}}>1$,
implying that the assumption (C 3) of Theorem 4.4 holds. Therefore, by Theorem 4.4, the boundary value problem (1.2) has a solution defined on \mathbb{N}_{0}^{10}.

Conclusion and future scope

This article considered two simple nabla fractional relaxation equations with related periodic boundary conditions. We provided sufficient conditions for the existence of solutions to the problems under consideration through relevant fixed-point theorems with adequate restrictions. We also offered a few examples to further illustrate the applicability of our findings. To our knowledge, such work has yet to be reported in the case of fractional differences.

The current work can also be extended to obtain sufficient conditions for multiple positive solutions of the considered boundary value problems due to the corresponding Green functions' positivity.

Acknowledgements Not applicable.

Author Contributions All authors have equally contributed to this article.

Funding No funds, grants, or other support was received.
Data Availability Not applicable.

Declaration

Conflict of interest The authors have no competing interests to declare that are relevant to the content of this article.

References

1. Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. North-Holland Mathematics Studies, vol 204. Elsevier Science B.V, Amsterdam
2. Igor Podlubny (1999) Fractional differential equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Mathematics in science and engineering, vol 198. Academic Press Inc, San Diego
3. Bahar Ali Khan M, Abdeljawad T, Shah K, Ali G, Khan H, Khan A (2021) Study of a nonlinear multi-terms boundary value problem of fractional pantograph differential equations. Adv Differ Equ 143:15
4. Eskandari Z, Khoshsiar Ghaziani R, Avazzadeh Z (2023) Bifurcations of a discrete-time SIR epidemic model with logistic growth of the susceptible individuals. Int J Biomath 16(6):2250120
5. Hikmet Koyunbakan, Kamal Shah, Thabet Abdeljawad (2023) Well-posedness of inverse Sturm-Liouville problem with fractional derivative. Qual Theory Dyn Syst 22(1):23
6. Li B, Liang H, He Q (2021) Multiple and generic bifurcation analysis of a discrete Hindmarsh-Rose model. Chaos Solitons Fractals 146:110856
7. Li B, Zhang Y, Li X, Eskandari Z, He Q (2023) Bifurcation analysis and complex dynamics of a Kopel triopoly model. J Comput Appl Math 426:115089
8. Shah K, Abdalla B, Abdeljawad T, Gul R (2023) Analysis of multipoint impulsive problem of fractional-order differential equations. Bound Value Probl 1:17
9. Ferreira Rui AC (2022) Discrete fractional calculus and fractional difference equations. SpringerBriefs in Mathematics. Springer, Cham
10. Goodrich C, Peterson AC (2015) Discrete fractional calculus. Springer, Cham
11. Piotr Ostalczyk (2016) Discrete fractional calculus. Applications in control and image processing. Series in Computer Vision, vol 4. World Scientific Publishing Co. Pte. Ltd., Hackensack
12. Thabet A, Atıcı Ferhan M (2012) On the definitions of nabla fractional operators. Abstr Appl Anal 406757:13
13. Ahrendt K, Kissler C (2019) Green's function for higher-order boundary value problems involving a nabla Caputo fractional operator. J Differ Equ Appl 25(6):788-800
14. Chen C, Bohner M, Jia B (2020) Existence and uniqueness of solutions for nonlinear Caputo fractional difference equations. Turk J Math 44(3):857-869
15. Gholami Y, Ghanbari K (2016) Coupled systems of fractional ∇ difference boundary value problems. Differ Equ Appl 8(4):459470
16. Ikram A (2019) Lyapunov inequalities for nabla Caputo boundary value problems. J Differ Equ Appl 25(6):757-775
17. Jonnalagadda JM (2018) On two-point Riemann-Liouville type nabla fractional boundary value problems. Adv Dyn Syst Appl 13(2):141-166
18. Jonnalagadda JM (2020) On a nabla fractional boundary value problem with general boundary conditions. AIMS Math 5(1):204215
19. Jonnalagadda JM, Gopal NS (2022) Green's function for a discrete fractional boundary value problem. Differ Equ Appl 14(2):163178
20. Bohner M, Peterson A (2001) Dynamic equations on time scales. An introduction with applications. Birkhäuser Boston, Inc., Boston
21. Jia B, Erbe L, Peterson A (2016) Comparison theorems and asymptotic behavior of solutions of Caputo fractional equations. Int J Differ Equ 11(2):163-178
22. Eloe P, Jonnalagadda J (2019) Mittag-Leffler stability of systems of fractional nabla difference equations. Bull Korean Math Soc 56(4):977-992
23. Baoguo Jia, Lynn Erbe, Allan Peterson (2015) Comparison theorems and asymptotic behavior of solutions of discrete fractional equations. Electron J Qual Theory Differ Equ 89:18
24. Jonnalagadda JM (2019) Fractional difference equations of Volterra type. Kragujevac J Math 43(2):219-237
25. Wu G-C, Baleanu D, Luo W-H (2017) Lyapunov functions for Riemann-Liouville-like fractional difference equations. Appl Math Comput 314:228-236
26. Agarwal RP, Meehan M, O'Regan D (2001) Fixed point theory and applications. Cambridge tracts in mathematics, vol 141. Cambridge University Press, Cambridge

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

[^0]: Sangeeta Dhawan
 sangeetadhawan1236@gmail.com
 Jagan Mohan Jonnalagadda
 j.jaganmohan@hotmail.com

 1 Department of Mathematics, Birla Institute of Technology and Science Pilani, Hyderabad, Telangana 500078, India

