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Abstract
Two simple nabla fractional relaxation equations with related periodic boundary conditions are addressed in this article.
Firstly, we construct the corresponding Green’s functions and obtain some of their properties. Through relevant fixed-point
theorems with adequate restrictions, we provide sufficient conditions for the existence of solutions to the problems under
consideration. To further illustrate how applicable previous findings are, we also offer a few examples.
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1 Introduction

The concept of fractional derivative [1, 2] is a generaliza-
tion of the classical derivative to an arbitrary noninteger
order. Fractional differential equations are applicable in var-
ious fields of science and engineering, such as mechanics,
economics, control systems, physics, chemistry, biology,
medicine, atomic energy, information theory, oscillation
theory, conservative systems, stability and instability of
geodesic on Riemannian manifolds, dynamics in Hamilto-
nian systems, and many other allied areas. In particular,
problems concerning the qualitative analysis of linear and
nonlinear fractional differential equations have received the
attention of many authors; see [3–8] and the references
therein.

On the other hand, nabla fractional calculus is an inte-
grated theory of arbitrary order sums and differences in the
backward sense. The concept of nabla fractional difference
traces back to the works of many famous researchers in the
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last 2 decades. For a detailed introduction, we refer to the
recent monographs [9–11] and the references therein.

Since 2010, there has been an increasing interest in ana-
lyzing nabla fractional boundary value problems. To name
a few notable works, we refer to [12–19]. In this line, we
investigate two simple nabla fractional periodic boundary
value problems. Specifically, we shall consider the following
nabla fractional relaxation equations associatedwith periodic
boundary conditions:

{(∇δ
ρ(0)y

)
(x) = ϑ y(x) + f (x, y(ρ(x))), x ∈ N

T
1 ,

y(0) = y(T ),

(1.1)

and

{(∇δ
0∗y

)
(x) = ϑ y(x) + f (x, y(ρ(x))), x ∈ N

T
1 ,

y(0) = y(T ),
(1.2)

where 0 < δ < 1;−1 < ϑ < 0; T ∈ N2; f : NT
1 ×R → R is

a continuous function;∇δ
ρ(0)y and∇δ

0∗y denote theRiemann–
Liouville and the Caputo nabla fractional differences of y of
order δ, respectively.

The structure of the current article is as follows: Prelim-
inaries for discrete fractional calculus are found in Sect. 2.
In Sect. 3, we construct the corresponding Green’s functions
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and obtain some of their properties. Using relevant fixed-
point theorems and some appropriate restrictions on ϑ and
f , we derive sufficient conditions for the existence of solu-
tions to (1.1) and (1.2) in Sect. 4. Additionally, in Sect. 5, we
give a few examples to show how the findings in Sect. 4 can
be used.

2 Preliminaries

Represent byNμ = {μ,μ+1, μ+2, . . .} andNν
μ = {μ,μ+

1, μ + 2, . . . , ν} for any μ, ν ∈ R such that ν − μ ∈ N1.

Definition 2.1 [10, 20] For x , k ∈ R and t ∈ R\Z−, define

Ht (x, k) = (x − k)t

�(t + 1)
= �(x − k + t)

�(x − k)�(t + 1)
,

provided the RHS is well defined. Here, �(.) denotes the
Gamma function.

Definition 2.2 [10] For y : Nk+1 → R and δ > 0, the
δth-order nabla fractional sum of y based at k is given by

(∇−δ
k y

)
(x) =

x∑
ξ=k+1

Hδ−1(x, ρ(ξ))y(ξ), x ∈ Nk,

where ρ(ξ) = ξ − 1.

Definition 2.3 [10] Let y : Nk+1 → R, δ > 0, n ∈ N1

with n−1 < δ ≤ n. The δth-order Riemann–Liouville nabla
fractional difference of y based at k is given by

(∇δ
k y

)
(x) =

(
∇n(∇−(n−δ)

k y
))

(x), x ∈ Nk+n .

Definition 2.4 [10] Let y : Nk−n+1 → R and δ > 0. The
δth-order Caputo nabla fractional difference of y based at k
is given by

(∇δ
k∗y

)
(x) =

(
∇−(n−δ)
k

(∇n y
))

(x), x ∈ Nk+1,

where n = �δ�.
Next is the composition rule of nabla fractional sum,

which will be applicable in the following section.

Theorem 2.1 [10] Assume δ, γ > 0, y : Nk+1 → R, n ∈ N1

with n − 1 < δ ≤ n. Then,

(1)
(
∇−δ
k

(∇−γ

k y
))

(x) = (∇−(δ+γ )

k y
)
(x), x ∈ Nk .

(2)
(
∇δ
k

(∇−γ

k y
))

(x) = (∇δ−γ

k y
)
(x), x ∈ Nk+n .

Definition 2.5 [10] Let α > 0, β ∈ R and −1 < ϑ < 1.
The discrete Mittag–Leffler function is defined by

eϑ,α,β(x, k) =
∞∑
j=0

ϑ j Hα j+β(x, k), x ∈ Nk .

Clearly,

eϑ,α,β(x, ρ(x)) = 1

1 − ϑ
, x ∈ Nk .

Theorem 2.2 [10] Assume 0 < δ < 1 and −1 < ϑ < 1.
The homogeneous difference equation

(∇δ
ρ(k)y

)
(x) = ϑ y(x), x ∈ Nk+1, (2.1)

has a general solution

y(x) = Ceϑ,δ,δ−1(x, ρ(k)), x ∈ Nk . (2.2)

Here, C is an arbitrary constant.

Theorem 2.3 [21] Assume 0 < δ < 1 and −1 < ϑ < 1.
The homogeneous difference equation

(∇δ
k∗ y

)
(x) = ϑ y(x), x ∈ Nk+1, (2.3)

is given by

y(x) = Ceϑ,δ,0(x, k), x ∈ Nk . (2.4)

Here C is an arbitrary constant.

Theorem 2.4 Assume 0 < δ < 1, |ϑ | < 1 and h is a real-
valued function defined onNk+1. Then, the nonhomogeneous
difference equation

(∇δ
ρ(k)y

)
(x) = ϑ y(x) + h(x), x ∈ Nk+1, (2.5)

has a general solution

y(x) = Ceϑ,δ,δ−1(x, ρ(k)) +
x∑

ξ=k+1

eϑ,δ,δ−1(x, ρ(ξ))h(ξ), x ∈ Nk ,

(2.6)

where C is an arbitrary constant.

Proof Denote by

w(x) =
x∑

ξ=k+1

eϑ,δ,δ−1(x, ρ(ξ))h(ξ), x ∈ Nk .

We show that w satisfies (2.5), that is,

(∇δ
ρ(k)w

)
(x) = ϑw(x) + h(x), x ∈ Nk+1. (2.7)
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To see this, for x ∈ Nk , consider

w(x) =
x∑

ξ=k+1

eϑ,δ,δ−1(x, ρ(ξ))h(ξ)

=
x∑

ξ=k+1

⎡
⎣ ∞∑

j=0

ϑ j Hδ j+δ−1(x, ρ(ξ))

⎤
⎦ h(ξ)

=
∞∑
j=0

ϑ j

⎡
⎣ x∑

ξ=k+1

Hδ j+δ−1(x, ρ(ξ))h(ξ)

⎤
⎦

=
∞∑
j=0

ϑ j

⎡
⎣ x∑

ξ=k

Hδ j+δ−1(x, ρ(ξ))h(ξ)

−Hδ j+δ−1(x, ρ(k))h(k)
]

=
∞∑
j=0

ϑ j
[(∇−(δ j+δ)

ρ(k) h
)
(x)

]

− h(k)
∞∑
j=0

ϑ j Hδ j+δ−1(x, ρ(k))

=
∞∑
j=0

ϑ j
[(∇−(δ j+δ)

ρ(k) h
)
(x)

]
− h(k)eϑ,δ,δ−1(x, ρ(k)).

(2.8)

Now, for x ∈ Nk+1, consider

(∇δ
ρ(k)w

)
(x)

= ∇δ
ρ(k)

⎡
⎣ ∞∑

j=0

ϑ j
[(∇−(δ j+δ)

ρ(k) h
)
(x)

]

− h(k)eϑ,δ,δ−1(x, ρ(k))
]

(By Using (2.8))

=
∞∑
j=0

ϑ j
[(

∇δ
ρ(k)

(∇−(δ j+δ)

ρ(k) h
))

(x)
]

− h(k)
[
∇δ

ρ(k)eϑ,δ,δ−1(x, ρ(k))
]

=
∞∑
j=0

ϑ j
[(∇−δ j

ρ(k)h
)
(x)

]

− h(k)
[
ϑeϑ,δ,δ−1(x, ρ(k))

]
(By Using Theorems 2.1&2.2)

= h(x) +
∞∑
j=1

ϑ j
[(∇−δ j

ρ(k)h
)
(x)

]
− ϑeϑ,δ,δ−1(x, ρ(k))h(k)

= h(x) + ϑ

⎡
⎣ ∞∑

j=0

ϑ j
[(∇−(δ j+δ)

ρ(k) h
)
(x)

]

−eϑ,δ,δ−1(x, ρ(k))h(k)
]

= ϑw(x) + h(x). (By Using (2.8))

The proof is complete. 
�
Theorem 2.5 Assume 0 < δ < 1, |ϑ | < 1 and h is a real-
valued function defined onNk+1. Then, the nonhomogeneous

difference equation

(∇δ
k∗y

)
(x) = ϑ y(x) + h(x), x ∈ Nk+1, (2.9)

has a general solution

y(x) = Ceϑ,δ,0(x, k) +
x∑

ξ=k+1

eϑ,δ,δ−1(x, ρ(ξ))h(ξ), x ∈ Nk , (2.10)

where C is an arbitrary constant.

Proof Denote by

w(x) =
x∑

ξ=k+1

eϑ,δ,δ−1(x, ρ(ξ))h(ξ), x ∈ Nk .

We show that w satisfies (2.9), that is,

(∇δ
k∗w

)
(x) = ϑw(x) + h(x), x ∈ Nk+1. (2.11)

For x ∈ Nk , consider

w(x) =
x∑

ξ=k+1

eϑ,δ,δ−1(x, ρ(ξ))h(ξ)

=
x∑

ξ=k+1

⎡
⎣ ∞∑

j=0

ϑ j Hδ j+δ−1(x, ρ(ξ))

⎤
⎦ h(ξ)

=
∞∑
j=0

ϑ j

⎡
⎣ x∑

ξ=k+1

Hδ j+δ−1(x, ρ(ξ))h(ξ)

⎤
⎦

=
∞∑
j=0

ϑ j
(
∇−(δ j+δ)
k h

)
(x). (2.12)

Now, for x ∈ Nk+1, consider

(∇δ
k∗w

)
(x) =

(
∇−(1−δ)
k

(∇w
))

(x)

= ∇−(1−δ)
k ∇

⎡
⎣ ∞∑

j=0

ϑ j
(
∇−(δ j+δ)
k h

)
(x)

⎤
⎦ (By Using (2.12))

= ∇−(1−δ)
k

⎡
⎣ ∞∑

j=0

ϑ j
(
∇(∇−(δ j+δ)

k h
))

(x)

⎤
⎦

= ∇−(1−δ)
k

⎡
⎣ ∞∑

j=0

ϑ j
(
∇(1−δ j−δ)
k h

)
(x)

⎤
⎦ (By Using Theorem 2.1)

=
∞∑
j=0

ϑ j
(
∇−(1−δ)
k

(∇−(δ j+δ−1)
k h

))
(x)

=
∞∑
j=0

ϑ j
(
∇−δ j
k h

)
(x) (By Using Theorem 2.1)

= h(x) +
∞∑
j=1

ϑ j
(
∇−δ j
k h

)
(x)
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= h(x) + ϑ

⎡
⎣ ∞∑

j=0

ϑ j
(
∇−(δ j+δ)
k h

)
(x)

⎤
⎦

= h(x) + ϑw(x).

The proof is complete. 
�
Lemma 2.6 [21–25] Let 0 < δ < 1 and −1 < ϑ < 0. Then,

(1) 0 < eϑ,δ,δ−1(x, ρ(k)) ≤ 1;
(2) 0 < eϑ,δ,0(x, k) ≤ 1,

for x ∈ Nk .

3 Green’s functions and their properties

In this section, we construct the Green’s functions for the
following linear boundary value problems

{(∇δ
ρ(0)y

)
(x) = ϑ y(x) + h(x), x ∈ N

T
1 ,

y(0) = y(T ),
(3.1)

and{(∇δ
0∗y

)
(x) = ϑ y(x) + h(x), x ∈ N

T
1 ,

y(0) = y(T ),
(3.2)

corresponding to (1.1) and (1.2), respectively, and deduce
their properties. Here h : NT

1 → R.

Theorem 3.1 The boundary value problem (3.1) has a unique
solution

y(x) =
T∑

ξ=1

GRL(x, ξ)h(ξ), x ∈ N
T
0 , (3.3)

where

GRL(x, ξ) =
{
GRL1(x, ξ), x ∈ N

ρ(ξ)
0 ,

GRL2(x, ξ), x ∈ N
T
ξ .

(3.4)

Here

GRL1(x, ξ) = eϑ,δ,δ−1(x, ρ(0))[
1

1−ϑ
− eϑ,δ,δ−1(T , ρ(0))

]eϑ,δ,δ−1(T , ρ(ξ)),

(3.5)

and

GRL2(x, ξ) = GRL1(x, ξ) + eϑ,δ,δ−1(x, ρ(ξ)). (3.6)

Proof From Theorem 2.4, the nonhomogeneous difference
equation in (3.1) has a general solution

y(x) = Ceϑ,δ,δ−1(x, ρ(0))+
x∑

ξ=1

eϑ,δ,δ−1(x, ρ(ξ))h(ξ), x ∈ N0.

(3.7)

Using the boundary condition y(0) = y(T ) in (3.7) and
rearranging the terms, we get

C = 1[
1

1−ϑ
− eϑ,δ,δ−1(T , ρ(0))

] T∑
ξ=1

eϑ,δ,δ−1(T , ρ(ξ))h(ξ).

(3.8)

Substituting the expression for C from (3.8) in (3.7), we
obtain (3.3). The proof is complete. 
�
Theorem 3.2 The boundary value problem (3.2) has a unique
solution

y(x) =
T∑

ξ=1

GC (x, ξ)h(ξ), x ∈ N
T
0 , (3.9)

where

GC (x, ξ) =
{
GC1(x, ξ), x ∈ N

ρ(ξ)
0 ,

GC2(x, ξ), x ∈ N
T
ξ .

(3.10)

Here

GC1(x, ξ) = eϑ,δ,0(x, 0)[
1 − eϑ,δ,0(T , 0)

]eϑ,δ,δ−1(T , ρ(ξ)), (3.11)

and

GC2(x, ξ) = GC1(x, ξ) + eϑ,δ,δ−1(x, ρ(ξ)). (3.12)

Proof From Theorem 2.5, the nonhomogeneous difference
equation in (3.2) has a general solution

y(x) = Ceϑ,δ,0(x, 0)+
x∑

ξ=1

eϑ,δ,δ−1(x, ρ(ξ))h(ξ), x ∈ N0.

(3.13)

Using the boundary condition y(0) = y(T ) in (3.13) and
rearranging the terms, we get

C = 1[
1 − eϑ,δ,0(T , 0)

] T∑
ξ=1

eϑ,δ,δ−1(T , ρ(ξ))h(ξ). (3.14)
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Substituting the expression for C from (3.14) in (3.13), we
obtain (3.9). The proof is complete. 
�
Remark 1 Note that

x∑
ξ=1

eϑ,δ,δ−1(x, ρ(ξ)) =
x∑

ξ=1

⎡
⎣ ∞∑

j=0

ϑ j Hδ j+δ−1(x, ρ(ξ))

⎤
⎦

=
∞∑
j=0

ϑ j

⎡
⎣ x∑

ξ=1

Hδ j+δ−1(x, ρ(ξ))

⎤
⎦

=
∞∑
j=0

ϑ j Hδ j+δ(x, 0) = eϑ,δ,δ(x, 0).

Lemma 3.3 GRL(x, ξ) has the following properties:

(1) GRL(x, ξ) > 0, (x, ξ) ∈ N
T
0 × N

T
1 ;

(2)
∑T

ξ=1 GRL(x, ξ) = eϑ,δ,δ−1(x,ρ(0))[
1

1−ϑ
−eϑ,δ,δ−1(T ,ρ(0))

]eϑ,δ,δ(T , 0)

+ eϑ,δ,δ(x, 0), x ∈ N
T
0 .

Proof The proof of 3.3 follows from Lemma 2.6. To prove
3.3, for x ∈ N

T
0 , consider

T∑
ξ=1

GRL(x, ξ) =
x∑

ξ=1

GRL2(x, ξ) +
T∑

ξ=x+1

GRL1(x, ξ)

=
T∑

ξ=1

GRL1(x, ξ) +
x∑

ξ=1

eϑ,δ,δ−1(x, ρ(ξ))

= eϑ,δ,δ−1(x, ρ(0))[
1

1−ϑ
− eϑ,δ,δ−1(T , ρ(0))

]
T∑

ξ=1

eϑ,δ,δ−1(T , ρ(ξ)) +
x∑

ξ=1

eϑ,δ,δ−1(x, ρ(ξ))

= eϑ,δ,δ−1(x, ρ(0))[
1

1−ϑ
− eϑ,δ,δ−1(T , ρ(0))

]
eϑ,δ,δ(T , 0) + eϑ,δ,δ(x, 0) (By Remark1).

The proof is complete. 
�
Lemma 3.4 GC (x, ξ) has the following properties:

(1) GC (x, ξ) > 0, (x, ξ) ∈ N
T
0 × N

T
1 ;

(2)
∑T

ξ=1 GC (x, ξ) = eϑ,δ,0(x,0)
[1−eϑ,δ,0(T ,0)]eϑ,δ,δ(T , 0) +

eϑ,δ,δ(x, 0), x ∈ N
T
0 .

Proof The proof is similar to that of Lemma 3.3. 
�
Remark 2 Denote by

ϑ1 = max
x∈NT

0

T∑
ξ=1

GRL (x, ξ)

= max
x∈NT

0

[
eϑ,δ,δ−1(x, ρ(0))[

1
1−ϑ

− eϑ,δ,δ−1(T , ρ(0))
] eϑ,δ,δ(T , 0) + eϑ,δ,δ(x, 0)

]
,

(3.15)

and

ϑ2 = max
x∈NT

0

T∑
ξ=1

GC (x, ξ)

= max
x∈NT

0

[
eϑ,δ,0(x, 0)[

1 − eϑ,δ,0(T , 0)
] eϑ,δ,δ(T , 0) + eϑ,δ,δ(x, 0)

]
. (3.16)

4 Existence of solutions

The existence of solutions to (1.1) and (1.2) is established by
the sufficient conditions set forth in this section. Theorems
3.1 and 3.2 imply the equivalence between

(i) the solutions of (1.1) and the solutions of the summation
equation

y(x) =
T∑

ξ=1

GRL(x, ξ) f (ξ, y(ρ(ξ))), x ∈ N
T
0 ;

(ii) the solutions of (1.2) and the solutions of the summation
equation

y(x) =
T∑

ξ=1

GC (x, ξ) f (ξ, y(ρ(ξ))), x ∈ N
T
0 ,

respectively. Let B be the set of all real-valued functions
defined on N

T
0 . Define the operators S1, S2 : B → B by

(S1y)(x) =
T∑

ξ=1

GRL(x, ξ) f (ξ, y(ρ(ξ))), x ∈ N
T
0 ,

(S2y)(x) =
T∑

ξ=1

GC (x, ξ) f (ξ, y(ρ(ξ))), x ∈ N
T
0 .

Clearly, y is a fixed point of S1 (or S2) if and only if y is a
solution of (1.1) [or (1.2)]. Observe that B is equivalent to
R
T+1. We know that B is a Banach space equipped with the

maximum norm defined by

‖y‖ = max
x∈NT

0

|y(x)| .

Let

K =
{
y ∈ B : y(0) = y(T ) and ‖y‖ ≤ r for all x ∈ N

T
0 , r > 0

}
.

123
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Clearly, K is a nonempty bounded closed convex subset of
the finite-dimensional normed space B. First, we apply the
Brouwer fixed-point theorem [26] to discuss the existence of
solutions to (1.1) and (1.2).

Theorem 4.1 Assume that

(A1) | f (x, y)| ≤ M for all (x, y) ∈ N
T
0 × K.

Choose

r ≥ Mϑ1.

Then, (1.1) has a solution.

Proof To show that S1 : K → K , take y ∈ K , x ∈ N
T
0 and

consider

|(S1y)(x)| =
∣∣∣∣∣∣

T∑
ξ=1

GRL(x, ξ) f (ξ, y(ρ(ξ)))

∣∣∣∣∣∣
≤

T∑
ξ=1

GRL(x, ξ) | f (ξ, y(ρ(ξ)))|

≤ M
T∑

ξ=1

GRL(x, ξ)

≤ Mϑ1 (By Remark 2)

≤ r ,

implying that |(S1y)(x)| ≤ r for all x ∈ N
T
0 . Also,

(S1y)(0) = (S1y)(T ). As a result, S1 : K → K . The
continuity of S1 follows from the continuity of f . Thus, by
Brouwer fixed-point theorem, (1.1) has a solution y in K .
The proof is complete. 
�
Theorem 4.2 Assume that (A1) holds. Choose

r ≥ Mϑ2.

Then, (1.2) has a solution.

Proof The proof is similar to that of Theorem 4.1. 
�
Next, we apply the Leray–Schauder nonlinear alternative

[26] to discuss the existence of solutions to (1.1) and (1.2).

Theorem 4.3 Assume that

(C 1) There exist φ̂ : NT
1 → [0,∞) and a nondecreasing

function ψ̂ : [0,∞) → [0,∞) such that

| f (x, s)| ≤ φ̂(x)ψ̂ (|s|) , (x, s) ∈ N
T
1 × R.

(C 2) There exists M1 > 0 such that

M1

ϑ1ψ̂ (M1)
> 1,

where

 = max
x∈NT

1

φ̂(x).

Then, the boundary value problem (1.1) has a solution
defined on N

T
0 .

Proof We first show that S1 maps bounded sets into bounded
sets. By (C 1), for x ∈ N

T
0 and y ∈ K ,

∣∣(S1y)(x)∣∣ ≤
T∑

ξ=1

GRL(x, ξ) | f (ξ, y(ρ(ξ)))|

≤
T∑

ξ=1

GRL(x, ξ)φ̂(ξ)ψ̂ (|y(ρ(ξ))|)

≤ ψ̂ (‖y‖)
T∑

ξ=1

GRL(x, ξ)φ̂(ξ)

≤ ϑ1ψ̂ (r) ,

implying that

∣∣(S1y)(x)∣∣ ≤ ϑ1ψ̂ (r) .

Thus, S1 maps K into a bounded set. Since NT
0 is a discrete

set, it follows immediately that S1 maps K into an equicon-
tinuous set. Therefore, by the Arzela–Ascoli theorem, S1 is
completely continuous. Next, we suppose y ∈ B and that for
some 0 < λ < 1, y = λS1y. Then, for x ∈ N

T
0 , and again

by (C 1),

|y(x)| = ∣∣λ(
S1y

)
(x)

∣∣
≤

T∑
ξ=1

GRL(x, ξ) | f (ξ, y(ρ(ξ)))|

≤
T∑

ξ=1

GRL(x, ξ)φ̂(ξ)ψ̂ (|y(ρ(ξ))|)

≤ ψ̂ (‖y‖)
T∑

ξ=1

GRL(x, ξ)φ̂(ξ)

≤ ϑ1ψ̂ (‖y‖) ,

implying that

‖y‖
ϑ1ψ̂ (‖y‖) ≤ 1.
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It follows from (C 2) that ‖y‖ �= M1. If we set

U =
{
y ∈ B : ‖y‖ < M1

}
,

then the operator S1 : Ū → B is completely continuous.
From the choice of U , there is no y ∈ ∂U such that y =
λS1y for some 0 < λ < 1. It follows from Leray–Schauder
nonlinear alternative that S1 has a fixed point y0 ∈ Ū , which
is a desired solution of (1.1). 
�
Theorem 4.4 Assume that (C 1) and

(C 3) There exists M2 > 0 such that

M2

ϑ2ψ̂ (M2)
> 1,

where

 = max
x∈NT

1

φ̂(x).

Then, the boundary value problem (1.2) has a solution
defined on N

T
0 .

Proof The proof is similar to the proof of Theorem 4.3, so
we omit it. 
�

Now, we apply the Banach fixed-point theorem [26] to
discuss the existence and uniqueness of solutions to (1.1)
and (1.2).

Theorem 4.5 The conditions

(A2) f is Lipschitz w.r.t. the second variable with κ as
the Lipschitz constant on N

T
0 × K;

(A3) Let

max
x∈NT

0

| f (x, 0)| = P,

and

max
(x,y)∈NT

0 ×K
| f (x, y)| = Q.

(A4) κϑ1 < 1,

with

r ≥ Pϑ1

1 − κϑ1
,

or

r ≥ Qϑ1,

yield a unique solution for (1.1).

Proof Clearly, S1 : K → B. To show that S1 is a contraction
mapping, take y, w ∈ K , x ∈ N

T
0 and consider

|(S1y)(x) − (S1w)(x)|

=
∣∣∣∣∣∣

T∑
ξ=1

GRL(x, ξ) [ f (ξ, y(ρ(ξ))) − f (ξ, w(ρ(ξ)))]

∣∣∣∣∣∣
≤

T∑
ξ=1

GRL(x, ξ) | f (ξ, y(ρ(ξ))) − f (ξ, w(ρ(ξ)))|

≤ κ ‖y − w‖
T∑

ξ=1

GRL(x, ξ)

≤ κϑ1 ‖y − w‖ ,

implying that

‖S1y − S1w‖ ≤ κϑ1 ‖y − w‖ .

Since κϑ1 < 1, S1 is a contraction mapping. Now, we show
that S1 : K → K . Let y ∈ K , x ∈ N

T
0 and consider

|(S1y)(x)| =
∣∣∣∣∣∣

T∑
ξ=1

GRL(x, ξ) f (ξ, y(ρ(ξ)))

∣∣∣∣∣∣
≤

T∑
ξ=1

GRL(x, ξ) | f (ξ, y(ρ(ξ))) − f (ξ, 0)|

+
T∑

ξ=1

GRL(x, ξ) | f (ξ, 0)|

≤ κ

T∑
ξ=1

GRL(x, ξ) |y(ρ(ξ))| + P
T∑

ξ=1

GRL(x, ξ)

≤ (κr + P)ϑ1

≤ r ,

implying that S1 : K → K . Also, consider

|(S1y)(x)| =
∣∣∣∣∣∣

T∑
ξ=1

GRL(x, ξ) f (ξ, y(ρ(ξ)))

∣∣∣∣∣∣
≤

T∑
ξ=1

GRL(x, ξ) | f (ξ, y(ρ(ξ)))|

≤ Q
T∑

ξ=1

GRL(x, ξ)

≤ Qϑ1

≤ r ,
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implying that S1 : K → K . So, there exists a unique solution
for (1.1) by Banach fixed-point theorem. 
�
Theorem 4.6 The conditions (A2), (A3) and

(A5) κϑ2 < 1,

with

r ≥ Pϑ2

1 − κϑ2
,

or

r ≥ Qϑ2,

yield a unique solution for (1.2).

Proof The proof is similar to the proof of Theorem 4.5, so
we omit it. 
�
Theorem 4.7 The conditions

(A6) f is Lipschitz w.r.t. the second variable with L as the
Lipschitz constant on N

T
0 × B;

(A7) Lϑ1 < 1,

yield a unique solution for (1.1).

Proof Clearly, S1 : B → B. To show that S1 is a contraction
mapping, take y, w ∈ B, x ∈ N

T
0 and consider

|(S1y)(x) − (S1w)(x)|

=
∣∣∣∣∣∣

T∑
ξ=1

GRL(x, ξ) [ f (ξ, y(ρ(ξ))) − f (ξ, w(ρ(ξ)))]

∣∣∣∣∣∣
≤

T∑
ξ=1

GRL(x, ξ) | f (ξ, y(ρ(ξ))) − f (ξ, w(ρ(ξ)))|

≤ L ‖y − w‖
T∑

ξ=1

GRL(x, ξ)

≤ L ‖y − w‖ϑ1,

implying that

‖S1y − S1w‖ ≤ Lϑ1 ‖y − w‖ .

Since Lϑ1 < 1, S1 is a contraction mapping. Then, there
exists a unique solution for (1.1), by Banach fixed-point the-
orem. 
�
Theorem 4.8 The conditions (A6) and

(A8) Lϑ2 < 1,

Table 1 Evaluation of ϑ1

x eϑ,δ,δ−1(x, ρ(0)) eϑ,δ,δ(x, 0)
10∑

ξ=1

GRL (x, ξ)

0 0.909091 0 3.07902

1 0.413223 0.909091 2.30865

2 0.291134 1.32231 2.30836

3 0.230944 1.61345 2.39564

4 0.19382 1.84439 2.50084

5 0.168157 2.03821 2.60775

6 0.149141 2.20637 2.7115

7 0.134371 2.35551 2.81062

8 0.122504 2.48988 2.9048

9 0.112722 2.61239 2.99417

10 0.104493 2.72511 3.07902

yield a unique solution for (1.2).

Proof The proof is similar to the proof of Theorem 4.7, so
we omit it. 
�

5 Examples

Example 1 Consider (1.1) with δ = 0.5, ϑ = −0.1, T = 10
and

f (x, z) = (0.25)
(
x + tan−1 z

)
.

Clearly, f is Lipschitz w.r.t. the second variable with L =
0.25 as the Lipschitz constant on N

10
0 × B. Table 1 shows

the calculations for the evaluation of
∑10

ξ=1
GRL(x, ξ) using

Mathematica:

From Table 1, we have

ϑ1 = max
x∈N10

0

10∑
ξ=1

GRL(x, ξ) = 3.07902.

Then, Lϑ1 < 1. All assumptions of Theorem 4.7 hold. As a
result, there exists a unique solution for (1.1).

Example 2 Consider (1.2) with δ = 0.5, ϑ = −0.1, T = 10
and f (x, z) = 1

11

(
x + tan−1 z

)
. Clearly, f is Lipschitz w.r.t.

the second variable with L = 1
11 as the Lipschitz constant on

N
10
0 × B. Table 2 shows the calculations for the evaluation

of
∑10

ξ=1
GC (x, ξ) using Mathematica:

From Table 2, we have

ϑ2 = max
x∈N10

0

10∑
ξ=1

GC (x, ξ) = 10.4132.
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Table 2 Evaluation of ϑ2

x eϑ,δ,0(x, 0) eϑ,δ,δ(x, 0)
10∑

ξ=1

GC (x, ξ)

0 1 0 10

1 0.909091 0.909091 10

2 0.909091 1.32231 10.4132

3 0.838655 1.61345 10

4 0.815561 1.84439 10

5 0.796179 2.03821 10

6 0.779363 2.20637 10

7 0.764449 2.35551 10

8 0.751012 2.48988 10

9 0.738761 2.61239 10

10 0.727489 2.72511 10

Then, Lϑ2 < 1. All assumptions of Theorem 4.8 hold. Thus,
there exists a unique solution for (1.2).

Example 3 Consider the boundary value problem

{(∇0.5
ρ(0)y

)
(x) = − 1

10 y(x) + xy2(ρ(x)), x ∈ N
10
1 ,

y(0) = y(10).

(5.1)

Here T = 10, δ = 0.5, ϑ = − 1
10 and f (x, ξ) = xξ2.

Clearly,

| f (x, ξ)| ≤ φ̂(x)ψ̂ (|ξ |) , (x, ξ) ∈ N
10
1 × R,

where

φ̂(x) = x, x ∈ N
10
1 ,

and

ψ̂ (|ξ |) = |ξ |2 = ξ2, ξ ∈ R.

Also, φ̂ : N
10
1 → [0,∞) and ψ̂ : [0,∞) → [0,∞) is a

nondecreasing function. Thus, the assumption (C 1) of The-
orem 4.3 holds. Further, we have

 = max
x∈N10

1

φ̂(x) = 10.

Using Mathematica, we found that ϑ1 = 3.07902. There
exists 0 < M1 < 1

31 such that

M1

(3.07902)(10)M2
1

> 1,

implying that the assumption (C 2) of Theorem 4.3 holds.
Therefore, byTheorem4.3, the boundary value problem (1.1)
has a solution defined on N

10
0 .

Example 4 Consider the boundary value problem

{(∇0.5
0∗ y

)
(x) = − 1

10 y(x) + xy2(ρ(x)), x ∈ N
10
1 ,

y(0) = y(10).
(5.2)

Here T = 10, δ = 0.5, ϑ = − 1
10 and f (x, ξ) = xξ2.

Clearly,

| f (x, ξ)| ≤ φ̂(x)ψ̂ (|ξ |) , (x, ξ) ∈ N
10
1 × R,

where

φ̂(x) = x, x ∈ N
10
1 ,

and

ψ̂ (|ξ |) = |ξ |2 = ξ2, ξ ∈ R.

Also, φ̂ : N10
1 → [0,∞) and ψ̂ : [0,∞) → [0,∞) is a non-

decreasing function. Thus, the assumption (C 1) of Theorem
4.4 holds. Further, we have

 = max
x∈N10

1

φ̂(x) = 10.

Using Mathematica, we found that ϑ2 = 10.4132. There
exists 0 < M2 < 1

101 such that

M2

(10.4132)(10)M2
2

> 1,

implying that the assumption (C 3) of Theorem 4.4 holds.
Therefore, byTheorem4.4, the boundary value problem (1.2)
has a solution defined on N

10
0 .

Conclusion and future scope

This article considered two simple nabla fractional relaxation
equationswith related periodic boundary conditions.We pro-
vided sufficient conditions for the existenceof solutions to the
problems under consideration through relevant fixed-point
theorems with adequate restrictions. We also offered a few
examples to further illustrate the applicability of our find-
ings. To our knowledge, such work has yet to be reported in
the case of fractional differences.

The current work can also be extended to obtain sufficient
conditions for multiple positive solutions of the considered
boundary value problems due to the corresponding Green
functions’ positivity.
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