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Abstract
Models of epidemic dynamics in the form of systems of differential equations of the type SIR and its generalizations,
for example SEIR and SIRS, have become widespread in epidemiology. Their coefficients are averages of some epidemic
indicators, for example the time when a person is contagious. Statistical data about spreading of the epidemic are known in
discrete periods of time, for example twenty-four hours. Therefore, adjustment of the differential equations system under such
data comes across cleanly calculable difficulties. They can be avoided, initially to build a model in discrete time as a system
of difference equations. Such initial consideration allows, as it shown in the article, to get a general model. On its basis, the
models of development of epidemics can be built taking into account their specific. There is another way to obtain a model in
discrete time. It consists in discretizing the original model in continuous time. The model obtained in this way is inaccurate,
and it is only an approximation to the original one, which makes it possible to simplify calculations and increase the stability
of the calculation process. This model is inappropriate, for example, for fitting the model to statistical data. Another argument
against the use of systems of differential equations is that the coefficients of such a model may not be the same during a day.
For example, the number of contacts of an infected person with susceptible people during a day differs from that at night.
However, there is no such difference for daily data. It is possible depending on the day of the week.
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1 Model of Kermack andMcKendrick
and their system of differential equations
SIR

We will use the set denotations according to that all popu-
lation of some territory (region, country) in quantity N is
divided by categories: S (susceptible, receptive are people
that were not infected or lost immunity after infecting), I
(infected, infected and being contagious) and R (recovered).
Let S(t) is a number of susceptible people in the moment of
time t , where t is a continuous value. The values I (t) and

B A. S. Korkhin
a.s.korkhin@gmail.com

P. S. Knopov
knopov1@yahoo.com

1 Institute of Cybernetics of the National Academy of Sciences
of Ukraine, Kiev, Ukraine

2 Prydniprovska Academy of Civil Engineering and
Architecture, Dnipro, Ukraine

R(t)—numbers of infected and recovered in the moment of
time t—have analogical sense.

The enumerated values satisfy to balance equation

(1)N � S(t) + I (t) + R(t)

Assumption 1 A number N is fixed. Functions of time in (1)
are determined.

This assumption will be faithful for an interval of time of
epidemic modeling, if it is possible to omit the demographic
changes on this interval.

If the epidemic is being modeled for the large interval of
time, then N will be also depend on time to take into account
demographic changes.

If assumption 1 is correct, then, from (1), we have

(2)
dS(t)

dt
+
dI (t)

dt
+
dR(t)

dt
� 0

The values in right part of (1) are connected with each
other. This connection can be presented as a chain (Figs. 1,
2, 3, 4 and 5).
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Fig. 1 Geometrical distribution
of duration of recovery hτ

depending on lag τ for
WR(s) � k

/
A(s), k � 1 − q,

A(s) � 1 − qs, q � 0, 8
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Fig. 2 Hypergeometrical
distribution of duration of
recovery hτ depending on lag τ

for WR(s) � k
/
A(s),

k � (1 − q1)(1 − q2),
A(s) � (1 − q1s)(1 − q2s),
q1 � 0, 8, q2 � 0, 61
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Susceptible S ⇒infected I ⇒recovered R, which is
designated as SIR.

Exactly this name was got by one of the most popular
models of epidemiology. A few its modifications are known
now. We will formulate the model SIR using the model of
Kermack and McKendrick.

Let i(t −τ ) be a number of not recovered (active infected,
so contagious people) to the moment of time t , infected
before on an interval of time τ , it is decreasing exponen-
tially at process of recovering as τ is increasing. Then the
whole number of active infected people in the considered
population at the moment of time t is

I (t) �
∞∫

0

e−λτ i(t − τ )dτ (3)

where e−λτ is a weight coefficient and λ is a coefficient.

The sumofweight coefficients is
∞∫

0
e−λτdτ � 1

λ
. Dividing

both parts of (3) on this number, we will get the average
number of active infected on the interval from −∞ to t

�I (t) � I (t)λ �
∞∫

0

λe−λτ i(t − τ )dτ (4)

Here, in an integrand, λe−λτ is the probability density of
distribution exponential law with the parameter λ of random
value τ—the duration of one infected person staying in the
state of active infecting, in the flow of that he is being treated,
remaining contagious.

We will denote the basic number of reproduction by r0. It
means the average number infected by one diseased in times
of his active infecting. It is assumed that the infected person
is surrounded by unvaccinated individuals in the absence of
anti-epidemic measures.

Multiplying both parts (4) on S(t)r0
N , we will get

i(t) � r0S(t)I (t)λ

N
� S(t)

N
r0

∞∫

0

λe−λτ i(t − τ )dτ (5)

So
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Fig. 3 Hypergeometrical
distribution of duration of
recovery hτ depending on lag τ

for WR(s) � k
/
A(s),

k � (1 − q1)(1 − q2)(1 − q3),
A(s) �
(1 − q1s)(1 − q2s)(1 − q3s),
q1 � 0, 8, q2 � 0, 61 q3 � 0, 2
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Fig. 4 Comparison of the model
discrete-time SIR with (11).
Number of infected It for
N � 40 · 106, r0 � 1.5,
TI � 4, p � 0.8 SIR discret time

Approximation SIR
(11)
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i(t) � S(t)

N
r0

∞∫

0

λe−λτ i(t − τ )dτ (6)

This expression is themodel of Kermack andMcKendrick
[3]. In (6), S(t)

N is the probability of meeting of one infected
person and healthy person who is receptive to the infection.
Then r0

S(t)
N is the average number of random “successful”

(resulting in an infection) contacts of one infected person for
the time, when he is contagious. Then, because the integral in
right part (4) is the average number of active infected person
to the moment of time t , we come to the conclusion that in
(6) i(t) is a number of new infected people in the moment of
time t .

Wewill show out amodel SIR. From exponential distribu-
tion of duration of active infecting,when aman is contagious,
it follows that the expectation of duration of stay in a state of
contagiousness is

TI � 1

λ
. (7)

Taking into account this expression, we get from the first
equality in (5)

i(t) � r0S(t)I (t)

NTI
(8)

Because the number of people in population is fixed, then

dS(t)

dt
� −i(t) (9)

From (8) and (9), it follows that

dS(t)

dt
� −r0S(t)I (t)

NTI

From this equation and (2), we have

dI (t)

dt
� r0S(t)I (t)

NTI
− dR(t)

dt

From the last two equations, considering the speed of
recovery dR(t)

dt equal to the average of infected people to the
moment of time t , defined in (4), we will get the differential
equations system of model SIR of Kermack andMcKendrick
[9] that found the wide use; in particular, it was used formod-
eling of distribution of COVID–19 [2]:
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Fig. 5 Case 1: no latent period, all patients are treated the same

dS(t)

dt
� − r0

NTI
S(t)I (t),

dI (t)

dt
� r0

NTI
S(t)I (t) − 1

TI
I (t),

dR(t)

dt
� 1

TI
I (t)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(10)

The brought conclusion (10) is some simpler than the con-
clusion of this model in [3], where differentiation of certain
integral depending on a parameter is used.

It is possible to solve a reverse task: on the second–basic
equation in (10) to get the first equality in (5). It ensues from

the second equation in (10), relation I (t) �
t∫

0
i(τ )dτ − R(t)

and (7).
To the known drawbacks of themodel (10), it is possible to

take that it is based on an exponential distribution law of one
person infecting duration. However, the protracted applica-
tion ofmodel SIR showed that this limitationwas not critical.
Another drawback of this model takes place from the third
equation in (10). It supposes that speed of recovery, i.e., num-
ber of recovered people in arbitrary moment of time, relates
proportionally to the number of contagious people. Actually,
the speed of recovery depends on immunity of a person, other
properties of their organism, medications and other factors.
Because the recovery of infected people is a process with
distributed lag [6, 14], then more difficult expression, than
the third equation in (10), can appear its adequate model. In
particular, this may lead to the use of higher-order derivatives
R(t). The third drawback (10) is that there are no statistical
data for the main variable I (t). To get them, it is necessary
to make calculations on present statistics. Such recount can
result in appearance of additional error.

2 Models for discrete time

Values S, I , R can be certain from statistical data only in
discrete periods of time (usually, twenty-four hours). There-
fore, if the model (10) is driven in to existent statistics, then
the behavior of functions of time into these periods of time
is not informing. But the considerable calculable resources
are spent on the receipt of just the same information. From
said follows expediency of transition from the model (10)
where continuous time is used, to the model with discrete
time t � 0, 1, 2, . . .. So we specify that the values S, I , R
are known in equidistant periods of times. Consequently, we
must replace in (10) all differentials by differences so that
sense of differences corresponded to sense of right parts of
equalizations. Therefore, we will replace dS(t) by the differ-
ence S(t)−S(t−1), dI (t)—by the difference I (t)− I (t−1),
dR(t)—by thedifference R(t)−R(t−1).Alsowewill replace
dt by the difference t − (t − 1) � 1. To underline that values
S, I , R are the functions of discrete time, we will specify
their argument t in an index further, for example St . Taking
into account said, from (10), we have

St � St−1 − r0
NTinf

St−1 It−1,

It � It−1 +
r0
NTI

St−1 It−1 − 1

TI
It−1,

Rt � Rt−1 +
1

TI
It−1.

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(11)
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Here r0
/
TI means the number of contacts of infected person

with susceptible ones for one period of time, chosen in the
model as the unit of counting (twenty-four hours, week, etc.).
We will notice that in (10) the same value does not have such
clear sense.

The SIR models for discrete time described in the litera-
ture coincide with (11). Thus, the deterministic SIR model,
studied in [1], is identical to (11) if the demographic pro-
cess is excluded from it. The same can be said about the SIR
model for discrete time in [22] if the variable, the number of
unrecovered (dead) people, is excluded from it.

A model (11) has the same drawbacks as (10), discussed
above, plus one more drawback: (11) is an approximation of
(10), more about it later, after Statement 1.

To remove them, we will generalize expression (6). We
will replace in it the density of exponential distribution
on an arbitrary not increasing on a nonnegative numerical
axis nonnegative function q(τ ) such that lim

τ→∞ q(τ ) � 0,
∞∫

0
q(τ )dτ � 1, what gives:

i(t) � r0
N
S(t)

∞∫

0

q(τ )i(t − τ )dτ (12)

Let us put

q(τ ) � Q(τ )

Q�

, Q(0) � 1, Q� �
∞∫

0

Q(τ )dτ (13)

where Q(τ ) ≥ 0 is an arbitrary non-increasing nonnegative
function defined on [0, ∞), and lim

τ→∞ Q(τ ) � 0. This func-

tion characterizes the infectivity of the infected person.
Then

i(t) � r0
NQ�

S(t)

∞∫

0

Q(τ )i(t − τ )dτ (14)

Let now t ≥ 0, integer. Then from (14), we have it �
r0

NQ�
St−1

∞∑
τ�0

Qτ it−1−τ . Let us add one more to this equa-

tion: St � St−1 − it , St ≥ 0. Then we obtain a system
of equations for discrete time, in which the fourth equation
describes the recovery process in the form of the distributed
lag model:

St � max(0, St−1 − it ),

it � r0
NQ�

St−1 It−1,

It−1 �
∞∑

τ�0

Qτ it−1−τ

Ut �
∞∑

τ�0

hτ it−1−τ ,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15)

where Q� �
∞∑

τ�0
Qτ .

In (15), it is a number of infected people in the period of
time t ; It is a number of active infected people before the
period of time t—an analogue of (3) for discrete time; τ is
the time shift backward (integer number of periods of time);
Ut is a quantity of recovering or not recovering (the dead)
people in the period of time t ; and hτ ≥ 0 is a lag coefficient.

It follows from the definition of Ut and non-negativity of
hτ that

∞∑

τ�0

hτ � 1 (16)

According to the terminology [6, 14], we will name the
sequence of coefficients of lag in (15)

hτ , τ � 0, 1, 2, . . . (17)

by the lag structure of treatment. It is infinite in this case,
because consists of infinite number of coefficients of lag.
According to (16), since hτ ≥ 0

0 ≤ hτ ≤ 1 (18)

The lag structure, satisfying (16), (18), is named normal-
ized.Here h0 is a part of number of infected (diseased) people
that were ill 1 period of time, h1 is a part of being ill 2 periods
of time, h2 is a stake of being ill 3 periods of time,…, hτ is
a part of being ill τ periods of time. Thus, in (15) hτ it−1−τ

is part of the people infected in the period of time t − 1 − τ

that recovered or died to the period of time t − 1.
According to (16) and (18), it is possible to examine hτ

as probability of event that the infected person will be ill τ

periods of time. Such interpretation of hτ results in a conclu-
sion that, in (15),Ut is the average number of recovered and
not recovered (the dead) persons in the period of time t .
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If the lag structure is finite: hτ , τ � 1, 2, . . . , τR ; Qτ ,
τ � 1, 2, . . . , τI , τI ≤ τR , than (15) has a view:

St � max(0, St−1 − it ),

it � r0
NQ�

St−1 It−1, Q� �
τI∑

τ�0

Qτ ,

It−1 �
τI∑

τ�0

Qτ it−1−τ

Ut �
τR∑

τ�0

hτ it−1−τ .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(19)

As it applies to the model (19) it is simpler to under-
stand the meaning of basic number of reproduction of r0.
We will present that, in a population, only one infected
person appeared in the period of time t − 1. Then, for
large N , it is possible to consider St−1 � St � St+1 �
· · · � St+τI

� N . According to (19) in the period
of time t , one man will infect r0Q0St−1

/
NQ� peo-

ple on the average, after 1 period—r0Q1St
/
NQ� peo-

ple, after 2 periods of time—r0Q2St+1
/
NQ� people, etc.

to r0QτI St+τI−1

/
NQ� . As a result, for all the time,

while a person is the carrier of infection, he will infect(
r0Q0 + r0Q1 + r0Q2 + · · · + r0QτI

)/
Q� � r0 people.

Thus, r0 is a number of susceptible people that at the begin-
ning of epidemic can be infected by one infected person for
time, when he is contagious. Therefore, the number of repro-
duction depends on the density of distribution of people in a
population and its quantity.

We introduce the function

Ht �
t∑

τ�0

hτ (20)

that, according to (16), (18), is such that

(21)

H0 � 0; 0 ≤ Ht ≤ 1; t � 1, 2, . . . ,

τR ; HτR � 1; Ht � 1; t > τR

We will define now in (19) values Qτ , τ � 1, 2, . . . , τI
that we will call the infection lag coefficients. According to
(19) the number St of susceptible people in the period of time
t cooperate with infected ones in periods of time t−1, t−2,
t −3, . . . , t − τI , part of them had recovered to the period of
time t . We will define the number of remaining contagious
(not yet recovered) people in indicated by τI periods of time.

All people, infected in the period of time t , are the carriers
of infection. Therefore, Q0 � 1 − H0−1 � 1. In the period
of time t − 1, the part of carriers of infection will make
Q1 � 1−H0 � 1−h0. Analogously, we get Q2 � 1−H1 �
1 − (h0 + h1). In general case by account of (21)

Q0 � 1, Qτ � 1 − Hτ−1 � 1 − (
h0 + h1 + h2 + · · · + hτ−1

)
,

τ � 1, 2, . . . , τI ;

Qτ � 1 − Hτ−1 � 0, τ > τI .

(22)

Formula (22) can be applied for the infinite lag structure,
when τI � ∞. In this case the second equality in (22) is not
required.

The systems of Eqs. (15) and (19) can be written more
compactly. To do this, we introduce the concept of a shift
operator in time backward by one period of time: L ft � ft−1,
where ft is an arbitrary function of discrete time t . Then,

τR∑

τ�0

hτ it−1−τ �
(∑τR

τ�0
hτ L

τ
)
it−1 � WR(L)it−1

where WR(L) � ∑τR
τ�0 hτ Lτ in accordance with [14] we

will name the transmission function of the treatment lag.
In the formula, τI can be both finite and infinite value for

WR(L). At the same time,
τR∑

τ�0
hτ � 1; therefore, in (15),

(19) Q� � ∑τI
τ�0 Qτ will be a finite value, if τI � ∞.

Not to estimate the infinite number of coefficients of lag in
(15) that is impossible, WR(L) is expedient to describe by
a fractional–rational function L with the not high degree
of polynomials of numerator and denominator [14]. The
structure of treatment lag of the known fractional–rational
function WR(L) is determined on simple enough formulas
[14]. In case of infinite lag structure, its replacement by finite
structure consists of determination of such maximal lag τR ,
for that, for example,

∣∣1 − ∑τR
τ�1 hτ

∣∣ ≤ 0, 05, τR < ∞.
Analogously we will enter the transmission function of

infecting wI (L):

τI∑

τ�0

Qτ it−1−τ �
(

τI∑

τ�0

Qτ L
τ

)

it−1 � wI (L)it−1

Then

Q� �
τI∑

τ�0

Qτ � wI (1) (23)

Taking into account the entered designations, we have
from (15) and (19) for the case of vaccination

St � max(0, St−1 − it − vt ),

it � r0
N
St−1 I t−1,

I t−1 � WI (L)it−1,

Ut � WR(L)it−1.

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(24)
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where vt is a number of vaccinated people in t th period of
time that are immune to the infection; I t−1 � It−1

/
Q� is

the average number of infected people in t − 1th period of
time; WI (L) � wI (L)

/
wI (1) � ∑τI

τ�0 qτ Lτ ; and τI is a
finite or infinite value.

Transmission functionWR(L) in (24) can be evaluated on
time series Ut and it , t � 1, 2, . . . by methods [6, 14]. To
find WI (L), if WR(L) is a polynomial or fractional–rational
function, we will define connection of these transmission
functions.

Theorem 1 If durations of recovery and active infecting are
random nonnegative integer values, then

(25)

WI (L) � 1

wI (1) (1 − L)
(1 − LWR(L)) ,

wI (1) � lim
s→1

1

1 − s
(1 − sWR(s))

Proof If the lag structure of recovery (17) satisfies to the
conditions (16), (18), then it can be considered as the law
of distribution of integer random value with some generat-
ing function WR(s). Then

WR (s)
1−s is a generating function of

sequence Ht , t � 0, 1, 2, . . ., given in (20). For a sequence
Ht−1, t � 1, 2, . . ., there is a generating function sWR (s)

1−s .
From here, using a theorem 1 in [7], chapter XI, we get the
generating function of the sequence Qt , t � 0, 1, 2, . . . in
(22).

wI (s) � 1

1 − s
(1 − sWR(s)) (26)

From (26), we get the generating function of duration of
infecting

WI (s) � wI (s)

wI (1)
� 1

wI (1)(1 − s)
(1 − sWR(s)) (27)

where wI (1) � lim
s→1

wI (s), and concordantly (23), Q� �
wI (1).

Replacing in (27) s by an operator L , we will get expres-
sions for transmission functions in an operator form (25).♦

It is necessary to use expression (25) if WR(s) is frac-
tional–rational function. If WR(s) is a polynomial, then
establishing a connection of structures of recovery lag and
active infecting lag consists in determination of sequence
Qτ , τ � 0, 1, 2, . . . , τI on a formula (22) that follows from
(26). After that, according to (27), we obtain coefficients
qτ � Qτ

/
Q� , τ � 0, 1, 2, . . . , τI , of function WI (s), Q�

is set by (23).

Corollary 1 Let (1) duration of recovery be described by the
geometrical law of distribution with the generating function
WR(s) � (1−p)

(1−ps) , 0 < p < 1; and (2) durations of recovery

and active infecting coincide. Then duration of the active
infecting also submits to this law: WI (s) � (1−p)

(1−ps) .

Proof From (26), we have wI (s) � 1
(1−ps) . From here,

wI (1) � 1
(1−p) . Then according to (27) WI (s) � WR(s) �

(1−p)
(1−ps) . Thus, if recovery lag submits to the geometrical law,
then actively infected people lag is described by the same
law with the same parameter p.♦

An important special case of (24) should be considered.
Statement
(discrete-time model SIR). From the general system of

Eq. (24), the model with variables St , It , Rt follows for
WI (s) � (1−p)

(1−ps) :

St+1 � max

(
0, St − r0(1 − p)

N
St It

)
,

It+1 � It +
r0(1 − p)

N
St It − (1 − p)It ,

Rt+1 � Rt + (1 − p)It .

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

Proof Toprove the statement, it is necessary towriteEq. (24)
for WI (s) � WR(s) (according to Corollary 1) using the
variables St , It , Rt . Therefore, let us turn to (15) which is
another form of representation of system (24). For the geo-
metric distribution law of the treatment lag, its coefficients
are hτ � (1 − p)pτ , τ � 0, 1, 2, . . .. Hence, according
to (20) Hτ−1 � (1 − pτ ), τ � 1, 2, . . .. According to
(22), we obtain Qτ � pτ , τ � 0, 1, 2, . . ., which gives
Q� � (1 − p)−1 in (15). Then it follows from the second
equation in (15) that it � r0(1−p)

N St−1 It−1. If St ≥ 0, then
St − St−1 � −it , which gives.

St − St−1 � −r0(1 − p)

N
St−1 It−1

From the fourth equation in (24) and the conditions of this
statement, we have

Ut − pUt−1 � (1 − p)it−1

From here, we get

∑t

j�0
Uj − p

∑t

j�0
Uj−1 � (1 − p)

∑t

j�0
i j−1

Considering the initial condition to be zero: Ut � it � 0,

t < 0, we have
∑t

j�0Uj � Rt ,
∑t

j�0Uj−1 �
t−1∑

j�0
Uj �

Rt−1,
t∑

j�0
i j−1 �

t−1∑

j�0
i j � Rt−1 + It−1. It follows from the

last four equalities that

Rt − Rt−1 � (1 − p)It−1 (28)
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Let us replace the functions of continuous time S(t), I (t),
R(t) in formula (1) by the functions St , It , Rt , respec-
tively, which gives for N � const the relation It − It−1 �
−(St − St−1) − (Rt − Rt−1). Substituting into it the dif-
ference equations obtained above for St and Rt , we have
It − It−1 � r0(1−p)

N St−1 It−1 − (1 − p)It−1. Combining this
formula with the mentioned equations for St and Rt (tak-
ing into account the non-negativity of St ) gives the desired
model.♦

It does not coincide exactly with the system of Eqs. (11),
which follows from the model SIR of Kermack and McK-
endrick by replacing differentials in it by differences. The
discrepancy appeared due to different first equations and dif-
ferent coefficients at It in all equations, since 1

TI
� (1−p)

p 	�
1 − p for 0 < p < 1. Here TI � p

/
(1 − p) is the expecta-

tion of the duration of infecting, distributed according to the
geometric law. The discrepancy is due to the fact that (11) is
an approximation of a model SIR with an exponential law of
infecting duration distribution, while the model formulated
in Statement 1 is based on the description of the durations of
all processes by a geometric distribution law.

The graphs It for themodel (11) and themodel SIR for dis-
crete timeunder the condition thatmathematical expectations
of duration of infecting, distributed according to exponen-
tial and geometric laws, are the same and equal to TI , are
shown in Fig. 4. Figure 4 shows that the discrepancy between
the two curves is significant. For example, for t � 70
I70 � 0.678·106 (discrete-timemodel SIR), I70 � 1.953·106
(model (11)).

The system of equations with variables, obtained in State-
ment 1, is equivalent to the systemof equationswith variables
St , it , Ut , which is the particular case of (24):

(29)

St � max (0, St−1 − it ) , it � r0St−1

N
I t−1,

I t−1 � (1 − p)

(1 − pL)
it , Ut � (1 − p)

(1 − pL)
it−1

We note that in the model (29) the population value can be
variable over time, while the model in Statement 1 assumes
its constancy.

The important feature of the model (29) follows from
said—it corresponds to the process of recovery when greater
part of people recover for short time. Such situation is met
not always. Then the distribution law mode will be not zero.
The example of such situation is a structure of treatment lag,
corresponding to the law of Pascal distribution. Other exam-
ple, when this structure is a sum of n independent random
values which have a geometrical law of distribution [19]. In
both cases, a generating function of law of distribution (17)
is a fractional–rational function s.

In first case (Pascal distribution), lag coefficients in (17)
and their generating function:

(30)

ht � (1 − p)2 pt (t + 1), 0 < p < 1, WR(s)

� (1 − p)2

1 − 2ps + p2s2
, t � 0, 1, 2, . . .

Calculating the first difference �ht+1 � ht+1 − ht and
equating it to the zero, we will get a formula for the mode of
Pascal distribution.

tm �
[
2p − 1

1 − p

]
, p > 0, 5,

where [a] means rounding off a to the nearest bigger integer.
The law of distribution and the generating function of the

sum of n independent random values with the geometrical
law of distribution are

(31)

ht �
n∑

i�1

Ci p
t
i , WR(s) �

n∏

i�1

1 − pi
1 − spi

, h0

�
n∏

i�1

(1 − pi ); pi 	� p j , i , j � 1, . . . , n, i 	� j

where constantsCi , i � 1, . . . , n, are functions of pi , i � 1,
. . . , n and h0.

At n � 2 and p1 � p2, a generating function in (30)
follows from a generating function in (31).

According to (30), (31) for these distributions, h0 	� 0.
If it is impossible to ignore a value h0, and infecting and

recovery for the same twenty-four hours do not correspond
to the real data, it is possible, inWR(s), to enter a constant lag
τ0—minimal interval of time necessary for treatment. Then
WR(s) will have a view

WR(s) � sτ0k

A(s)
� WR(s)s

τ0 (32)

where k is a constant andA(s) is a polynomial of s.
It is possible to go by another way, decreasing h0 in dis-

tribution (31). Then it is necessary to increase n as it follows
from this formula. However, the mathematical expectation
and the mode of distribution (31) will increase here that is
not always acceptable. An attempt, increasing n at preserva-
tion of these descriptions of distribution (31), results in small
reduction of h0. The said is illustrated in Figs. 1, 2 and3 for
τ0 � 0 in (32).

Thus, (32) remains as the cardinal method of reduction of
h0.

In conclusion, we present a connection diagram
of the main models described in this paragraph, see
Fig. 5@@@@@.

123



Dynamic models of epidemiology in discrete time taking… 2201

3 Solution analysis of Eqs. (24) system

The solution of (24) is determined by the first three equations
of this system, because a dynamics of Ut is fully set by a
change of it .

From the second and third equations in (24), we have

(33)(1 − gtWI (L)L) it � 0

where

gt � r0
N
St−1, r0

S∞
N

≤ gt ≤ r0
S0
N

≤ r0,

S∞ � lim
t→∞ St , S∞ ≥ 0 (34)

Equation (33) is linear homogeneous difference equation
of nth order with variable coefficients, where n is an order of
polynomial in a denominator WI (L), if WI (L) is a fraction-
al–rational function. If WI (L) is a polynomial, then n � τI .

A solution of (33), which is identically not equal to the
zero, turns out for nonzero initial conditions, i.e., corresponds
to appearance of the infected people in a population. It initi-
ates a change of their number, which is a transition process
in a population from one stable state to another.

From (33), because according to explanation to formula

(24) WI (L) �
τI∑

τ�0
qτ Lτ , where τI can be a finite or infinite

value, we have

it � gt

τI∑

τ�0

qτ it−1−τ � gt I t−1 (35)

where 0 ≤ qτ ≤ 1; τI≤ ∞.
We will consider, as qτ in (35) is changing, if in (32)

τ0 	� 0. In this case, we have from (26).

wI (s) �
(

1

1 − s
− sτ0

1 − s

)
+

1

1 − s

(
1 − sW R(s)

)
sτ0

� wI1(s) + wI2(s)

The generating function wI1(s) �
(

1
1−s − sτ0

1−s

)
�Q0 +

Q1s + · · · + Qτ0−1sτ0−1, where Q0 � Q1 � · · · � Qτ0−1 �
1, in the time domain, corresponds to the function

ft1 �
{
1, 0 ≤ t ≤ τ0 − 1, τ0 ≥ 1,

0, t ≥ τ0, τ0 ≥ 1.

A generating function wI2(s) �
(1 − s)−1(1 − sW R(s)

)
sτ0 is product multiplication of

rational (polynomial) or fractional–rational function s to
sτ0 . The function ft2 � 0, 0 ≤ t ≤ τ0 − 1, corresponds it. If
ft2 is a fractional–rational function, then for t ≥ τ0 it either
exponentially decreases to the zero or has one maximum

and also converges to the zero, as on a Fig. 3, Fig. 4, Fig. 1.
Otherwise a function ft2 has arbitrary values on an interval
[τ0, τI ], τI < ∞.

Thus, we get that in general case in (35).

I t−1 �
τI∑

τ�0

qτ it−1−τ �
τ0−1∑

τ�0

qτ it−1−τ

+
τI∑

τ�τ0

qτ it−1−τ , q0 � q1 � · · · � qτ0−1

Thus, if there is a constant lag in (32), then at first τ0
periods of time contagiousness of infected will be identical
and maximal. If it is known that ability of transmission of
infection decreases, since the period of time, when it was
received, then a variable τ0 needs to be decreased to the nec-
essary value, maybe to the zero, in a transmission function
WR(s) in a formula (26).

Now we will define the character of function gt changing
in (35).

Lemma 1 Let: (1) quantity N of population in time is con-
stant, vt � 0; 2) St−1 > 0, 3) in a sequence

{
it−1−τ

}
, τ � 0,

. . . , τI , there is at least one member more than zero. Then
gt > gt+1.

Proof We will suppose opposite that gt � gt+1 (other alter-
natives are not present). From here, it follows that St−1 � St .
Then from the first equation in (24), we will get it � 0. But
according to (35) and assumption 3) I t−1 > 0. Therefore,
from the second equation in (24) we get St−1 � 0. We came
to contradiction with assumption 2) that completes the proof
of the lemma.♦

Thus, for a finite t , limit number of infected people it−τ ,
τ � 1, 2, . . . , τmax, according to (35) it � 0 only, if gt � 0
that gives St−1 � 0 and means the end of the transition
process in the population.

Let us study the properties of the transient process. We
will consider the particular case (33) at first, when duration of
recovery is described by the geometrical law of distribution.
Then according to Corollary 1 WI (s) � (1−q)

(1−qs) . From here
and (33), we have difference equation of the first order

(1 − at L) it � 0 or it � at it−1 (36)

where at � q + gt (1 − q).
Thus, the only coefficient of Eq. (36) is the linear function

gt . Solution of this equation

it � i0a1a2 . . . at � i0

t∏

τ�1

aτ (37)

If in the initial period of time t � 0 we do not have the
infected people, i0 � 0, then it � 0 due to the limitation of
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gt according to (34), for any t > 0. Let i0 > 0, gt∗ ≤ 1. By
virtue of strictly monotonic decrease of at that is determined
by the same change of gt , it → 0 also strictly monotonously
as t → ∞, if S∞ � lim

t→∞ St ≥ 0. In this case duration

of transition process will be infinitely large. If St−2 > 0
and St−1 � 0 for some finite t , than, from equality St �
max(0, St−1 − it ), it follows that it � 0, t > 0. In this
case the duration of a transition process will be finished in
the period of time t , i.e., on a finite interval of time. These
reasoning prove such result.

Theorem 2 If the process of development of epidemic is
described by the model (24) at vt � 0, ∀t , in that the dura-
tion of treatment lag is distributed on a geometrical law, then
a population will be steady to the infection in an arbitrary
period of time t � t0, when gt∗ ≤ 1. In this case, the number
of infected people it in the period of time t > t0 will con-
verge asymptotically to the zero with the increase of time at
lim
t→∞ St ≥ 0: lim

t→∞ it � 0, t > t0. Other variant of transition

process, when for some point t � t∗ it will be St∗−2 > 0,
St∗−1 � 0 that draws St � it � 0, t ≥ t∗.

If gt∗ > 1, then a population will be unstable to the
infection. In this case it will monotonously increase to some
t � t∗, for that gt∗ � 1. Then according to (37) because of
strictly monotonous reduction of gt the number of infected
will decrease to the zero, as well as in case of population
which is stable to the infection.♦

This theorem gives a sufficient condition to stability of
population to the infection, because it can be that gt > 1 and
q < at < 1.

We will consider a general case now.

Theorem 3 Let the process of development of epidemic be
described by a model (24), where vt � 0, ∀t ; dependence it
on an amount of infected people in previous periods of time

is determined by formula (35), in that
τI∑

τ�0
qτ � 1, qτ ≥ 0,

τ � 0, . . . , τI . A sequence {it−τ } � it−1, it−2, it−1, . . . is
given. Then inequality gt∗ ≤ 1 is the sufficient condition of
stability of population to the infection in the period of time
t :

lim
τ→∞ ir+τ � 0 or it+τ � 0, τ ≥ τ ∗, τ ∗ is finite, in addition

ir+τ ≤ c, ∀τ ≥ 0, c � max
τ≥0

it−1−τ .

Proof Let an initial sequence has identical members, equal
to c:

c � it−1 � it−2 � it−1 � · · · (38)

In accordance with (35), coming from (38), we will define
a sequence.{

i t+τ

}
, τ � 0, 1, 2, . . ..

1) Suppose, at first, that τI � ∞. We have concordantly

(35) and conditions of the theorem i t ≤ gtc
τI∑

τ�0
qτ � gtc. In

accordance with (38)

i t ≤ i t−1 (39)

For the subsequent periods of time, taking into account
monotonous decrease of gt , according to Lemma 1, we have

i t+1 � gt+1 I t , I t ≤ q0
(
i t − c

)
+ c, I t−1 ≤ c ⇒ I t ≤ I t−1

i t+1 � gt+1 I t < gt I t ≤ gt I t−1 � i t

i t+2 � gt+2 I t+1, I t+1 � q0
(
i t+1 − c

)
+ q1

(
i t − c

)
+ c I t

≤ q0
(
i t − c

)
+ c ⇒

⇒ I t+1 ≤ I t

i t+2 � gt+2 I t+1 < gt+1 I t+1 ≤ gt+1 I t � i t+1

Continuing, for some j ≥ 1, we will get

i t+ j−1−τ ≤ i t+ j−2−τ , τ � 0, . . . , j − 1 (40)

This inequality is turning into strict inequality at τ � 0,
. . . , j − 2.

We will show that i t+ j < i t+ j−1, where i t+ j−1 is the
result of monotonous decrease in the number of infected that
corresponds to (40). We have taking into account (38).

i t+ j � gt+ j

j−1∑

τ�0

qτ i t+ j−1−τ + gt+ j

∞∑

τ� j

qτ i t+ j−1−τ

� gt+ j

j−1∑

τ�0

qτ i t+ j−1−τ + gt+ j c
∞∑

τ� j

qτ

Analogously.

i t+ j−1 � gt+ j−1

j−1∑

τ�0

qτ i t+ j−2−τ + gt+ j−1

∞∑

τ� j

qτ i t+ j−1−τ

� gt+ j−1

j−1∑

τ�0

qτ i t+ j−2−τ + gt+ j−1 c
∞∑

τ� j

qτ

According to Lemma 1, gt is strictly monotonously
decreasing function; therefore, from the last two inequali-
ties concordantly (40) we have

i t+ j − i t+ j−1 < gt+ j−1

j−1∑

τ�0

qτ

(
i t+ j−1−τ − i t+ j−2−τ

) ≤ 0
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From this inequality and (40), it follows

i t+ j < i t+ j−1, j ≥ 1 (41)

2) Let now τI is a finite value. Then c � max
0≤τ≤τI

it−1−τ .

Thinking like in the case 1), we will get inequalities.

I t ≤ q0 (it − c) + c, I t+1

� q0
(
i t+1 − c

)
+ q1

(
i t − c

)
+ c, . . . ,

I t−2+τI � q0
(
i t−2+τI − c

)
+ q1

(
i t−3+τI − c

)

+ · · · + qτI−2
(
i t − c

)
+ c,

I t−1+τmax � q0
(
it−1+τmax − c

)
+ q1

(
i t−2+τI − c

)
+ · · ·

+ qτI−2
(
i t+1 − c

)
+ qτI−1

(
i t − c

)
+ c,

from that we have like in the case 1)

i t−1+τI < i t−2+τI < · · · < i t ≤ i (42)

To obtain inequality of the form (42) for the large values
of t , we will use relations

(43)

i t+ j � gt+ j

τI∑

τ�0

qτ i t+ j−1−τ , i t+ j−1

� gt+ j−1

τI∑

τ�0

qτ i t+ j−2−τ 〈 j � τI , τI + 1, . . .〉

From here, we have

i t+ j − i t+ j−1 < gt+ j−1

τI∑

τ�0

qτ

(
i t+ j−1−τ − i t+ j−2−τ

)
(44)

From this inequality, using (42), for arbitrary j ≥ 1 we
get

i t+ j−1 < i t+ j−2 < · · · < i t ≤ i t−1

which corresponds to (40).
From (44), because i t+ j−1−τ − i t+ j−2−τ ≤ 0, τ � 0, . . . ,

τI , concordantly (40), it follows that i t+ j < i t+ j−1.
Thus, for a finite and infinite value τI , the number of

infected i t+τ is strictlymonotonously decrease, at least, since
τ � 1. Therefore, i t+τ ≤ c, ∀τ ≥ 0. By virtue of restriction
i t+τ ≥ 0 there is a limit lim

τ→∞ ir+τ � i∞ ≥ 0. Function of

time St , also monotonously decreasing, can become equal to
0 for some finite t according to the first equation in (24) or
asymptotically approach the limit S∞ ≥ 0.

3) Let St → S∞ ≥ 0 at t → ∞. Then from the first equal-
ity in (24), it follows that i∞ � lim

τ→∞ it+τ � 0. Otherwise,

when St+τ−1 > 0, St+τ � 0 for some finite time t + τ , we
have i t+τ+l � 0, l ≥ 1. Consequently, always i∞ � 0.

We will compare now sequences
{
i t+τ

}
and {it+τ }, τ � 0,

1, 2, . . .An initial sequence (38) generates the first sequence.
The second sequence is generated by a sequence of general
view {it−τ } � it−1, it−2, it−3, · · ·. For some θ ≥ 0 concor-
dantly (35), we have

i t+θ � gt

τmax∑

τ�0

qτ i t+θ−1−τ , it+θ � gt

τmax∑

τ�0

qτ it+θ−1−τ

If i t+θ−1−τ ≥ it+θ−1−τ for ∀τ ≥ 0, then i t+θ ≥ it+θ .
Thinking in the same way, we get sequentially i t+θ+1 ≥
it+θ+1, i t+θ+2 ≥ it+θ+2,… Because it−1 ≤ c, it−2 ≤ c,
it−3 ≤ c, · · ·, from the brought reasoning, it follows that
i t+τ ≥ it+τ , ∀τ ≥ 0. It was shown above that c ≥ i t+τ ,
∀τ ≥ 0. Consequently, c ≥ i t+τ ≥ it+τ , ∀τ ≥ 0. From this,
the rest of the statements of the theorem follow.♦

Corollary 2 Let an epidemic begin in the period of time
t � 0: i0 > 0, and S−1 � N , i−1 � 0. Restrictions on the
coefficients of lag in (35) are the same that in Theorem 3.
Then g0 � r0 ≤ 1 is the sufficient condition of stability of
population to the infection in this period of time.

Proof We have S0 � N − i−1, consequently, g1 < 1. From
(35), we get i1 � g1q0i0 < i0. Thinking further, as well as in
1) and 2) of proof of Theorem 3, we will get it < i0, t ≥ 1.
Then like in 3) of this proof, we have lim

t→∞ it � 0.♦

Similar result is given by the threshold theorem of math-
ematical epidemiology for continuous time. The flash of
epidemic takes place if and only if when r0 > 1. Otherwise,
the infection disappears.

According to Theorem 3 gt , it is possible to use for the
prognosis of time period, when a number of infected will be
maximal. For this purpose, it is needed to have a forecast of
the susceptible number. The result obtained is the period of
time after which the number of infected people is guaranteed
to decrease. This clarification is explained by that at a value
gt > 1, near by 1, the value of it may begin to decrease
because condition of Theorem 3 is sufficient.

4 Model in presence of latent period
in infection

In this case, there is a time interval of random length, during
that a person is infected, but is not contagious.Wewill denote
the number of such people in a time period t by et (et is the
first letter of word exposed). Generalizing (24), we will get
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a corresponding model:

St � max(0, St−1 − et − vt ),

et � r0
N
St−1 I t−1,

I t−1 � WI (L)it−1,

it � WE (L)et ,

Ut � WR(L)it−1,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(45)

whereWE (L) is a latent state transmission function or in the
other wordsWE (s) is the generating function of the duration
of the latent state is a random variable.

Statement 2
(discrete-time model SEIR). From (45) for WI (s) �

(1−p)
(1−ps) , WE (s) � (1−pE )

(1−pE s)
It follows a model that is equiva-

lent to the model continuous-time SEIR:

St � max

(
0, St−1 − r0(1 − p)

N
St−1 It−1

)
,

Et � Et−1 +
r0(1 − p)

N
St−1 It−1 − 1

TE
Et ,

It � It−1 +
1

TE
Et − (1 − p)It−1,

Rt � Rt−1 + (1 − p)It−1,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

where TE � pE
/

(1 − pE ) is the mathematical expectation
of the duration of the latent state, distributed according to the
geometric law.

Proof To prove the statement, it is necessary to write
Eqs. (45) using the variables St , Et , It , Rt , taking into
account that according to Corollary 1 we have WI (s) �
WR(s).

Since the last equations in (24) and (45) are the same, the
fourth equation in this statement coincides with (28).

For the condition of this statement, the third equation
in (45) follows the equality (1 − pE L)it � (1 − pE )et ;
moreover, et � it � 0, t < 0. Let us sum both its parts

from 0 to t :
t∑

j�0
i j − p

∑t
j�0 i j−1 � (1 − p)

∑t
j�0 e j−1.

We have
∑t

j�0 i j � It + Rt ,
∑t

j�0 i j−1 � ∑t−1
j�0 i j �

It−1 + Rt−1,
∑t

j�0 e j−1 � ∑t−1
j�0 e j � Et−1 + Rt−1 + It−1.

After transformations, we obtain from the last four equali-
ties that It � It−1 +

(1−pE )
pE

Et − (Rt − Rt−1). Taking into
account (28), the third equation in the statement assertion
follows from here. The second equation in it is obtained
from the equality following from the condition N � const :
Et − Et−1 � −(St − St−1) − (It − It−1) − (Rt − Rt−1).
According to Statement 1, St − St−1 � − r0(1−p)

N St−1 It−1.
Let us substitute this difference, aswell as the growth increase
in the numbers of infected and recovered, which follow from

the above formulas for It , Rt , into the right side of the expres-
sion for Et − Et−1. After the transformation, we get the
second and first equations in the statement.♦

Let us now transform the model SEIR [3], p. 6.5 to dis-
crete time, replacing differentials by differences, similarly to
derivation of (11). We have

St � max

(
0, St−1 − r0

NTI
St−1 It−1

)
,

Et � Et−1 +
r0
NTI

St−1 It−1 − 1

TE
Et ,

It � It−1 +
1

TE
Et − 1

TI
It−1,

Rt � Rt−1 +
1

TI
It−1.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

This model is an approximation of SEIR for continuous
time and is different from the model SEIR for discrete time.
This difference is illustrated in Fig. 5. A significant differ-
ence in the curves for the number of infected It is shown in it.
For example, for t � 127 I127 � 1.410 · 106 (discrete-time
model SEIR), I127 � 0.413·106 (model SEIR approximation
for continuous time). Turning to the comparison of models
SIR, see above, we come to the conclusion that the models
discrete-time SIR and SEIR, which are special cases of (29)
and (45), respectively, differ from the discrete approxima-
tions of these models that can lead to a significant difference
in the variables of the same name. For discrete time, mod-
els of the first type are adequate, since they are based on
the geometric law of the distribution of integer durations of
the latent period, infecting and other processes. Models of
the second type use the exponential law, which is the law of
distribution of a continuous random variable, to describe the
same processes in discrete time.

Stability of population to the infection, if its distribution
is described by (45), is in a next statement.

Theorem 4 Let the process of development of epidemic be
described by the model (45) in which all transmission func-
tions of lag are a polynomial from L or a fractional–rational
function of L and WI (1) � WE (1) � 1. Then the sufficient
condition of stability of population to the infection in the time
period t is inequality gt ≤ 1, gt � r0

N St−1.

Proof We have from (45).

et � gtWI (L)WE (L)et−1 (46)

Behavior of et , being described by this expression, deter-
mines stability of population to the infection. We will find
condition for that a sequence et , et , et , . . . will be not non-
increasing for arbitrary t .
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According to said above, WI (s) is generating function of
sequence {qτ }, τ � 0, . . . , τI . We will enter a nonnegative
sequence {dτ }, τ � 0, . . . , τE , generating function of which
isWE (s). This sequence makes sense as the structure of tran-
sition lag from latent to the infected state. ThenWI (s)WE (s)
is a generating function of sequence {ητ }, τ � 0, . . . , τmax,
τmax � τI τE is convolution of previous two sequences:
{ητ } � {qτ } ∗ {dτ } or more detailed

ηθ �
∑τmax

τ�0
qτdθ−τ ≥ 0 (47)

because sequences {qτ } and {dτ } are nonnegative. On the
other hand, WI (1)WE (1) � 1, because WI (1) � WE (1) � 1
on conditions of the theorem. From here and (47), it follows
that

∑τmax

τ�0
ητ � 1 (48)

From (46), we have

et � gt
∑τmax

τ�0
ητ et−1−τ � gt Et−1 (49)

where Et is the average number of people in a latent state in
the time period t .

The expression (49) with the accuracy to the designations
coincides with formula (35). Therefore, applying to (49) all
reasoning at proof of Theorem 3, wewill get that for arbitrary
t at implementation of terms of this theorem, limτ→∞ er+τ �
0, if S∞ > 0. If St+τ � 0 for some finite time t + τ , we have
et+τ+l � 0, l ≥ 1. Then from (45), we have lim

τ→∞ ir+τ � 0 or

ir+τ � 0 for finite t +τ , what completes proof of the theorem.
We will consider a situation now, when at presence of

latent period the part of the infected people are ill without
symptoms (type 1), and other part (type 2) are isolating them-
selves (easy form of illness) or hospitalized (heavy form of
illness). People of type 1 do not pass testing on a presence for
them of infection, do not treat them self and do not appear in
statistics of diseased and recovered unlike the people of the
second type. We will consider that such people pass testing
not immediately, as they become contagious, but through an
interval of time of random length with a generating function
Wc(s).

We will denote: � j is a number of people of j th type
( j � 1, 2); et j and it j are number of people of j th type in
t th period of time, respectively, getting the hidden form of
infecting andbecoming contagious; I t j is the averagenumber
of infected (contagious) j th type in the period of time t ; Ut j

is a number of recovered people of j th type in the time period
t (Ut2 includes non-recovered). We will enter the generating
functions of durations of treatment and contagiousness of
people of j th type WRj (s) and WI j (s); it is a number of
infected of all types for time period t ; ict is a number of the

infected people of the second type, the infecting of which is
laboratory confirmed for time period t ; and et is a number of
people of all types getting the hidden form of infecting for
time period t .

For the brought values, we have

�1 + �2 � 1, et � et1 + et2, it � it1 + it2, it

� WE (L)et , it j � � jWc(L)it , ict � Wc(L)it2

(50)

A value ict is needed for its comparison with statistics of
the new infected people.

Based on (45) and (50), we obtain a model for the case
under consideration.

St � max
(
0, St−1 − et − vt

)
, et1 � r0

N
St−1 I t−1, 1,

I t−1, 1 � WI1(L)it−1, 1, et2 � r0
N
St−1 I t−1, 2,

I t−1, 2 � WI2(L)it−1, 2, et � et1 + et2, it � WE (L)et ,

it1 � �1it , it2 � �2it ,

Ut1 � WR1(L)it−1, 1, Ut2 � WR2(L)it−1, 2,

ict � Wc(L)it2.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Wewill assume that the duration of the time interval when
the sick is contagious is the same for both types of people.
Then previous expressions are simplified:

(51)

St � max (0, St−1 − et − vt ) , et1 � r0
N
St−1WI1(L)it−1, 1,

et2 � r0
N
St−1WI2(L)it−1, 2, et � et1 + et2,

it � WE (L)et , it1 � �1it , it2 � �2it ,

Ut1 � WR1(L)it−1, 1, Ut2 � WR2(L)it−1, 2, ict � Wc(L)it2.

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

Here WI1(L) is determined according to (26), (27), if to
put in these formulasWR(s) � WR1(s) andWI (s) � WI1(s)

responsibly, WI1(L). WI1(L) �
τI∑

τ�0
qτ Lτ , WI2(L) �

τI∑

τ�0
qτ ρτ Lτ , where 0 < ρτ ≤ 1 is a multiplier, taking into

account the reduction of probability of getting infected of
healthy man qτ in case of self-isolation and (or) hospitaliza-
tion of sick of the second type; τ is the duration of the time
interval, when a sick is contagious.

We will mark that at �1 � 1, (45) follows from (51).
We will suppose that, since the time period when the

results of testing in the presence of infection become known,
sick person of the second type is isolated. Then the time inter-
val during which a sick person is contagious is divided into
two non-overlapping intervals: 1) from the period of time,
when a sick person became contagious, to the period of time,
when his infection was confirmed by laboratory testing; 2)
the time interval, when a sick person is isolated and conta-
gious.
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Let a sequence (law of distribution) {cτ }, τ � 0, 1, 2, . . .,
corresponds to a generating function Wc(s), cτ is unimodal
function. We will enter the sets 	1 � {τ : cτ ≥ cτ−1},
	2 � {τ : cτ ≤ cτ−1, cτ ≥ ς},	 � 	1∪	2∪{0}, where
ς � 0.05(0.1). Then in the formula for WI2(L) in (51)

ρτ �
{
1, if cτ ∈ 	,

1
/
m, if cτ /∈ 	,

where m ≥ 1. Thus, it is allowed that in a state of isolation,
sick person canbe contagious in the periodof active infecting,
but with less intensity.

Taking into account said, from (51), we have

St � max
(
0, St−1 − et − vt

)
, et1 � r0

N
St−1

τI∑

τ�0

qτ it−1−τ , 1,

et2 � r0
N
St−1

τI∑

τ�0

qτ ρτ it−1−τ , 2,

et � et1 + et2, it � WE (L)et , it1 � �1it ,

it2 � �2it , ict � Wc(L)it2,

Ut1 � WR1(L)it−1, 1, Ut2 � WR2(L)it−1, 2.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(52)

The relationship between the models described in this
paragraph is shown in Fig. 7.

We will define the condition of stability to the infection
for a population that is described by a model (52). According
to Sect. 2 of this paper, r0 is a number of people that at the
beginning of epidemic can be infected by one person for
time, when they are contagious. Analogously, for the same
situation in the conditions of isolation of a person, a relation
r0

/
m means the number of people that can be infected from

one infected person. Consequently, r0 > r0
/
m and m > 1.

We put r0
m � n1 p1 + n2 p2, where n1 and n2 are numbers of

people that can be infected by one person under conditions of
self-isolation and during hospitalization responsibly; d1 and
d2 are proportions of people who are treated in self-isolation
and in hospitals, d1 + d2 � 1.

From the equality for r0
/
m, it follows that

m � r0
n1d1 + n2d2

(53)

We will denote: α � β + 1−β
m < 1, becausem > 1, where

β � ∑

τ∈	

cτ (	 is defined in a formula for ρτ , β—the of

sum cτ without the right tail of this distribution); W̃I2(L) �
α−1WI2(L). Besides, W̃I2(1) � 1, because WI2(1) � α.

From (52), we have

it j � � jWE (L)et , j � 1, 2 (54)

From here and (51), we get

et1 � r0
N
St−1WI1(L)WE (L)�1et−1 (55)

Poles of generating functions WI1(s) and WE (s) are real
and lie out of single circle. This their property follows from
that the laws of distributions of nonnegative integer random
values correspond to these functions. The poles of gen-
erating function WI1, E (s) � WI1(s)WE (s) coincide with
the poles WI1(s) and WE (s), and consequently, a sequence

Ht1 �
t∑

τ�0
ητ1, t � 0, 1, 2, . . . , τmax, τmax � τI1τE , is

strictly monotonously increasing. It is also bounded, and its
members are nonnegative and limited above by 1, because
H01 � η01 � W1, R(0) � WI1(0)WE (0) ≥ 0 and Hτmax, 1 �
W1, R(1) � WI1(1)WE (1) � 1. Here {ητ1}, τ � 0, 1, 2,
. . . , τmax, sequence that generates WI1, R(s). Thus,

(56)
τmax∑

τ �0

ητ1 � 1, ητ1 ≥ 0

According to (55), we have

et1 � r0
N
St−1�1

τmax∑

τ�0

ητ1et−1−τ (57)

With analogous reasoning, we will get from (51) and (54)
taking into account the designations entered above

et2 � r0
N
St−1α�2

τmax∑

τ�0

ητ2et−1−τ (58)

where
τmax∑

τ�0
ητ2 � 1, ητ2 ≥ 0.

Moreover, W̃I2(s) � α−1WI2(L) �
τmax∑

τ�0
ητ2sτ .

Adding the left and right parts of expressions (57) and
(58), taking into account balance equality in (51), we will
get

et � r0
N
St−1

τmax∑

τ�0

η̃τ et−1−τ , η̃τ � �1ητ1 + α�2ητ2

Denoting γ � �1 + α�2 ≤ 1, we get

et � gt

τmax∑

τ�0

ητ et−1−τ � gt Et−1 (59)

where gt � r0
N γ St−1.
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Fig. 6 Comparison of
discrete-time model SEIR with
the discrete approximation of the
continuous-time model SEIR.
Number of infected It for
N � 40 · 106, r0 � 1.5,
TI � TE � 2.33,
p � pE � 0.7

SEIR discret time
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Equality (59) in the designation given above coincides
with difference Eq. (49) that describes a stable to the infec-
tion population under the conditions of Theorem 4. Thus, the
following result is obtained.

Theorem 5 Let the process of development of epidemic be
described by a model (52). Then the sufficient condition of
stability of population to the infection in the time period t
is inequality gt ≤ 1. In it gt � r0

N γ St−1; γ � �1 + α�2;
α � β + (1 − β)

/
m ≤ 1; β � ∑

τ∈	

cτ .♦

5 Solutions for model with latent period
with different processes of treatment.
identification task

We will consider a model (52) in which transmission func-
tions (TF) have the next sense. TF WI1(L) � (1−p1)

(1−p1s)
corresponds to geometrical distribution of duration of infect-
ing with the average T1 � 4. TF Wc(L) � (1−pc)

(1−pcs)
corresponds to geometrical distribution of duration of expec-
tation of laboratory confirmation of infecting of person with
the average Tc � 3. TF WE (L) is determined by a formula
(30) at substituting s by L in it, corresponds distributions
of Pascal of duration of latent period with a parameter
p � pE � 0.4 and the average TE � 1.333. The all averages
are given in days.

Other values in (51): r0 � 10, N � 400,�1 � 0, 3,�2 �
0, 7, n1 � 1, n2 � 0 (under conditions of quarantine, one not
hospitalized person can infect one person, under conditions
of hospitalization, infect 0 people), d1 � 5

/
7, d2 � 2

/
7.

For the indicated parameters of model (52) on a Fig. 8
charts of some variables are brought for the case, when, in
the time period t � 0, 1 person appeared in a latent period.
According to the figure, since the finite time period t � 13,
functions gt � St−1 � 0. Let us note that gt � 1 on 1 time
period later than point of maximum of et and coincides with
a maximum of ict .

Let us now study the problem of identifying the same
model, without taking into account vaccination and without
expressions describing the treatment:

(60)

St � St−1 − et , et1 � r0
N
St−1

τI∑

τ�0

qτ it−1−τ , 1,

et2 � r0
N
St−1

τI∑

τ�0

qτ ρτ it−1−τ , 2,

et � et1 + et2, it � WE (L)et , it1 � �1it ,

it2 � �2it , ict � Wc(L)it2.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

The exit of model is the function ict . It must be compared
to the actual number of people infected every day ita . This
time series according to [12] has periodic oscillations with a
period of 7 days. Further we will understand ita as the actual
number of infected, smoothed out by moving average with a
period 7 [12]. The actual number of the infected people for
twenty-four hours during the time interval of large enough
length changes in wide ranges. Therefore, for the decision of
task of identification we will use heteroscedastic regression

ita � ictξt (61)

where ict is a nonlinear function regression, ict � ϕt (a), εt is
a sequence of independent randomvalueswith themathemat-
ical expectation E{ξt } � 1 and variance E

{
(ξt − 1)2

} � σ 2.
A function ϕt (a) is set by (60) and determined by themultidi-
mensional parameter a, components ofwhich are coefficients
of formulas in (60).

From (61), we have:

E (ita − ict ) � ict E (ξt − 1) � 0, E
[
(ita − ict )

2
]

� (ict )
2 E

{
(ξt − 1)2

}
� (ict )

2 α2

Thus, the deviation of the number of infected people from
the function regression has the mathematical expectation
equal to null, and its variance depends on t .
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Fig. 7 Case 2: there is an incubation period, all patients are treated in
the sameway (model (45)) or all patients are treated differently (models
(51), (52))

Coming from said, we will get the task of evaluation of
the least squares method.

F(a) �
T∑

t�t0

(
1 − ict (a)

ita

)2

→ min (62)

where minimum is taking on a.
Wewill solve (61) for daily allowance data about a number

infected in the first wave of COVID-19 in Ukraine [20]. The
segment of observation begins from t � t0 � 21 (2020–09-
1) and closes t � T � 177 (2021–02-05). It embraces basic

part of the people infected in this wave. After t � T , other
wave of diseases is begin.

For determination of necessary prehistory (the number
of infected before on the time interval with length t0) the
mean value of duration of the active infecting T1 � 4.5
days, defined from statistical data [4], was used. In a for-
mula for TFWI1(L), p1 � 0.818 corresponds to it. Maximal
lag of infecting τi � 20 was then defined, coming from
a fact that the coefficients of geometrical lag qτ decrease
strictly monotonously and q20 � (1 − p1)p201 � 0.0033 ≈
0. Consequently, for calculation of et1 and et1 in (60),
the information about the number of infected people for
21 days before the beginning of modeling interval is needed.
Therefore, a sequence icτ � iτa , t � 0, 1, 2, . . . , 20
(2020 − 08 − 11 , . . . , 2020 − 08 − 31) was used as initial
data, and besides, ν � 83812 is a whole number of infected
from the beginning of epidemic to 2020 − 08 − 10 inclusive.
All these data are present in the [20].

From the last formula in (60),we have it2 � W−1
c (L)ict �

(1−pcL)
(1−pc p2)

ict � (1 − pc)−1(ict − pcict−1). From here, we
get an initial sequence quantities of all the infected people,
including asymptomatic, it � �−1

2 it2, t � 0, 1, 2, . . . , 20,
necessary for calculation et1 and et2. In these calculations,
initial values p2 � 0.4 and �2 � 0, 7 of iteration process
of solving the problem (62) were used. It could be possible
to use these values, got on a previous iteration, instead of
p2 and �2 on every iteration of solving (62). However, such
complication of task seems ineffective because the length
of basic data (21 days) is far less than time interval for the
evaluation of model parameters (156 days).

We will define now, whether a maximum of iat will coin-
cide with a maximum of ict for N � 43733759—a quantity
of population of Ukraine [20]. According to Theorem 5 in
the neighborhood of the maximum point, to the right of it,
for some t we will have the condition

gt � 1 � r0
N

γ St−1 (63)

It follows from (63) that in a maximum point number of
susceptible

Sm � N

r0γ
(64)

We will find a low bound of r0, higher than which an
epidemic will develop. In its beginning (t � 1), the differ-
ence N − S0 is negligibly small. Then concordantly (62),
r0 � 1

/
γ . For large enough γ � 0.95 we have r0 � 1.053.

Choosing r0 � 1.2 that guarantees instability of popula-
tion to the infection, we will get Sm � 3836946 from (63).
Consequently, total number of the infected people to time of
achievement of a maximum of number of the people infected
every day Im � N − Sm � 5370813. Assume that the
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chart ita is approximately symmetric, we will get that, to
completion of the first wave, more than 10.7 million people
will be infected. Actually according to [20], there are a little
more than 1.1 million people that have symptoms. We will
consider that there are approximately the same amount of
asymptomatic infected that gives 2.2 million people of all
infected totally that far less than 10.7 million people. There-
fore, for maximums it f and ict to coincide, the number of
susceptible in a population at the beginning of epidemicmust
be approximated in 5 times less than quantity of all popula-
tion and be not more than 8,746,752. This value will decrease
with the increase of r0. The said is easily explained by the
fact that the hard quarantine restrictions were operated in a
considerate time interval in Ukraine.

Thus, we come to conclusion that N in (60) must be
unknown varied value. Its meaning is the upper bound on
the number of infected people during the epidemic. So, we
have the next estimated values which are components of a in
the task (62):

r0, N , p2, p, �1, n1, n2, d1, d2 (65)

A value p1 � 0.818 was not varied.
We express N and St in scale millions of people so that all

values in (65) are approximately on the same scale. There-
fore, calculation of St will be according to the formula
St � St−1 − 10−6et . All values in (65) are positive, part
of them belong to the interval (0, 1). For the account of
this factor, it is needed to enter corresponding restrictions
for values in (65) that would result in considerable compli-
cation of evaluation task [15, 16]. Therefore, we went on
the other way—stage-by-stage solving of (62). On the first

stage—the minimization on a � a1 �
[
r0 N

]′
, where a

stroke means transposition. On the second stage—the mini-

mization on a �
[
a′

1 a′
2

]′
, where a′

2 �
[
p1, p2 p �1

]
.

On the third stage—the minimization on a �
[
a′

1 a′
2 a′

3

]′
,

where a′
3 �

[
n1 n2 d1

]
. The calculations were produced

in the environment of MS Excel using of superstructure on
solving search. The initial values of the estimated quantities
are obtained from [4], the missing quantities were deter-
mined by an expert. Results are presented in Table 1. In it,
the accuracy of got model was determined by a criterion

�(a) �
T−t0∑

t�1

∣∣∣1 − ict (a)
ita

∣∣∣. An evaluation on it considerably

becomes complicated due to non-differentiability of �(a),
what stipulated an evaluation on (62), in spite of the fact that
F(a) "underlines" large deviations from 1. An average mod-
ule of relative errors �(a)

/
(T − t0) also was determined.

The value N � 6.939 million people appeared consid-
erably less than quantity of population of 43733759 people
that can be explained by effective quarantine measures. Not

high accuracy of evaluation of number of the infected people
is caused by a high level of noise that is left after smooth-
ing out in this value, see a Fig. 9. This consideration is
confirmed by comparison of the whole number of infected:
actual

∑T
t�t0 ita � 1140654 and calculated by themodel (60)

∑T
t�t0 ict � 1056695. They differ on 7.36% that is far less

than error 15.6% in Table 1. Explaining of this phenomenon
is possible by the fact that adding up is the smoothed opera-
tion.

Model (60) accuracy can be increased, calculating the
number of hospitalized people and non-hospitalized ones
separately. Other approach is based on assumption that
probability of meeting of infected person and susceptible
person equals not St−1

/
N , but

(
St−1

/
N

)b, where b > 0 is
unknown value. Then from (60), we will pass to the model

St � St−1 − 10−6et , et1 � r0

( St−1

N

)b τmax∑

τ�0

qτ it−1−τ , 1,

et2 � r0

( St−1

N

)b τmax∑

τ�0

qτ ρτ it−1−τ , 2,

et � et1 + et2, it � WE (L)et , it1 � �1it , it2 � �2it ,

ict � Wc(L)it2.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(66)

This model will satisfy to Theorem 5 for gt � r0
(
St−1
N

)b
,

where
(
St−1
N

)b
—probability of infecting of one susceptible

person by one infected person. In (66) b, as well as other
parameters of this model, can be a constant or function of
time. In the last case, in particular, it can be a step function
of t . Transition from one step to another will take place in the
points named switching points. Then the function regression
set by (66) determines nonlinear regression with switching.
A few methods of construction of linear switching regres-
sions are presently known. For the evaluation of model (66)
parameters, in particular, a method [17] that is offered for
linear regression can be used.

Here we will consider a case, when b � const . Initial
data, criteria of evaluation and determination of accuracy of
a model are the same that used above for the evaluation of
model (60) parameters. Model parameters (65) plus b are
estimated. A task (62) was managed to solve in 2 stages: on

the first stage minimization on a � a1 �
[
r0 N b

]′
, on the

second—on all parameters of model (65). The got results are
present in Table 2, graphs ict , ita , gt are on a Fig. 10.

The obtained model is slightly more accurate than the

model (60). In addition, parameters of a′
3 �

[
n1 n2 d1

]

considerably changed in relation to their initial values in
comparison with Table 1. The value of N has decreased sig-
nificantly, since the formula for the probability of infection
of one person changed.

123



2210 P. S. Knopov, A. S. Korkhin

Table 1 Parameters (65) of
model (60) estimation according
to criterion (62) in 3 stages

Parameters and criteria Initial values Stages of calculation

1 2 3

r0 2.5 1.470 1.427 1.427

N 8.747 5.225 6.939 6.939

pc 0.25 0.25 0.302 0.302

pE 0.4 0.4 0.530 0.530

�1 0.3 0.3 0.519 0.519

n1 0.5 0.5 0.5 0.511

n2 0.1 0.1 0.1 0.103

d1 0.8 0.8 0.8 0.805

F(a) 12,060.065 9.357 5.621 5.617

�(a) 821.182 32.657 24.192 24.187

�(a)
/

(T − t0) 5.264 0,209 0.155 0.156

Here, �(a) is the sum of the modules of relative errors and �(a)
/

(T − t0) is the average module of relative
errors

Fig. 8 Trajectories of variables of
the model (52)
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Fig. 9 Calculation on the model
(60) for Ukraine, evaluation
criterion (62) (a left ordinate
axis—ita , ict , a right axis—gt )
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Table 2 Estimation of the parameters (65) of the model (66) according
to the criterion (62) in 2 stages for an unknown degree b of probability
of infection by one infected person of one susceptible person

Parameters and criteria Initial values Stages of
calculation

1 2

r0 2.5 1.318 1.395

N 8.747 1.793 4.693

pc 0.25 0.25 0.302

pE 0.4 0.4 0.523

�1 0.3 0.3 0.517

n1 0.5 0.5 0.604

n2 0.1 0.1 0.054

d1 0.8 0.8 0.909

F(a) 12,060.065 7.497 5.770

�(a) 821.182 28.764 23.753

�(a)
/

(T − t0) 5.264 0.182 0.150

Here, �(a) is the sum of the modules of relative errors and

�(a)
/

(T − t0) is the average module of relative errors

Let us now determine the confidence interval for the actual
number of infected people per day it f .

From (61), we have

ln ita − ln ict � ln ξt � εt (67)

From the properties of ξt , see above, it follows that
E{εt } � 0, E

{
ε2t

} � σ 2 � const . From here and (67),
we obtain a nonlinear homoscedastic regression

ln ita � ϕt (a) + εt (68)

where ϕt (a) � ln ict � lnψt (a).
Let us suppose that εt ∼ N

(
0, σ 2

)
, ∀t . Then the (1 −

p)100%th probability interval for ln ict :

ϕt (a0) − u p/ 2σ ≤ ln ict ≤ ϕt (a0) + u p/ 2σ

where u p/ 2 is the 100p
/
2%th point of the standard normal

distribution.
Let â is an estimate a, whose components are in the fourth

column of Table 2. Then, according to (68), the residuals for
the model (66) are ε̂t � ln ita − ϕt (â). Using the criterion of
normality based on the coefficients of skewness and kurtosis
[18], the hypothesis of normal distribution of residuals was
accepted at the 5% level. This confirms our assumption about
normality of εt . Therefore, approximate probability intervals
follow from (68) for ln ict and ict :

ϕt (â) − u p/ 2σ̂ ≤ ln ict ≤ ϕt (â) + u p/ 2σ̂

exp
(
ϕt (â) − u p/ 2σ̂

) ≤ ict ≤ exp
(
ϕt (â) + u p/ 2σ̂

)
(69)

where σ̂ is the least squares method estimate of σ .
Interval (69) is shown in Fig. 10. From a practical point of

view, its upper bound is important, since, by it, one can plan
the maximum load of medical institutions, etc.

The parameter a of the regression (68), as mentioned
above, is a solution of the task (62). However, its estimate
can also be obtained by solving the task

F(a) �
T∑

t�t0

(ln ita − ϕt (a))2 → min (70)

Generally speaking, the solutions of problems (62) and
(70) are different. In contrast to solving problem (62), for
solving (70), one can apply the well-knownmethods for esti-
mating the parameters of nonlinear regression and analyzing
their accuracy [8, 11, 19, 21], etc.

The solution of (70) using solving search of MS Excel
for the same data on infected people and initial parameters
values as given in Table 2 is shown below. It was obtained in
the same 2 stages as given in Table 2.

According to Tables 1, 2 and 3, the smallest value of the
criterion�(a) is obtained as a result of solving the estimation
task (70). Therefore, we will consider it in more detail. The
values r0, N , b are approximately the same as given in Table
2. The average duration Tc � 1.448 of the day corresponds
to the value pc. Since this value is distributed according to
geometric law, the maximum waiting time for the test result,
which is approximately equal to 3Tc, will be about 4.5 days.
The duration of the latent periodwith the distribution parame-
ter pE � 0.685 has the average TE � 4.351 days. This value
in [5] for a number of countries is taken equal to 5.1 days.
The value �1 turned out to be a little more than its initial
value of 0.3, defined in [4]. As for indicators such as n1, n2,
d1, it is unambiguously difficult to determine them in model
(66), because they specify only 1 parameter in it—m, which
characterizes the degree of decrease of the main number of
reproduction in cases of self-isolation or hospitalization. For
the data in Table 3, m � 1.48. It should be said that the
estimates of quantities n1, n2, d1, d2 and the relationships
between them correspond to meaningful ideas about them.
Also worth noting the presence of multicollinearity, which is
an approximate linear dependence for the estimated parame-
ters. It is expressed in the fact that in the neighborhood of the
minimum of criterion (70) the surface F(a) is gently slop-
ing that leads to the fact that for a(1) 	� a(2), it takes place
that F(a(1)) ≈ F(a(2)). Multicollinearity was also noted for
criterion (62).Graphs of ict andother variables for the param-
eters of the model (66) with the values in Table 3 are shown
in Fig. 11. It shows that the maximum of ict has increased
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Fig. 10 Calculation on the model
(66) for Ukraine, evaluation
criterion (62) (a left ordinate axis
are ita , ict , U, L, a right axis are
gt ), U, L are interval boundaries
(69)
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Table 3 Estimation of the parameters (65) of the model (66) according
to the criterion (70) in 2 stages for an unknown degree b of probability
of infection by one infected person of one susceptible person

Parameters and criteria Initial values Stages of
calculations

1 2

r0 2.5 1.334 1.295

N 8.747 1.878 2. 961

b 1 0.212 0.296

pc 0.25 0.25 0.409

pE 0.4 0.4 0.685

�1 0.3 0.3 0.460

n1 0.5 0.5 0.787

n2 0.1 0.1 0.560

d1 0.8 0.8 0.753

F(a) 1719.732 6.793 5.080

�(a) 821.182 28.086 22.654

�(a)
/

(T − t0) 5.264 0.180 0.145

Here, �(a) is the sum of the modules of relative errors

and�(a)
/

(T − t0) is the average module of relative errors

in comparison with Fig. 8 that improved the accuracy of the
model.

For the residuals of the model at the 1% level, the hypoth-
esis of their normality was accepted that made it possible to
determine the interval (69).

A further increase in the accuracy of models like (62) and
(66) can be achieved by determining the type of distributions
of processes durations a posteriori, i.e., according to the data,
and not a priori, as it was done in the above calculations.Also,
models (60), (66) can be detailed.

The given examples of estimation of discrete-time model
parameters show possibility of their identification and its
importance. Above, in order to estimate r0 and N it was
not necessary to establish a relationship between these quan-
tities. Such task is not simple, arising up at the modeling
of dynamics of different biological processes [3], Ch. 6). To
solve it is difficult even because the connection of no mea-
surable values r0 with measurable N is searched.

In general, the task of identification of models offered
here, and also other models got on their basis, is a separately
standing important task requiring further researches.

6 Conclusions

Themodel of the dynamics of the epidemic development pro-
posed in the article is found in the fact that the model should
be fitted to a time series of indicators, and not to unknown
continuous functions of time. This requirement leads to the
need to use difference equations instead of differential equa-
tions. Theuse of discrete time, in addition, allowsus to clearly
comprehend such a concept, for example, as the number of
infected per unit of time.

The construction of the model is based on taking into
account the delayed influence of some variables on others in
the form of distributed lag models. The construction of these
models uses the dual nature of integer nonnegative random
variables that have the meaning of the duration of any pro-
cess. Duality consists of that the law of distribution of such
value can be interpreted also as an impulse transient func-
tion of some dynamic system. Analogical duality is present
for continuous nonnegative values [13]. This fact allows us
to build a model of the epidemic dynamics in the form of
dynamic blocks reproducing a lag and blocks of interaction of
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Fig. 11 Calculation on a model
(66) for Ukraine, evaluation
criterion (70) (a left ordinate axis
are ita , ict , U, L, a right axis are
gt ), U, L are interval boundaries
(69)
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variables in the form of their products. The blocks of dynam-
ics are described on the basis of theory of the linear systems,
and description of interaction is based on the same idea that,
apparently, Kermack and McKendrick offered first in biol-
ogy, and Cobb and Douglas entered as production functions
in economy approximately at the same time—in 1928. These
authors suggest describing interaction of different factors by
their products.

The construction of the model on the basis of the prin-
ciples described above allows to get various models and to
analyze them not as nonlinear systems by means of phase
portraits that befits for the systems of differential equations
not higher the second order, but to interpret a model as a lin-
ear dynamic system with various in time coefficients. Such
approach allows using themethods of the theory of linear sys-
tems that simplifies the analysis of model, in particular, its
stability. It is simple enough and can be realized on a desktop
computer with the use of the known application programs.
In the described models, a population size N is a constant.
It can be replaced with a time function Nt that takes into
account demographic changes in a population. Models do
not change; thus, simple changing applies to only the first
equation, while for continuous time, account of demography
in the system of differential equations even simplified causes
the change of all model of epidemiology, see, for example,
[3], p. 6.2, [10].

The example of construction of one type of model from
real data presented in the article shows also possibility to its
identification.

Based on the proposed approach, quite complicated mod-
els of the development of the epidemic can be built under
the conditions of vaccination and the existence of different
strains of the virus.
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