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Abstract
This article considers a fractional-order neuronmodel under an electromagnetic field in terms of generalized Caputo fractional
derivatives. The motivation for incorporating fractional derivatives in the previously proposed integer-order neuron model
is that the fractional-order model impresses with efficient effects of the memory, and parameters with fractional orders can
increase the model performance by amplifying a degree of freedom. The results on the uniqueness of the solution for the
proposed neuron model are established using well-known theorems. The given model is numerically solved by using a
generalized version of the Euler method with stability and error analysis. Several graphical simulations are performed to
capture the variations in the membrane potential considering no electromagnetic field effects, various frequency brands of
external forcing current, and the amplitude and frequency of the external magnetic radiation. The impacts of fractional-order
cases are clearly justified.
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1 Introduction

Heinrich Wilhelm Gottfried von Waldeyer-Hartz, a German
scientist, is credited with coining the term “neuron” in 1891.
Neurons are nerve cells that send and receive messages from
the brain. The neuron is made up of a cell body, or soma,
with branching dendrites that act as signal receivers and an
axon that carries nerve signals. The axon terminals send the
electrochemical signal across a synapse at the opposite end
of the axon (the space between the axon terminal and the
receiving cell).

Neuron dynamics have been described using a variety of
models. A set of first-order ordinary differential equations
has been used to describe the dynamic behavior that a neu-
ron model exhibits. The Hodgkin–Huxley (HH) model [1],
which takes into account the ionic process and current on
the surface of the cell membrane, is the most well-known
dynamical model of the biological neuron. It represents the
behavior of the membrane action potential of the giant squid
axon. The authors of [2] proposed the Leaky Integrate and
Fire neuron (LIF), which is generally used in experiments on
large networks. In [3], a silicon hardware implementation of
neurons considered in neuromorphic circuits was explored.
The accuracy of the LIF neuron was not good because of its
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unrealistic simplicity, so it did not match with experimental
outputs. In ref. [4], an optimized realization of the Morris-
Lecar neuromorphic model was introduced. In ref. [5], the
Hindmarsh–Rose neuronmodelwas considered to takemem-
ristors to imitate the connection between the magnetic flux
and membrane potential of the electromagnetic field. Sev-
eral neuron models [6–8] have been introduced to analyze
the electrical behaviors of neuron and the outcomes are used
to produce similar phases and modes such as spiking, quies-
cent, bursting, and even chaotic states.

Fractional calculus, one of the most useful areas of
research in applied mathematics, contains various types of
differential and integral operators [9–12]. Fractional-order
operators have been successfully implemented to describe
a number of real-world problems. The authors in [13]
introduced a fractional mathematical model for the huan-
glongbing transmission within a citrus tree. In [14], a study
on the structure of the alkali-silica chemical reaction model
using the Caputo fractional derivatives has been proposed. A
Caputo-type corneal shape mathematical model with novel
observations has been given in [15]. In [16], the optimal
controls on the transmission of the bovine schistosomiasis
epidemic model have been derived using fractional deriva-
tives. The authors in [17] have introduced a fractal-fractional
model of the AH1N1/09 virus. In [18], some novel anal-
yses of a non-autonomous cardiac conduction model have
been performed. In [19], the dynamics of a linear triatomic
molecule have been defined using fractional derivatives.

The fractional derivatives have been implemented to ana-
lyze the models of neuron. In [20], the authors have proposed
a fractional model with synchronization of electrically cou-
pled neuron systems. In [21], a fractional leaky integrate and
fire model has been given, considering neuronal spike timing
adaptation. In [22], the fractional Izhikevich and Fitzhugh–
Nagumo neuron modeling was introduced. In [23], the
spiking and bursting behaviors of the fractional Izhikevich
model were discussed. In [24], the authors have discussed
low-voltage low-power integrable CMOS circuit application
of integer- and fractional-order Fitzhugh–Nagumo neuron
model. In [25], the structure of a neuron considering integer-
and fractional-order discontinuous externalmagnetic fluxhas
been given. In [26], a study on the fractional Izhikevich neu-
ron model with synchronization and FPGA realization has
been given. In [27], the authors proposed the synchroniza-
tion of the fractional neuronmodel considering noise. In [28],
an FPGA realization of a fractional-order neuron was dis-
cussed. In [29], the chimera state in the network of fractional
Fitzhugh–Nagumo neurons has been investigated. In [30],
a survey on the dynamics and implementation methods of
fractional neuron models has been given. In [31], some novel
analyses of the numerical approximations of fractional spik-
ing neuronmodels have beengiven. In [32], a fractional-order
Fitzhugh–Nagumo neuron model has been analyzed.

In this study, we propose a fractional-order neuron model,
revising the previously published integer-order model [33]
using the following generalized Caputo fractional derivative:

Definition 1 [34] The generalized Caputo-type fractional
derivative, Dγ,ρ

d+ , of order γ > 0 is defined by

(Dγ,ρ

d+ u)(t) = ργ−n+1

�(n − γ )∫ t

d
sρ−1(tρ − sρ)

n−γ−1
(
s1−ρ d

ds

)n

u(s)ds, t > d, (1)

where ρ > 0, d ≥ 0, and n − 1 < γ ≤ n.

We apply fractional derivatives because the fractional-order
model contains memory in the system, and the parameters
with fractional order can enrich the model performance, pro-
viding one degree of freedom. The paper is organized in the
following sections: In Sect. 2, the description of the proposed
fractional-order model is given with the results of the exis-
tence of a unique solution. In Sect. 3, the numerical solution
of the proposed model is derived using a modified version of
the Euler method along with the stability and error estima-
tion of the scheme. In Sect. 4, the graphical simulations are
given. In Sect. 5, the results are concluded.

2 Model description

The proposed revised form of an integer-order neuron model
[33] using the generalized Caputo fractional derivative is
given by

C
0 D

γ,ρ
t v = −

(
v3

3
− k1v

)
− i + Iext + λH (α + 3βw2)v,

C
0 D

γ,ρ
t i = v − k2i − λE (a + bq2)i,

C
0 D

γ,ρ
t q = k3i,

C
0 D

γ,ρ
t w = −k4v,

(2)

where Iext = I1 sin(π f1t) + I2 cos(π f2t) defines external
forcing current with different frequencies f1, f2 and currents
I1, I2. C0 D

γ,ρ
t denotes the generalized Caputo derivative with

order γ along with extra parameter ρ. Moreover v, i, q, and
w define the voltage, current, charge, and magnetic flux in
the case of dimensionless parameters, respectively. λH and
λE are the switching factors of the magnetic and electric
field. Other parameters are k1, k2, k3, k4 and α, β, a, b are
described briefly in ref. [33]. The reason for showing an
interest in the given model is the proposed model contains
multiple factors, namely, electromagnetic field effects, var-
ious frequency brands of external forcing current, and the
amplitude and frequency of the external magnetic radiation,
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Fig. 1 Parameter values: k1 = 1.0, I1 = 6.0, f1 = 0.06, I2 = 6.0, f2 = 0.06, λH = 0.0, α = 1.0, β = 0.02, k2 = 1.0, λE = 0.0, a = 0.2, b =
0.1, k3 = 1.0, k4 = 0.01

to capture the variations in the membrane potential. Also,
incorporating an extra parameter ρ along with fractional-
order γ adding one more degree of freedom, makes the
proposed methodology advanced to the general Caputo case.

For further investigations, let us define

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1(t, v, i, q, w) = −
(

v3

3 − k1v

)
− i

+Iext + λH (α + 3βw2)v,

x2(t, v, i, q, w) = v − k2i − λE (a + bq2)i,
x3(t, v, i, q, w) = k3i,
x4(t, v, i, q, w) = −k4v.

(3)

and

u(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v(t)

i(t)

q(t)

w(t)

, u0(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v0(t)

i0(t)

q0(t)

w0(t)

,

x(t, u(t)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1(t, v, i, q, w)

x2(t, v, i, q, w)

x3(t, v, i, q, w)

x4(t, v, i, q, w)

. (4)

Then, the proposedmodel (2) can be expressed in terms of the
following initial value problem (IVP) for the given function
u(t) with singular kernel x(t, u) on the time interval [0, T ]:

C
0 D

γ,ρ
t u(t) = x(t, u(t)), t ∈ [0, T ], 0 < γ ≤ 1, (5a)

u(0) = u0, (5b)

The related Volterra integral equation (VIE) of the IVP (5a)–
(5b) is given by [34]

u(t) = u(0) + ρ1−γ

�(γ )

∫ t

0
sρ−1(tρ − sρ)

γ−1x(s, u)ds. (6)

Firstly, we recall the results regarding the existence of
unique solution for the above given IVP (5a) and (5b) using
following theorems.

Theorem 1 (Existence) [35]. For 0 < γ ≤ 1, u0 ∈ R, T ∗ >

0, J > 0, consider the set ζ := {(t, u) : t ∈ [0, T ∗], |u −
u0| ≤ J } and define the continuous function x : ζ → R. Let
M := sup(t,u)∈ζ |x(t, u)| and

T =

⎧⎪⎪⎨
⎪⎪⎩

T ∗, i f M = 0,

min{T ∗,
(
J�(γ + 1)ργ

M

) 1

γ } otherwise.
(7)

Then, a function u ∈ C[0, T ] exists and it satisfies the IVP
(5a) and (5b).

Theorem 2 (Uniqueness) [35]. Let u(0) ∈ R, J > 0, T ∗ >

0, and the set ζ given in Theorem 1. Consider the continuous
function x : ζ → R satisfying the Lipschitz condition for
variable u, i.e.,

|x(t, u1) − x(t, u2)| ≤ V |u1 − u2|,

where V > 0 is a constant independent to t, u1, and u2.
Then a unique solution u ∈ C[0, T ] for the IVP (5a) and (5b)
exists.

Theorem 3 The solution of model (2) is uniformly stable on
[0, T ] for some T > 0.

123



2182 P. Kumar et al.

Fig. 2 Parameter values: k1 = 1.0, I1 = 6.0, f1 = 0.06, I2 = 6.0, f2 = 6.66, λH = 0.0, α = 1.0, β = 0.02, k2 = 1.0, λE = 0.0, a = 0.2, b =
0.1, k3 = 1.0, k4 = 0.01

Proof On the contrary, we assume that there exists two solu-
tions u(t) and v(t) of model (2) with initial conditions u(0)
and v(0), such that

u(t) = u(0) + ρ1−γ

�(γ )

∫ t
0 s

ρ−1 (tρ − sρ)γ−1 x(s, u)ds (8)

v(t) = v(0) + ρ1−γ

�(γ )

∫ t
0 s

ρ−1 (tρ − sρ)γ−1 y(s, v)ds (9)

It follows that

‖u − v‖ ≤ sup
t

(
ρ1−γ

�(γ )

∫ t

0
sρ−1 (

tρ − sρ
)γ−1 |x(s, u)

−y(s, v)|ds)
≤ sup

t

(
ρ1−γ

�(γ )

∫ t

0
sρ−1 (

tρ − sρ
)γ−1 ds

)
‖x − y‖

≤ 1

ργ �(γ + 1)
hγ ‖x − y‖, (10)

where h = supt t
ρ . We choose ‖x − y‖ <

ργ �(γ+1)
hγ ε. Then

from (10), we conclude that

‖u − v‖ < ε.

This implies that the solution ofmodel (2) is uniformly stable
on [0, T ]. �	

3 Numerical solution using generalized Euler
method

Several numerical methods have been derived to solve
fractional-order systems in the last few years. In [36], a
finite-difference predictor–corrector scheme was introduced
for fractional differential equations. In [37], the authors

have derived a short and efficient method to solve general-
ized Caputo-type differential equations. In [38], a modified
predictor–correctormethod has been introduced to solve gen-
eralized Caputo-type differential equations with delay. In
[39], the authors have derived the generalized differential
transform method to simulate impulsive fractional differen-
tial equations. In [40], the authors proposed a generalized
Lucas polynomial sequence approach for fractional differen-
tial equations. In [41], a novel operation matrix scheme for
solving generalized Caputo-type fractal–fractional differen-
tial equations has been derived. The author in [42] proposed
an orthonormal ultraspherical operational matrix algorithm
for generalized Caputo-type fractal–fractional Riccati equa-
tion.

In this section, we use the generalized Euler method given
in [43] and using a non-uniformgrid, to numerically solve the
proposed IVP (5a) and (5b) (or model (2)). The time range
[a, T ] is taken as a discrete set of points

{
t0 = a,

t j+1 = (tρj + h)
1/ρ

, j = 0, 1, . . . , N − 1,
(11)

where h = T ρ − tρ0
N

. The solution is derived as approxi-

mations using a sequence u j , j = 0, 1, . . . , N , such that
uk ≈ u(tk)(k = 1, 2, . . . , j). The following Volterra inte-
gral equation can represent the exact solution of the given
IVP:

u(t) = u(t0) + ρ1−γ

�(γ )

∫ t

t0
sρ−1(tρ − sρ)

γ−1x(s, u)ds. (12)
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Fig. 3 Parameter values: k1 = 1.0, I1 = 6.0, f1 = 0.06, I2 = 6.0, f2 = 0.06, λH = 1.0, α = 1.0, β = 0.02, k2 = 1.0, λE = 1.0, a = 0.2, b =
0.1, k3 = 1.0, k4 = 0.01

Fig. 4 Parameter values: k1 = 1.0, I1 = 6.0, f1 = 0.06, I2 = 6.0, f2 = 6.66, λH = 1.0, α = 1.0, β = 0.02, k2 = 1.0, λE = 1.0, a = 0.2, b =
0.1, k3 = 1.0, k4 = 0.01

As a consequences, we can write

u(t j+1) = u(t0) + ρ1−γ

�(γ )

j∑
k=0∫ tρk+1

tρk

sρ−1(tρj+1 − sρ)
γ−1

x(s, u(s))ds. (13)

Taking z = sρ , we get

u(t j+1) = u(t0) + ρ−γ

�(γ )

j∑
k=0∫ tρk+1

tρk

(tρj+1 − z)
γ−1

x(z1/ρ, u(z1/ρ))dz. (14)

In each of the subintervals, using composite rectangle rule,
we define the approximation

ρ−γ

�(γ )

j∑
k=0

∫ tρk+1

tρk

(tρj+1 − z)
γ−1

x(tk , u(tk))dz

= ρ−γ

�(γ )

j∑
k=0

x(tk , u(tk))
∫ tρk+1

tρk

(tρj+1 − z)
γ−1dz

= ρ−γ

�(γ )

j∑
k=0

x(tk , u(tk))

[−1

γ
(tρj+1 − z)

γ |t
ρ
k+1

tρk

]

= ρ−γ

�(γ + 1)

j∑
k=0

x(tk , u(tk))

[
(tρj+1 − tρk )

γ − (tρj+1 − tρk+1)
γ

]
.

(15)
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The above approximation (15) gives the following explicit
formula

uk+1 = u0 + ρ−γ hγ

�(γ + 1)

k∑
j=0

b j,k+1x(t j , u j ), (16)

where

b j,k+1 = (k + 1 − j)γ − (k − j)γ . (17)

Therefore, the algorithm of the numerical solution of the
proposed system (2) is derived as follows:

vk+1 = v0 + ρ−γ hγ

�(γ + 1)

k∑
j=0

b j,k+1

[
−

(
v3j

3
− k1v j

)

− i j + Iext + λH (α + 3βw2
j )v j

]
,

ik+1 = i0 + ρ−γ hγ

�(γ + 1)

k∑
j=0

b j,k+1
[
v j − k2i j

− λE (a + bq2j )i j
]
,

qk+1 = q0 + ρ−γ hγ

�(γ + 1)

k∑
j=0

b j,k+1
[
k3i j

]
,

wk+1 = w0 + ρ−γ hγ

�(γ + 1)

k∑
j=0

b j,k+1
[ − k4v j

]
.

(18)

3.1 Stability analysis

Lemma 1 [44] If 0 < β < 1 and b is a nonnegative integer,
then there exist two positive quantities Cβ,1 and Cβ,2 which
depend on β, such that

(b + 1)β − bβ ≤ Cβ,1(b + 1)β−1,

and

(b + 2)β+1 − 2(b + 1)β+1 + bβ+1 ≤ Cβ,2(b + 1)β−1.

Lemma 2 [44] Let dp,s = (s − p)β−1(p = 1, 2, . . . , s − 1)
and dp,s = 0 for p ≥ s, rh ≤ T , β, h, M, T > 0 and r is a
positive integer. Also, let

∑p=s
p=r dp,s |ep| = 0 for b > s ≥ 1.

If

|es | ≤ Mhβ
s−1∑
p=1

dp,s |ep| + |γ0|, s = 1, 2, . . . , r ,

then

|er | ≤ C|γ0|, r = 1, 2, . . .

where C is a positive constant independent to h and r .

Theorem 4 Let the kernel x(t, u) satisfy the Lipschitz con-
dition and um (m = 1, . . . , k + 1) be the solution of Eqn.
(16). Then, the proposed numerical method is conditionally
stable.

Proof Let ũ0, and ˜um (m = 0, . . . , k + 1) are the pertur-
bations of u0, and um , simultaneously. Then, the following
approximation expression is obtained from Eq. (16)

uk+1 + ũk+1 = u0 + ũ0 + ρ−γ hγ

�(γ + 1)
j∑

k=0

bk, j+1x(tk, uk + ũk), (19)

where bk, j+1 = [( j + 1 − k)γ − ( j − k)γ ].
Combining Eqs. (16) and (19), we obtain

|ũk+1| = |ũ0 + ρ−γ hγ

�(γ + 1)

j∑
k=0

bk, j+1(x(tk, uk + ũk)

−x(tk, uk))|. (20)

From the triangle inequality andLipschitz condition,we have

|ũk+1| ≤ ζ0 + ρ−γ hγm1Cγ

�(γ + 2)

( j∑
k=1

bk, j+1|ũk |
)

, (21)

where ζ0 = max0≤k≤N {|ũ0| + ρ−γ hγm1bk,0
�(γ + 2)

|ũ0|}. Here,
Cγ is a positive constant dependent to γ (Lemma 1) and h is
possibly small. From Lemma 2, we get |ũk+1| ≤ Cζ0, where
C is a positive constant independent to k and h. This gives
the required result. �	

3.2 Error analysis

Lemma 3 [43] Let u(t) be the solution of (12), and x(t, u) be
continuous and satisfies the Lipschitz condition with respect
to u for a sufficiently small h. Then, we have

|
∫ tρn+1

0
sρ−1(tρn+1 − sρ)γ−1x(s, u(t))ds

−ρ−γ hγ

γ

n∑
m=0

bm,n+1x(tm, u(tm))| ≤ C2h
σ(γ ).

Theorem 5 For the proposed scheme (16), we have

|u(tk+1) − uk+1| ≤ Chγ , k = 0, . . . , N − 1, (22)

where C is a positive constant independent to h and k.
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Fig. 5 Parameter values: k1 = 1.0, I1 = 6.0, f1 = 0.06, I2 = 6.0, f2 = 0.006, λH = 1.0, α = 0.01, β = 0.02, k2 = 1.0, λE = 1.0, a = 0.2, b =
0.1, k3 = 1.0, k4 = 0.01

Fig. 6 At parameters: k1 = 1.0, I1 = 0.0, f1 = 0.0, I2 = 6.0, f2 = 0.02, λH = 1.0, α = 1.0, β = 0.02, k2 = 1.0, λE = 1.0, a = 0.2, b =
0.1, k3 = 1.0, k4 = 0.01

Proof Let u(t0) = u0, and ek = u(tk) − uk . Using the
Volterra Eq. (6) and applying Eq. (16), we define the error
expression as follows:

u(tk+1) − uk+1 = ρ1−γ

�(γ )

∫ t

0
sρ−1(tρ − sρ)

γ−1x(s, u)ds

− ρ−γ hγ

�(γ + 1)

k∑
j=0

b j,k+1x(t j , u j ).

Therefore,

|u(tk+1) − uk+1| =|ρ
1−γ

�(γ )

∫ t

0
sρ−1(tρ − sρ)

γ−1x(s, u)ds

− ρ−γ hγ

�(γ + 1)

k∑
j=0

b j,k+1x(t j , u j )|

≤|ρ
1−γ

�(γ )

∫ t

0
sρ−1(tρ − sρ)

γ−1x(s, u)ds

− ρ−γ hγ

�(γ + 1)

k∑
j=0

b j,k+1x(t j , u(t j )|

+ ρ−γ hγ

�(γ + 1)
k∑
j=1

b j,k+1|x(t j , u(t j ) − x(t j , u j )|

≤ C2
�(γ )

hσ(γ ) + Lρ−γ hγ

�(γ + 1)

k∑
j=1

b j,k+1|e j |
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2186 P. Kumar et al.

Fig. 7 At parameters: k1 = 1.0, I1 = 0.0, f1 = 0.0, I2 = 6.0, f2 = 0.2, λH = 1.0, α = 1.0, β = 0.02, k2 = 1.0, λE = 1.0, a = 0.2, b =
0.1, k3 = 1.0, k4 = 0.01

Fig. 8 At parameters: k1 = 1.0, I1 = 0.0, f1 = 0.0, I2 = 6.0, f2 = 0.8, λH = 1.0, α = 1.0, β = 0.02, k2 = 1.0, λE = 1.0, a = 0.2, b =
0.1, k3 = 1.0, k4 = 0.01

≤ C2
�(γ )

hσ(γ ) + LCγ,1ρ
−γ hγ

�(γ + 1)
k∑
j=1

(k + 1 − j)γ−1|e j |, (23)

where we used Lemmas 3, 1, and the Lipschitz property.
Using Lemma 2, we get the required results. �	

4 Graphical simulations

Nowwe derive the numerical solution of the model (2) using
the above-mentioned generalized Euler algorithm (18). The
step size is fixed as h = 0.01 and extra parameter ρ =

0.98,which generates a non-uniformgridEq. (11). The initial
values are fixed as (v0, i0, q0, w0) = (0.2, 0.01, 0.2, 0.01).
We fix the parameters k1 = 1.0, k2 = 1.0, k3 = 1.0, k4 =
0.01.

For the parameter values a = 0.2, b = 0.1, α = 1.0, β =
0.02, the charge- andmagnetic flux-controlledmemristor can
represent nonlinear electrical bustling. In Fig. 1, the phase
plots of membrane potential v(t) versus current i(t) are
plotted for the given parameter values at fractional orders
γ = 0.85, 1 (Fig. 1a) and γ = 0.75, 0.95 (Fig. 1b), respec-
tively. Here, we notice that the phase portraits are nearly the
same at each of the fractional-order values.

We know that the behavior of the plots is incumbent on the
frequency of the external forcing current factor Iext because
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Fig. 9 At parameters: k1 = 1.0, I1 = 0.0, f1 = 0.0, I2 = 6.0, f2 = 1.2, λH = 1.0, α = 1.0, β = 0.02, k2 = 1.0, λE = 1.0, a = 0.2, b =
0.1, k3 = 1.0, k4 = 0.01

Fig. 10 At parameters: k1 = 1.0, I1 = 0.0, f1 = 0.0, I2 = 6.0, f2 = 0.2, λH = 1.0, α = 1.0, β = 0.02, k2 = 1.0, λE = 1.0, a = 0.2, b =
0.1, k3 = 1.0, k4 = 0.01, Vth = 1.0, A0 = 0.01, A1 = 0.1, B1 = 0.1, A2 = 0.1, B2 = 0.1

the exciting state can be disposed of by the external forc-
ing. Therefore, to check the mode dependency of electrical
bustling on external excitation, we plotted Fig. 2 by changing
f2 = 0.06 to f2 = 6.66 (other parameter values are the same
as for Fig. 1). Here, we see that the phase diagrams Fig. 2a, b
differ from the plots of Fig. 1 which justifies that the multiple
modes can be generated in the electrical bustling.

In the previous two cases, the electromagnetic field was
not incorporated as λE = λH = 0. In Fig. 3, we consider
the electromagnetic field changing with time taking λE =
1.0, λH = 1.0. Also, the electrical movements of an isolated
neuron are explored with I1 = I2 = 6.0, f1 = 0.06, f2 =
0.06.

In Fig. 4, we take f2 = 6.66 (other parameter values are
same as for Fig. 3). Here, we see that Fig. 4a, b shows that the
phase portraits become dense and periodic phases are con-
verted into chaotic phases. In particular, we can see that the
phase portraits obtained at fractional orders γ = 0.85, 0.75
are denser compared to the nearest values of γ = 1. This
justifies that fractional-order cases generate more varieties
in the phase portraits between v(t) and i(t).

In Fig. 5, the firing patterns of neural activities are plot-
ted for the parameter values k1 = 1.0, I1 = 6.0, f1 =
0.06, I2 = 6.0, f2 = 0.006, λH = 1.0, α = 0.01, β =
0.02, k2 = 1.0, λE = 1.0, a = 0.2, b = 0.1, k3 = 1.0, k4 =
0.01 at the given fractional-order values. Here, we notice
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Fig. 11 At parameters: k1 = 1.0, I1 = 0.0, f1 = 0.0, I2 = 6.0, f2 = 0.2, λH = 1.0, α = 1.0, β = 0.02, k2 = 1.0, λE = 1.0, a = 0.2, b =
0.1, k3 = 1.0, k4 = 0.01, Vth = 1.0, A0 = 0.01, A1 = 1.1, B1 = 0.1, A2 = 0.1, B2 = 0.1

Fig. 12 At parameters: k1 = 1.0, I1 = 0.0, f1 = 0.0, I2 = 6.0, f2 = 0.2, λH = 1.0, α = 1.0, β = 0.02, k2 = 1.0, λE = 1.0, a = 0.2, b =
0.1, k3 = 1.0, k4 = 0.01, Vth = 1.0, A0 = 0.01, A1 = 3.1, B1 = 0.1, A2 = 0.1, B2 = 0.1

that in each fractional-order case, the dynamics of the plots
is same.

Using the external forcing current, we can adjust the
excitability which results in the various firing patterns. Now
we consider the various value of Iext by changing the values
of frequency f2, whereas the frequency f1 is fixed at zero.
From the group of Figs. 6, 7, 8, and 9, we can see that the
electrical movements can be controlled to produce periodic
oscillations when Iext is incorporated with various frequen-
cies. From Fig. 9, we notice that at fractional order values
γ = 0.75, 0.85, the patterns of membrane potential are more
uniform compared to the nearest values of fractional order
γ = 1.

As experimented in ref. [33], the magnetic excitation was
incorporated by a circular induction coil on the neural circuit
when external electromagnetic radiationwas imposed. In this
case, the new revised model is given as follows:

C
0 D

γ,ρ
t v = −

(
v3

3
− k1v

)
− i

+Iext + λH (α + 3βw2)v,

C
0 D

γ,ρ
t i = v − k2i − λE (a + bq2)i,

C
0 D

γ,ρ
t q = k3i,

C
0 D

γ,ρ
t w = −k4v + Vth exp (−A0t)[A1 cos(B1t)

+A2 sin(B2t)], (24)
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Fig. 13 At parameters: k1 = 1.0, I1 = 0.0, f1 = 0.0, I2 = 6.0, f2 = 0.2, λH = 1.0, α = 1.0, β = 0.02, k2 = 1.0, λE = 1.0, a = 0.2, b =
0.1, k3 = 1.0, k4 = 0.01, Vth = 1.0, A0 = 0.01, A1 = 0.1, B1 = 0.05, A2 = 0.1, B2 = 0.1

Fig. 14 At parameters: k1 = 1.0, I1 = 0.0, f1 = 0.0, I2 = 6.0, f2 = 0.2, λH = 1.0, α = 1.0, β = 0.02, k2 = 1.0, λE = 1.0, a = 0.2, b =
0.1, k3 = 1.0, k4 = 0.01, Vth = 1.0, A0 = 0.01, A1 = 0.1, B1 = 0.01, A2 = 0.1, B2 = 0.1

where the term Vth exp (−A0t)[A1 cos(B1t) + A2 sin(B2t)]
defines the external electromagnetic radiation incorporated
by a stimulator coil and Vth is the induction potential
threshold. A0, A1, A2, and B1, B2 are the damping ratio,
amplitudes, and angular frequencies of source of radiation,
simultaneously. The meaning of occurrence of large diver-
sity in B1, B2 is the both low- and high-frequency signals are
interpolated on the neuron, respectively.

Now we plot the numerical solution of this new revised
model (24) using the aforementioned generalized Euler algo-
rithm (18). In the cluster of Figs. 10, 11, 12, 13, 14, and 15,we
plotted the time-series graphs of membrane potential in an
isolate neuron changing the amplitude A1 or frequency B1 in
the external magnetic radiation when Vth = 1.0, A0 = 0.01.

In Figs. 10, 11, and 12, the frequency B1 is fixed at B1 =
0.1 where the amplitude A1 is taken as A1 = 0.1 (Fig. 10a,
b), A1 = 1.1 (Fig. 11a, b), A1 = 3.1 (Fig. 12a, b). It is noticed
in Fig. 11 that near to the fractional order γ = 1, 0.95, 0.85,
the periodic solutions are disturbed but at fractional order
γ = 0.75, the periodic solutions nearly to be exists. This
justifies the possibility of the existence of various solutions
in the case of fractional derivatives.

In Figs. 13, 14, and 15, the amplitude A1 is fixed at A1 =
0.1 where the frequency B1 is taken as B1 = 0.05 (Fig. 13a,
b), B1 = 0.01 (Fig. 14a, b), B1 = 0.001 (Fig. 15a, b). It is
noticed in Figs. 14 and 15 that near to the fractional order
γ = 1, 0.95, the solutions are not perfectly periodic but at
fractional order γ = 0.85, 0.75, the periodic solution exists.
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Fig. 15 At parameters: k1 = 1.0, I1 = 0.0, f1 = 0.0, I2 = 6.0, f2 = 0.2, λH = 1.0, α = 1.0, β = 0.02, k2 = 1.0, λE = 1.0, a = 0.2, b =
0.1, k3 = 1.0, k4 = 0.01, Vth = 1.0, A0 = 0.01, A1 = 0.1, B1 = 0.001, A2 = 0.1, B2 = 0.1

From the graphical observations, we notice that fractional
orders may change the behavior of the solution because of
memory effects. The simulations are performed in Mathe-
matica. The suggested methodology is not just restricted to
simulating the proposed types of neuronmodels. This scheme
can be used in modern control systems such as optimal deep
learning control for modernized microgrids [45], fuzzy con-
trol for current sharing and voltage balancing in microgrids
[46], etc.

5 Conclusions

In this study, we have investigated the dynamics of a
fractional-order neuron model using generalized Caputo
fractional derivatives. We have given proof of the existence
of a unique solution for the proposedmodel. A newversion of
the Euler method has been used to derive the numerical solu-
tion of themodel. The stability and error estimation have been
proved for the proposed numerical scheme. In the graphical
simulations, the influences of model parameters have been
explored, and the results are explained briefly. From the per-
formed analysis, we conclude that the fractional-order values
provide more degree of freedom in the solutions and justify
most of the possible cases of the proposed neuron model out-
puts. In the future, the given neuron model can be redefined
using any other fractional derivative, or the same model can
be revisited after a new circuit experiment. Moreover, some
theoretical simulations of the stability and bifurcation of the
system can be performed.
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