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Abstract
The concept of a Caputo fractal-fractional derivative is a new class of non-integer order derivative with a power-law kernel
that has many applications in real-life scenarios. This new derivative is applied newly to model the dynamics of diabetes
mellitus disease because the operator can be applied to formulate some models which describe the dynamics with memory
effects. Diabetes mellitus as one of the leading diseases of our century is a type of disease that is widely observed worldwide
and takes the first place in the evolution of many fatal diseases. Diabetes is tagged as a chronic, metabolic disease signalized
by elevated levels of blood glucose (or blood sugar), which results over time in serious damage to the heart, blood vessels,
eyes, kidneys, and nerves in the body. The present study is devoted to mathematical modeling and analysis of the diabetes
mellitus model without genetic factors in the sense of fractional-fractal derivative. At first, the critical points of the diabetes
mellitus model are investigated; then Picard’s theorem idea is applied to investigate the existence and uniqueness of the
solutions of the model under the fractional-fractal operator. The resulting discretized system of fractal-fractional differential
equations is integrated in time with the MATLAB inbuilt Ode45 and Ode15s packages. A step-by-step and easy-to-adapt
MATLAB algorithm is also provided for scholars to reproduce. Simulation experiments that revealed the dynamic behavior
of the model for different instances of fractal-fractional parameters in the sense of the Caputo operator are displayed in the
table and figures. It was observed in the numerical experiments that a decrease in both fractal dimensions ζ and ε leads to an
increase in the number of people living with diabetes mellitus.

Keywords Fractal-fractional operator · Caputo derivative · Diabetes mellitus model · Linear stability analysis · Numerical
simulations

Mathematics Subject Classification 26A33 · 34A34 · 65L06 · 92D30

1 Introduction

Diabetes mellitus, commonly referred to simply as diabetes,
is a chronic disease that occurs when the human body either
doesn’t make enough insulin or can’t use it as well as it
should. In the digestive process, that is, in the process of sep-
arating the foods we eat into their sources, when we consume
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carbohydrates such as bread and pasta, our body decom-
poses carbohydrates into sugar. Sugar reaches the cells of
the body until it is eliminated from the body and uses insulin,
which is a key for transfer. Insulin is a hormone produced by
the pancreas and acts as a key to the cell wall. When the
body isn’t able to take glucose (sugar) in its cells and use
it for energy, this results in a build-up of extra sugar in the
bloodstream. Thus, diabetes is caused by the pancreas not
producing insulin or not producing enough insulin, or if it
produces enough insulin, the cell does not respond to it or
cannot use it enough. Without ongoing, controlled manage-
ment and treatment, diabetes causes high levels of sugar to
accumulate in the blood. This leads to dangerous complica-
tions and damage to organs, such as coronary artery disease
(individuals with diabetes are four times more likely to have
a stroke than individuals without the disease), loss of con-
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sciousness, visual disturbances which can lead to blindness,
and risk of infections. Additionally, someonewith diabetes is
themost vulnerable to infection, highbloodpressure, narrow-
ing of the arteries, neuropathy (nerve damage), nephropathy
(kidney damage), hearing loss, and depression [24].

In the treatment of diabetes, it is important to gain healthy
eating habits to keep the blood sugar level within normal lim-
its as well as blood pressure and cholesterol levels, and by
achieving a healthy bodyweight. Themost important basis of
the most important treatment of the disease is a healthy diet;
in addition to an effective diet, oral medications or injections
in the treatment of diabetes are recommended by doctors dur-
ing the treatment process. According to data from the World
Health Organization, approximately 442million people have
diabetes, and diabetes-related deaths reach 1.5 million each
year. It has been predicted that the prevalence of diabetesmel-
litus will reach up to 642 million by the year 2040 globally
[33]. Diabetes is an insidious disease and is usually noticed
after it settles in the body. As said before, the disease can be
fatal in the long term, as it destroys the vessels and organs.
For this reason, many researchers have frequently studied the
illness.

Nowadays,mathematicalmodeling is considered an effec-
tive and important tool for describing the cause and transmis-
sion dynamics of many common infectious diseases such
as the HIV/AIDS [29,30], COVID-19 [27,31,48], tuberculo-
sis (TB) [3,37], Lassa fever [4], Ebola, syphilis [9] cancer
cells [36], polio [21] and many others which are classified
in [4]. In recent years, a fractional-order derivative which is
being regarded as an extension of the integer-order deriva-
tive has gained a lot of scholars’ attention due to its nonlocal
properties and memory effects [22,41]. The fractional-order
derivatives depend not only on the current state but on all of
its historical states and thus have memory properties [41].
Based on these special properties of fractional differentia-
tion and integration, many scholars have applied the concept
of fractional differentiation and integration to model several
nonlinear phenomena in medicine, engineering, physics, and
applied sciences. For instance, Diethelm [12] used the frac-
tion calculus idea to study dengue dynamics and confirmed
in his work that the proposed fractional-order model better
agreeswith the real data of the denguediseasewith an integer-
order case. In a similar development, Naik et al [29,31]
through fractional differentiation proposed fractional order
models for the transmission of the HIV/AID and COVID-
19 diseases and showed that their models predict the better
dynamics of the disease in fractional-order cases over the
standard order scenarios.

A new concept of differentiation that involves the deriva-
tives of bi-order has been suggested in recent years; the first
is termed fractional-order, while the second case is known
as fractal dimension. This type of integral and differential
equation is still poorly reported in the literature. Hence, the

present paper is considering the modeling and analysis of the
fractal-fractional diabetes mellitus model using the deriva-
tive with a power law kernel, which is generally believed
to have a similar physical interpretation to the classical or
integer order derivative. The concept of fractal-fractional
operators has been applied in engineering, physics, biology,
and biomedical processes to successfully model a range of
real-world problems [8,14,19,28,34–36,53]. Owing to the
successful application of this derivative to model a range
of real-life scenarios, we are motivated in this work by
applying the concept of fractal-fractional operators of orders
(ζ, ε) to model the diabetes mellitus differential equations
in the sense of the Caputo operator and demonstrate the
influence of the fractal and fractional orders on the behav-
ior of each of the subclasses in the population. As far as
we are concerned, we are not aware of any formulation of
the diabetes mellitus model with fractal-fractional deriva-
tives.

The remainder part of this work is organized into sections
as follows. A quick tour of some useful definitions of fractal-
fractional operators is given in Sect. 2. The dynamics of the
diabetes mellitus model of integer and non-integer order
cases are introduced in Sect. 3, linear stability analysis as
well as the existence and uniqueness of solutions via fractal-
fractional operators are also examined. In Sect. 4, a novel
numerical approximation technique for the solution of the
proposed model described by the Caputo-fractal-fractional
derivatives is presented.Numerical experimentswhich depict
the behavior of dynamics under investigation are reported for
different instances of orders ζ, ε ∈ (0, 1] which are reported
in Sect. 5. The conclusion is finally given.

2 Preliminaries

In this segment, a quick tour of some properties and useful
definitions of fractional and fractal-fractional Riemann–
Liouville–Caputo operators are reported. In terms of mathe-
matics, the models of fractional derivatives have used power
law memory kernel to define the fractional derivative so that
the system can better characterize memory and global corre-
lation.

In Caputo sense, the fractional derivative of order α is
formulated as

C
0 D

α
y ( f (y)) = 1

�(n − α)

∫ y

0
(y − s)n−α−1 d

n f (s)

dsn
ds,

n − 1 < α ≤ n. (2.1)

Similarly, in Riemann–Liouville sense, the fractional deriva-
tive of order α is defined as
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R
0 D

α
y ( f (y)) = 1

�(n − α)

dn

dyn

∫ y

0
(y − s)n−α−1 f (s)ds,

n − 1 < α ≤ n. (2.2)

Let f (t) be a function, the generalized fractional integral
I α,β
a+ of order α > 0 is defined as [32]

I α,β
a+ f (t) = β1−α

�(α)

∫ t

a
sβ−1(tβ − sβ)α−1 f (s)ds (2.3)

where β > 0 and t > a. The corresponding Riemann-type
fractional derivative of order α > 0 is defined as:

RDα,β
a+ f (t) = βα−n+1

�(n − α)

(
t1−β d

dt

)n ∫ t

a
sβ−1(tβ

−sβ)n−α−1 f (s)ds, t > a (2.4)

where β > 0, a ≥ 0 and n = �α�.
The generalizedCaputo fractional operator of orderα > 0

is formulated as [32]:

C Dα,β
a+ f (t) = βα−n+1

�(n − α)

∫ t

a
sβ−1(tβ

−sβ)n−α−1
(
s1−β d

ds

)n

f (s)ds, t > a

(2.5)

where β > 0, a ≥ 0, n − 1 < α < n, n = �α�, and
f (t) ∈ Cn[a, b]. In addition, the above Caputo derivative
satisfies the following property

C Dα,β
a+ � = 0, � is a constant. (2.6)

Definition 2.1 (Fractal Fractional derivative in Riemann–
Liouville sense with power law kernel [8]): Let f (t) is a
continuous and differentiable function in the interval (t1, t2)
and its fractional order is ε, with ζ order of Riemann–
Liouville sense derivative involving power law (PL) kernel
is given as:

FFP
0 Dζ,ε

t f (t) = 1

� (m − ζ )

d

dtε

t∫

0

(t − s)m−ζ−1 f (s) ds

with p − 1 < ζ, ε ≤ p where p is any natural number and
d f (s)
dsε = lim

t→s

f (t)− f (s)
tε−sε .

Definition 2.2 (Fractal Fractional integral with power law
kernel [8]): Let ε-order differentiable function f (t) is con-
tinuousin (t1, t2) , the fractal fractional integral of f (t) with

ζ−order fractal fractional with power law (PL) kernel is
given as:

FFP I ζ,ε f (t) = ζ

� (ε)

t∫

0

(t − s)ζ−1 sε−1 f (s) ds

3 The diabetes mellitus model

Mathematical modeling and analysis are interested in the
abundance of literature. The right way to predict the dynam-
ics and components of diabetes is depend on the development
of mathematical models. Especially the epistemology of dia-
betes, the question of what we know and how much we
know, reforms into a source of information through the
exploring of many exciting different models. The effect of
many factors on diabetes and the cruising and behavior of
the disease has been studied, such as cold weather, viruses,
obesity or being overweight, impaired glucose tolerance,
ethnic background, sedentary lifestyle, polycystic ovary syn-
drome, age, etc. In some of the work that has been done
in recent years, Awad et al. [5] have been able to absorb
the effects of diabetes on tuberculosis and have predictions
about the rates between 2020–2050. In this study, the authors
have used an age-structured TB-DM dynamic mathemat-
ical model. Ying et al. [58] have modeled and analyzed
the hypoglycemia effect of diabetic women in their new-
borns. In [28], Mollah et al have studied the effect of the
awareness program on diabetes through Homotopy analy-
sis and defined the model with fractional derivative. The
study on the size of the diabetes population and the rate of
diabetes patients with complications have also been exam-
ined using the fractional variation method and the fractional
Homotopy perturbation method in [43]. Rashid analyzed the
SDC model, which takes into account the behavior of dia-
betes, using fractional derivative with non-singular kernel.
Omame et al. [39] have evaluated the model which examines
common interactions between COVID-19 and the genetic
characteristics of diabeteswith theAtangana-Belanauderiva-
tive. In this model, they assessed the spread of COVID-19
and vaccines available the COVID-19 vaccine and howmuch
it could help to reduce its infection along with diabetes.
Toriba et al. [52] have analyzed the model which examined
the relationship between glucose and insulin. In addition to
the studies mentioned above, Wang et al. [55] have stud-
ied obesity, parents’ diabetes story, and the effects of genes
on Type 2 diabetes. Purnami et al. [45] have examined the
diabetes model in relation to lifestyle and genetic effects.
Aye et al [6] have developed a mathematical model for dia-
betes mellitus dynamics and complications and analyzed by
Homotopy Perturbation Method. Rosado [46] have extended
the model of Ackerman given in [7], analyzing a mathemat-
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ical model that determines diabetes in patients based on the
glucose test. The size of diabetes with or without compli-
cations has been investigated by Boutayeb [10]. Side [51]
have examined the diabetes mellitus without genetic fac-
tors, seeking the solution of the model with Runge method.
Pinto et al. [40] have proposed, analyzed and presented
numerical results a model on clinical implications of dia-
betes mellitus in the dynamics of TB transmission. Xie [56]
has addressed the local existence and uniqueness of solution
of the model. Awad et al. [1] have investigated the impact
of intervention strategies for controlling TB among people
with diabetes mellitus. Theoretical and numerical investi-
gation of the bio-medical glucose-insulin model has been
discussed on a fractional-order model been Caputo-Fabrizio
by Saleem et al. [47]. In [49], the authors have considered
type II diabetes and presented a model for obtaining time
courses to health and disease and sought the effects on these
time courses of altering the CHO and lipid content of the
diet. In [2], Al-Hussein et al. [2] have proposed a mathemati-
calmodel for endocrine glucose-insulinmetabolic regulatory
feedback system and presented its numerical investigation.
Analysis of a mathematical model of diabetes mellitus dur-
ing pregnancy is investigated by Daud et al. [11]. Srivastava
et al. [50] have focused on a fractional-order model of dia-
betes and they considered model with its complications. For
more knowledge about diabetes and related studies, see in
[16,17,20,54,58]

The profound and wistful effects of diabetes on human
life due to complications have been the motivation of this
study. Thus, in order to improve our understanding of the
mechanisms underlying diabetes, and to make predictions
about the behavior of the illness, examining and analyzing
models of diabetes are the best strategy. For this reason, in
this study, we are going to consider the diabetes mellitus
model without genetic factors with treatment as follows:

dq (t)

dt
= κ − μq (t) − βq (t) y (t) ,

dy (t)

dt
= βq (t) y (t) − (μ + 1) y (t) ,

dz (t)

dt
= αγ y (t) − (μ + δ) z (t) ,

dp (t)

dt
= (1 − αγ ) y (t) − (μ + σ) p (t) ,

x (t) = q (t) + y (t) + z (t) + p (t) , (3.1)

subject to initial conditions of the form

q(0) = q0, y(0) = y0, z(0) = z0, p(0) = p0, x(0) = x0,

where x (t) states the total number of people living in any
country or region. In epidemiological patterns, it represents a
clear sample rather than the whole of society. q (t) is a class

Fig. 1 Diagrammatic flowchart for the diabetes mellitus model

of sensitive people, which is a class of population members
who risk being infected by a disease. y (t) ,refers to the
dynamics of the class of individuals exposed to or without
symptoms. z (t) represents the class of individuals who have
the disease but cannot access the treatment, and finally p (t)
represents the class of individuals who have the disease but
have reached treatment. Before explaining the other parame-
ters in the above system, the fifth equation of the system can
be written as follows

dx (t)

dt
= dq (t)

dt
+ dy (t)

dt
+ dz (t)

dt
+ dp (t)

dt
.

if the first four equations add up side by side, it yields

dx (t)

dt
= κ − μ (q (t) + y (t) + z (t) + p (t))

− (δ + σ) p (t) .

This allows us to achieve a simpler version of the system as
described in diagram 1, and the resulting dynamical model
becomes

dx (t)

dt
= κ − μx (t) − δz (t) − σ p (t) ,

dy (t)

dt
= β (x (t)−y (t)−z (t)−p (t)) y− (μ + 1) y (t) ,

dz (t)

dt
= αγ y (t) − (μ + δ) z (t) ,

dp (t)

dt
= (1 − αγ ) y (t) − (μ + σ) p (t) , (3.2)

where

κ : the number of individuals born in the population at a

specific time range

μ : the number of death occurs in the population in a

specific time range

δ : the rate of individuals who have been infected with a
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particular disease

and eventually died of it (case fatality rate)

σ : the rate of death from disease with the treatment

αγ : rate of transfer of disease from latent individuals to

sick individuals without treatment

β : the rate of transfer of infectious disease from hidden

individuals to sensitive individuals.

3.1 Fractal-fractional diabetes mellitus model

The concept of fractal was first formally introduced to the
physical sciences more than 20 years ago by Beniot Mandel-
brot. Mandelbort constructed the foundations of the concept
by formally introducing hismonograph to the physicalworld,
which brought together mathematical, experimental, and
physical arguments that undermined the conventional pic-
ture of the physical world. Mandelbrot, while evaluating
the phenomenological formations, drew his attention to the
challenges of explaining the process in physical processes
such as blood coagulation, ice melting, and phase transitions
with physics equations. In order to overcome this bottle-
neck, alternative and competitive methodologies have been
presented. The idea of fractal-fractional was developed as a
new idea by Atangana on fractional calculus. The defined
operator in this new idea involves two orders. One of them
represents the order of the fractional derivative, and the
other represents the fractal dimension. Thus, fractal dimen-
sion can be examined simultaneously, as well as the fractal
order.

The fact that the fractal fractional derivative provides the
opportunity to examine the fractal dimension while evalu-
ating the real phenomena in terms of fractional has enabled
many researchers to concentrate on this subject. Many stud-
ies valuable papers, books, and scientific reports have been
carried out with the concepts of fractional and fractal deriva-
tives and they can be found there and in the references therein
[15,18,25,38,57].

Now, let us redefine the diabetes mellitus model under
fractal-fractional derivative in Caputo sense as follows:

FFP Dζ,εx (t) = κ − μx (t) − δz (t) − σ p (t) ,
FFP Dζ,ε y (t) = β (x (t) − y (t) − z (t) − p (t)) y

− (μ + 1) y (t) ,
FFP Dζ,εz (t) = αγ y (t) − (μ + δ) z (t) ,
FFP Dζ,ε p (t) = (1 − αγ ) y (t) − (μ + σ) p (t) .

(3.3)

During the analysis of the model given in (3.3) following
ways are going to be followed: In the first section, we are
going to present the required definitions. Equilibrium points
and stability of the model are going to be lied in the second

section and in the third section, the existence and uniqueness
of the mentioned model are going to be investigated. Then,
numerical results, simulations, and conclusion are going to
take place in the advanced sections. The main idea of this
study is to consider themodel under fractal-fractional deriva-
tive.

3.2 Analysis of the diabetes mellitus model

Let us consider the diabetes mellitus model without genetic
factors under fractal fractional order derivative as follows

FFP Dζ,εx (t) = κ − μx (t) − δz (t) − σ p (t) ,
FFP Dζ,ε y (t) = β (x (t) − y (t) − z (t) − p (t)) y

− (μ + 1) y (t) ,
FFP Dζ,εz (t) = αγ y (t) − (μ + δ) z (t) ,
FFP Dζ,ε p (t) = (1 − αγ ) y (t) − (μ + σ) p (t) .

(3.4)

Since the integral is differentiable, we can rewrite the system
(3.4) as follows

RL Dζ x (t) = εtε−1 (κ − μx (t) − δz (t) − σ p (t))
RL Dζ y (t) = εtε−1 (β (x (t) − y (t) − z (t) − p (t)) y

− (μ + 1) y (t)) ,
RL Dζ z (t) = εtε−1 (αγ y (t) − (μ + δ) z (t)) ,
RL Dζ p (t) = εtε−1 ((1 − αγ ) y (t) − (μ + σ) p (t)) .

(3.5)

Now, when we replace the derivative RL D by C D, applying
fractional integral, we get the solution as follows

� (t) = � (0) + ε

� (ζ )

t∫

0

(t − s)ζ−1 sε−1� (� (s) , s) ds

(3.6)

where

� (t) =

⎧⎪⎪⎨
⎪⎪⎩

x (t)
y (t)
z (t)
p (t)

� (0) =

⎧⎪⎪⎨
⎪⎪⎩

x0
y0
z0
p0

� (� (t) , t)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�1 (x, y, z, p, t) = κ − μx (t) − δz (t) − σ p (t)
�2 (x, y, z, p, t) = β (x (t) − y (t) − z (t)

−p (t)) y − (μ + 1) y (t)
�3 (x, y, z, p, t) = αγ y (t) − (μ + δ) z (t)
�4 (x, y, z, p, t) = (1−αγ ) y (t)− (μ + σ) p (t) .

(3.7)
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3.2.1 Critical (equilibrium) points

Finding critical points, that is, equilibrium points of a system
is a process that analyzes how the actual solutions behave in
the neighborhood of the equilibrium points without solving
the system. In this section, we will carry out the equilibrium
points and stability conditions of the system given in (3.4)
by setting the derivatives to zero, then solving the system
simultaneously.

The disease-free equilibrium is can be defined as the
point at which there is not a disease in the population.
Thus, the disease-free equilibrium lies at the point E0 =(

κ
α
, 0, 0, 0

)
and the unique endemic equilibrium point is

E1 = (x∗, y∗, z∗, p∗) can be obtained as follows

x∗ = αβ2κ(μ + σ) + β(δκ(−αγ + μ + σ + 1) + κμ(−αγ + μ + σ + 1) + αδ(μ + 1)(μ + σ)) + (μ + 1)σ (1 − αγ )(δ + μ)

β(δ + μ)(μ + σ)(α(β − γ ) + μ + 1)

y∗ = βκ − μ (1 + μ)

β (1 + α (β − γ ) + μ)
, z∗ = αβ

(δ + μ)
y∗, p∗ = −αγ − 1

μ + δ
y∗.

The basic reproduction number given by R0 =
γ κ/

(
α + α2

)
. Now, in order to investigate stability, the

eigenvalues of Jacobian matrix of (3.4) will consider;

J=

⎡
⎢⎢⎣

−μ 0 −δ −σ

β y γ (x − 2y − z − p) − (μ + 1) −β y −β y
0 αγ − (μ + δ) 0
0 1 − αγ 0 − (μ + σ)

⎤
⎥⎥⎦

(3.8)

When we evaluate Jacobian at the endemic equilibrium
point E0 = (

κ
α
, 0, 0, 0

)
, we get;

J0 =

⎡
⎢⎢⎣

−μ 0 −δ −σ

0 βκ
μ

− (μ + 1) 0 0
0 αγ − (μ + δ) 0
0 1 − αγ 0 − (μ + σ)

⎤
⎥⎥⎦ (3.9)

An equilibriumpoint E0 = (
κ
α
, 0, 0, 0

)
of the system (3.4)

is stable if all the eigenvalues (λ) of J0, the Jacobian evalu-
ated at E0, have negative real parts. Thus, the characteristic
equation of (3.9) is obtained as

(
βκ

μ
− μ − 1 − λ

) (
λ2 + λδ + 2λμ + δμ + μ2

)

(−μ − σ − λ) = 0

and related eigenvalues are

λ1 = −μ

λ2 = −δ − μ

λ3 = −μ − σ

λ4 = βκ−μ−μ2

μ

Because all the parameters used are positive, then for R0 < 1,
E0 is stable.

3.2.2 Existence and uniqueness

In this section, we are going to establish sufficient conditions
on the existence of a unique solution of (3.5) using Banach
fixed point theorem.

Let Bnch = C × C × C × C is a Banach space under
thenorm

‖� (t)‖ = max
t∈I ‖x (t) + y(t) + z(t) + p(t)‖

and

I = (t0 − ω, t0 + ω)

is a finite time interval. Now, we are going to show existence
theorems by proving that T is a contraction mapping, So that

T : Bnch → Bnch

� (t) → T (� (t))

= � (0) + ε
�(ζ )

t∫
0

(t − s)ζ−1 sε−1� (� (s) , s) ds

(3.10)

Let �0is any point in Bnch;

‖� (t) − �0‖

=
∥∥∥∥∥� (0) + ε

�(ζ )

t∫
0

(t−s)ζ−1 sε−1� (� (s) , s) ds − �0

∥∥∥∥∥
=

∥∥∥∥∥ ε
�(ζ )

t∫
0

(t − s)ζ−1 sε−1� (� (s) , s) ds

∥∥∥∥∥
≤ εT ζ+ε−1

max
�(ζ )

‖� (� (t) , t)‖ = εT ζ+ε−1
max
�(ζ )

�

(3.11)

then there exists a unique fixed point �0 ∈ Bnch .

Now, we need the condition that if�1 (t)−�2 (t) is small
than � (�1 (t) , t) − � (�2 (t) , t) should be small, too. For
(3.6);
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‖� (�1 (t) , t) − � (�2 (t) , t)‖
=

∥∥∥∥∥�1 (0) + ε
�(ζ )

t∫
0

(t − s)ζ−1 sε−1� (�1 (s) , s) ds

− �2 (0) − ε
�(ζ )

t∫
0

(t − s)ζ−1 sε−1� (�2 (s) , s) ds

∥∥∥∥∥
≤ ‖�1 (0) − �2 (0)‖ + ε

�(ζ )∥∥∥∥∥
t∫
0

(t − s)ζ−1 sε−1 (� (�1 (s) , s) − � (�2 (s) , s)) ds

∥∥∥∥∥
≤ ‖�1 (0) − �2 (0)‖

+ εT ζ+ε−1
max
�(ζ )

‖(� (�1 (t) , t) − � (�2 (t) , t))‖
≤ ‖�1 (0) − �2 (0)‖ + εT ζ+ε−1

max
�(ζ )

� ≤ �.

4 Numerical scheme for the fractal-fractional
diabetes mellitus model without genetic
factors

In this section, we are going to establish a numerical scheme
for diabetes mellitus model in order to present the numerical
behavior of the model under fractal fractional derivative. For
this purpose, let recall the model given in (3.5)

C Dζ x (t) = εtε−1 (κ − μx (t) − δz (t) − σ p (t))
C Dζ y (t) = εtε−1 (β (x (t) − y (t) − z (t) − p (t)) y

− (μ + 1) y (t)) ,
C Dζ z (t) = εtε−1 (αγ y (t) − (μ + δ) z (t)) ,
C Dζ p (t) = εtε−1 ((1 − αγ ) y (t) − (μ + σ) p (t)) .

(4.1)

Using the approximation of the integrals on the right-hand
side of above system, we get

x (t) = x (0) + ε
�(ζ )

t∫
0

(t − s)ζ−1 sε−1 (κ − μx (s) − δz (s)

−σ p (s)) ds

y (t) = y (0) + ε
�(ζ )

t∫
0

(t − s)ζ−1 sε−1 (β (x (s) − y (s)

−z (s) − p (s)) y − (μ + 1) y (s)) ds

z (t) = z (0) + ε
�(ζ )

t∫
0

(t − s)ζ−1 sε−1 (αγ y (s)

− (μ + δ) z (s)) ds

p (t) = p (0) + ε
�(ζ )

t∫
0

(t − s)ζ−1 sε−1 ((1 − αγ ) y (s)

− (μ + σ) p (s)) ds.

(4.2)

Thus, at time t = tn+1

xn+1 = x0 + ε

� (ζ )

tn+1∫

0

(tn+1 − s)ζ−1 sε−1 (κ − μx (s)

−δz (s) − σ p (s)) ds

yn+1 = y0 + ε

� (ζ )

tn+1∫

0

(tn+1 − s)ζ−1 sε−1 (β (x (s) − y (s)

−z (s) − p (s)) y − (μ + 1) y (s)) ds

zn+1 = z0 + ε

� (ζ )

tn+1∫

0

(tn+1 − s)ζ−1 sε−1 (αγ y (s)

− (μ + δ) z (s)) ds

pn+1 = p0 + ε

� (ζ )

tn+1∫

0

(tn+1 − s)ζ−1 sε−1 ((1 − αγ ) y (s)

− (μ + σ) p (s)) ds. (4.3)

Now, we are going to apply an approximation to functions

sε−1 (κ − μx (s) − δz (s) − σ p (s)) , sε−1
(
β
(
x (s) − y (s)

−z (s)− p (s)
)
y−(μ + 1) y (s)

)
, sε−1

(
αγ y (s)−(μ + δ)

z (s)
)
and sε−1 ((1 − αγ ) y (s) − (μ + σ) p (s)). For con-

vince; the functions seen in (4.3) are calledwith�i (x, y, z, p) ,

i = 1, 2, 3, 4 as previous section. Therefore,

Pj (s) ≈ sε−1�i (x, y, z, p, s) = s − t j−1

t j − t j−1
tε−1
j �i

× (
x, y, z, p, t j

) − s − t j
t j − t j−1

tε−1
j−1�i

(
x, y, z, p, t j−1

)

i = 1, 2, 3, 4 (4.4)

When we use the approximation (4.4) in (4.3), respectively,
we get

xn+1 = x0 + ε

� (ζ )

n∑
j=0

t j+1∫

t j

(tn+1

−s)ζ−1 sε−1�1 (x, y, z, p, s) ds

= x0 + ε

� (ζ )

n∑
j=0

t j+1∫

t j

(tn+1 − s)ζ−1

×
[
s − t j−1

t j − t j−1
tε−1
j �1 (x, y, z

, p, t j
) − s − t j

t j − t j−1
tε−1
j−1�1

(
x, y, z, p, t j−1

)]
ds

= x0 + ε

� (ζ )

n∑
j=0

t j+1∫

t j

(tn+1 − s)ζ−1

[
s − t j−1

t j − t j−1
tε−1
j �1 (x, y, z , p, t j

)]
ds
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− ε

� (ζ )

n∑
j=0

t j+1∫

t j

(tn+1 − s)ζ−1

[
s − t j

t j − t j−1
tε−1
j−1�1 (x, y, z , p, t j−1

)]
ds (4.5)

and after some arrangement, we can write

xn+1 = x0 + ε

� (ζ )

n∑
j=0

t j+1∫

t j

(tn+1 − s)ζ−1 (
s − t j−1

)
t j − t j−1

×
[
tε−1
j �1

(
x, y, z, p, t j

) ]
ds

= − ε

� (ζ )

n∑
j=0

t j+1∫

t j

(tn+1 − s)ζ−1 (
s − t j

)
t j − t j−1

×
[
tε−1
j−1�1

(
x, y, z, p, t j−1

)]
ds (4.6)

and

xn+1 = x0 + ε

� (ζ )

n∑
j=0

I1 − ε

� (ζ )

n∑
j=0

I2 (4.7)

where

I1 =
t j+1∫

t j

(tn+1 − s)ζ−1 (
s − t j−1

)
t j − t j−1

[
tε−1
j �1

(
x, y, z, p, t j

)]
ds

I2 =
t j+1∫

t j

(tn+1 − s)ζ−1 (
s − t j

)
t j − t j−1

[
tε−1
j−1�1

(
x, y, z, p, t j−1

)]
ds.

(4.8)

Now, our aim is to calculate the integrals I1 and I2, so using
the transformation y = tn+1−s,weobtain following integral
equation

I1 =
t j+1∫

t j

(tn+1 − s)ζ−1 (
s − t j−1

)
t j − t j−1

[
tε−1
j �1

(
x, y, z, p, t j

)]
ds

= −
tn+1−t j+1∫

tn+1−t j

yζ−1
(
tn+1 − y − t j−1

)
t j − t j−1

×
[
tε−1
j �1

(
x, y, z, p, t j

)]
dy

= tε−1
j �1

(
x, y, z, p, t j

) tn+1−t j∫

tn+1−t j+1

× yζ−1
(
tn+1 − y − t j−1

)
t j − t j−1

dy

= tε−1
j �1

(
x, y, z, p, t j

) 1

�t

tn+1−t j∫

tn+1−t j+1

yζ−1 ((n + 1) �t

− ( j − 1) �t − y) dy

= tε−1
j �1

(
x, y, z, p, t j

) 1

�t

tn+1−t j∫

tn+1−t j+1

×
[
�t (n − j − 2) yζ−1 − yζ

]
dy

= tε−1
j �1

(
x, y, z, p, t j

) 1

�t

×
{

�t (n − j − 2) yζ

ζ
− yζ+1

ζ + 1

}tn+1−t j

tn+1−t j+1

= tε−1
j

ζ (ζ + 1)
�1

(
x, y, z, p, t j

)

× {
(n − j + 1)ζ (ζ + n − j + 2)

− (n − j)ζ (2ζ + n − j + 2)
}

(4.9)

and

I2 =
t j+1∫

t j

(tn+1 − s)ζ−1 (
s − t j

)
t j − t j−1

[
tε−1
j−1�1

(
x, y, z, p, t j−1

)]
ds

=
tn+1−t j+1∫

tn+1−t j

yζ−1
(
tn+1 − y − t j

)
t j − t j−1

[
tε−1
j �1

(
x, y, z, p, t j

)]
dy

= tε−1
j �1

(
x, y, z, p, t j

) tn+1−t j∫

tn+1−t j+1

yζ−1
(
tn+1 − y − t j

)
t j − t j−1

dy

= tε−1
j �1

(
x, y, z, p, t j

) 1

�t

tn+1−t j∫

tn+1−t j+1

yζ−1 ((n + 1 − j) �t

−y) dy

= tε−1
j �1

(
x, y, z, p, t j

) 1

�t

tn+1−t j∫

tn+1−t j+1

[
�t (n + 1 − j) yζ−1

−yζ
]
dy

= tε−1
j �1

(
x, y, z, p, t j

) 1

�t

×
{

�t (n + 1 − j) yζ

ζ
− yζ+1

ζ + 1

}tn+1−t j

tn+1−t j+1

= tε−1
j

ζ (ζ + 1)
�1

(
x, y, z, p, t j

) {
(n − j + 1)ζ+1 − (n

− j)ζ (ζ + n − j + 1)
}
. (4.10)
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Fig. 2 Simulation results for fractal-fractional diabetes mellitus in the sense of Caputo with varying orders. Other parameters are set as κ = 1, μ =
0.13869, δ = 0.06654, σ = 0.09281, β = 0.0009, αγ = 0.88187. Simulation runs for time t = 80
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Table 1 Numerical solution
showing the performance of
scheme (4.11) for various ζ with
ε = 0.99 and t = 10. Other
parameters are given in Fig. 2

h ζ = 0.65 ζ = 0.75 ζ = 0.85 ζ = 0.95 ζ = 1.00

0.5 8.33333e-05 7.69231e-05 7.14286e-05 6.66667e-05 6.25000e-05

0.25 5.00000e-05 4.76190e-05 4.54545e-05 4.34783e-05 4.16667e-05

0.125 3.70370e-05 3.44828e-05 3.22581e-05 3.03030e-05 2.85714e-05

0.0625 1.58730e-06 1.40845e-06 4.28205e-07 4.03457e-07 4.01243e-07

Fig. 3 numerical results with κ = 1, β = 0.009 for different instances of ζ and ε. Other parameters are given in Fig. 2 caption

Using I1 and I2 in (4.7), we get

xn+1 = x0 + ε

� (ζ )

n∑
j=0

tε−1
j �1

(
x, y, z, p, t j

) {(n − j

+1)ζ (ζ + n − j + 2) − (n − j)ζ (2ζ + n − j + 2)
}

− ε

� (ζ )

n∑
j=0

tε−1
j �1

(
x, y, z, p, t j

)

× {
(n − j + 1)ζ (ζ + n − j

+2) − (n − j)ζ (2ζ + n − j + 2)
}
.

So, the system given in (4.3) transform following algebraic
equation system as follows

xn+1 = x0 + ε

� (ζ + 2)

n∑
j=0

tε−1
j �1

(
x, y, z, p, t j

)

×
{

(n − j + 1)ζ (ζ + n − j + 2)

− (n − j)ζ (2ζ + n − j + 2)

}

− ε

� (ζ + 2)

n∑
j=0

tε−1
j �1

(
x, y, z, p, t j

)
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Fig. 4 numerical results with κ = 0.02, β = 0.009 for different instances of ζ and ε. Other parameters are given in Fig. 2 caption

×
{

(n − j + 1)ζ (ζ + n − j + 2)

− (n − j)ζ (2ζ + n − j + 2)

}

yn+1 = y0 + ε

� (ζ + 2)

n∑
j=0

tε−1
j �2

(
x, y, z, p, t j

)

×
{

(n − j + 1)ζ (ζ + n − j + 2)

− (n − j)ζ (2ζ + n − j + 2)

}

− ε

� (ζ + 2)

n∑
j=0

tε−1
j �2

(
x, y, z, p, t j

)

{
(n − j + 1)ζ (ζ + n − j + 2)

− (n − j)ζ (2ζ + n − j + 2)

}

zn+1 = z0 + ε

� (ζ + 2)

n∑
j=0

tε−1
j �3

(
x, y, z, p, t j

)

×
{

(n − j + 1)ζ (ζ + n − j + 2)

− (n − j)ζ (2ζ + n − j + 2)

}

− ε

� (ζ + 2)

n∑
j=0

tε−1
j �3

(
x, y, z, p, t j

)

×
{

(n − j + 1)ζ (ζ + n − j + 2)

− (n − j)ζ (2ζ + n − j + 2)

}
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Fig. 5 Numerical results showing the effect of κ = 0.50 for different instances of ζ and ε. Other parameters are given in Fig. 2 caption

pn+1 = p0 + ε

� (ζ + 2)

n∑
j=0

tε−1
j �4

(
x, y, z, p, t j

)

×
{

(n − j + 1)ζ (ζ + n − j + 2)

− (n − j)ζ (2ζ + n − j + 2)

}
− ε

� (ζ + 2)
n∑
j=0

tε−1
j �4

(
x, y, z, p, t j

) {
(n − j + 1)ζ (ζ + n

− j + 2) − (n − j)ζ (2ζ + n − j + 2)
}
. (4.11)

It should be noted that we do not have analytical solution
tomodel (3.3); we follow the idea suggested in [23] check the
performance of the Caputo fractal-fractional diabetes melli-
tus scheme by setting the step-size h = 0.001 as the reference
solution. Numerical results for various step sizes and fractal-
fractional parameters are tabulated in Table 1.

Table 2 Initial conditions for diabetes mellitus model

Variable Values

x (0) 395.406

y (0) 9.304

z (0) 4.779

p (0) 3.426

5 Numerical experiments and results

In this section, our attention will be devoted to numeri-
cal solution of the fractal-fractional diabetes mellitus model
without the genetic factors (3.4). The resulting numerical
approximation for the fractal-fractional diabetes mellitus
model as given by equation (4.11) is advanced in time by
suing the MATLAB ODE15s code. All simulations are car-
ried out with the aid of MATLAB 2021a package on a digital
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Fig. 6 The presence of attractors show that the entire population coexist and permanents regardless of time (days) and fractal-fractional orders.
Parameters are given in Fig. 2 caption

ALIENWARE computer, Core i7, 9th generation, with 32GB
RAM, 512GB SSD, and 8GB Nvidia gtx1070 graphics card.

In addition, we are going to present the treatment of
patients with diabetes mellitus without genetic factors under
the fractional-fractal order derivatives in the sense of the
Caputo operator. First, let’s redefine the variables to be
determined in the model. x (t) is the number of susceptible
individuals in the population, and the number of individu-
als exposed to diabetes and asymptomatic is symbolized by
y (t). The number of individuals with diabetes but not treated
is defined by z (t), and the number of individuals with dia-
betes and access to treatment is shown by p (t). The initial
conditions used in the simulation experiments are given in
Table 2 with time-step h = 0.01.

Considering the parameters observed in the system for a
total simulation time t = 80/days are given as follows; the
birth rate in the population is κ = 1; the value of natural
death rate is μ = 0.13869; death rate of untreated patients
with diabetes δ = 0, 06654; death rate of treated patients
with diabetes σ = 0, 09281; the rate of infective contact
of susceptible individuals to latent individuals β = 0.0009;
and the latent rate of movement of the individual becomes
infected αγ = 0.88187. First of all, the values of variables
are given in Table 3 at different time levels and the behavior

Table 3 The values of variables at various times

t x (t) y (t) z (t) p (t)

0.0 395.406 9.304 4.779 3.426

10 393.7551 2.9120 11.2914 3.6267

20 393.1953 2.3290 11.3560 3.4633

30 392.8278 2.0293 11.2627 3.3388

40 392.5539 1.8354 11.1366 3.2379

50 392.3366 1.6956 11.0049 3.1528

60 392.1575 1.5881 10.8757 3.0791

70 392.0062 1.5018 10.7517 3.0141

75 391.9387 1.4645 10.6920 2.9842

of x (t) , y (t) , z (t) and p (t) are presented in Figs. 2-6 for
h = 0.01, and at different instances of fractional order ε ∈
(0, 1], and fractal dimension ζ ∈ (0, 1].

Numerical experiments are conducted for different val-
ues of parameters to mimic the dynamic behavior of the
fractal-fractional diabetes mellitus model as displayed in
Figs. 2-8. To start with, we observed the numerical scheme
(4.11) with fixed parameters as given above, and allow the
fractal-fractional values (ζ, ε) to vary by assuming that both
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Fig. 7 The presence of attractors showing the effect of β = 0.02(0.02)0.08. The fractal-fractional parameters are given as ζ = 0.98 and ε = 0.99

the fractal dimension and the fractional derivative orders are
equal, that is ζ = ε. Figure2 shows the behaviors of suscep-
tible people x(t), exposed people y(t), infected population
z(t), and recovered people due to the availability of treatment
p(t) versus time t in days with variation in thememory index
ζ and ε at different values as given in the figure captions. Fig-
ure2 shows the dynamic effects for different values of ζ and
ε, as we can see when ζ = ε = 0.75, the susceptible and
infected population are also increasing, but decreased dras-
tically as both ζ → 1 and ε → 1. This means that decrease
in parameters ζ, ε result in an increase in the susceptible and
infected populations.

Next, we are considering the behavior of individual sub-
class with respect to parameter perturbation with β which
represents the rate of infectious contact of susceptible indi-
viduals to the latent population as shown inFig. 3 for different
fractal-fractional order values. It is obvious that the behavior
of sub-population y(t), z(t) and p(t) follow a similar trend
as the values ζ, ε → 1, that is, with ζ = ε = 0.80(0.05)1.00.
With κ = 0.02, and retained value β = 0.009, one obtained
the dynamic response in Fig. 4, it was discovered that the
lower the values of ζ and ε, the higher the number of people
living with the diabetes mellitus. To keep the affected class
down, both ζ and ε must tends to unity. In Fig. 5, we utilized

parameters κ = 0.50 subject to when ζ �= ε. Various numer-
ical results for alternating values of fractal dimension ζ and
fractional order ε are displayed for various sub-population
classes.

In the previous section, it was shown that the proposed
model’s solution exists and is unique. In the same vein, we
shall justify through numerical experiments that the solution
of the diabetes mellitus model described by the fractal-
fractional derivative in the sense of the Caputo operator
exists. To achieve this, we let ζ = ε ∈ (0, 1], with parame-
ters κ = 1, μ = 0.13869, δ = 0, 06654, σ = 0, 09281, γ =
0.88187, and β = 0.0009 to obtain a 3D attractors in Fig. 6
which correspond to ζ = ε = 0.78(blue), ζ = ε =
0.85(black), ζ = ε = 0.95(red) and ζ = ε = 1.00
(green), respectively. The presence of attractors of various
sub-population shows that all classes will coexist within a
given population over a period of time t , regardless of the
choice of ζ and β or any other parameters. For instance, and
to justify this assertion, we set β = (0.02, 0.04, 0.06, 0.08)
which corresponds to black, red, green, and blue lines,
respectively, to obtain the dynamic behavior in Fig. 7. The
corresponding time solutions for each of the sub-population
are given in Fig. 8. Hence, the key parameters which play
a major role in the simulation experiment of the diabetes
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Fig. 8 Numerical results showing effects of β with fixed values of ζ = 0.98 and ε = 0.99. Other parameters remain as defined in Fig. 2 caption

mellitus model in this work are the fractal dimension ζ and
fractional order ε

6 Conclusion

Diabetes is tagged as a chronic, metabolic disease signal-
ized by elevated levels of blood glucose (or blood sugar),
which results over time in serious damage to the heart, blood
vessels, eyes, kidneys, and nerves in the body. The most
common is type-II diabetes, usually in adults, which occurs
when the body is resistant to insulin or does not produce
enough insulin. In the past three decades, the prevalence
of type-II diabetes has risen dramatically in countries of
all income levels. Type-I diabetes, once called juvenile dia-
betes or insulin-dependent diabetes is a chronic condition
in which the pancreas produces little or no insulin by itself.
Therefore, for people living with this deadly disease, access
to affordable treatment, including insulin, is critical to their

survival. In this paper, a four compartmental model describ-
ing the diabetes mellitus disease without genetic factors is
investigated in the sense of the Caputo fractal-fractional
operator. At first, we uncovered the critical points to iden-
tify the stability analysis of the model being considered,
then successfully demonstrated the existence and unique-
ness conditions of the solution using Picard Lindelof theorem
when defined by the fractal fractional derivative of the model
without genetic factors. A viable numerical approximation
technique was formulated to discretize the proposed model.
The resulting system of fractal-fractional differential equa-
tions was advanced in time with the novel inbuilt ODE15s
MATLAB R2021a package. Numerical results for different
instances of fractal dimension and fractional-order parame-
ters are reported for each of the sub-classes. It was observed
via simulation experiments that whenever the values of ζ, ε

is decreasing, says tend to 0, the number of people livingwith
diabetes witness an upsurge, but when ζ, ε → 1, the popula-
tion of individuals living with diabetes will be reducing. To
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have a population free of diabetes, both ζ and ε must tend
to unity. Also in Table 1, the utmost solutions were recorded
with (ζ, ε) → 1. Extension of the fractal-fractional oper-
ator to model more complex scenarios in engineering and
biomedical processes is left for future work.
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Appendix a the numerical scheme (4.11) can
be computed in MATLAB by following the
highlighted algorithm below

%Inputs
h=0.01; t(1)=0.01; tfinal=80;
t=t(1):h:tfinal; N=ceil((tfinal-t(1))/h);
%Input the Initial Conditions
x(1)=395.406;y(1)=9.304;z(1)=4.779;p(1)=3.426;
%%===============================================================
%Assign values
alp=0.98;%0.97; %fractional order
tau=0.99;%0.89; %fractal dimension
%===============================================================
%input model parameters
mu=0.13869; dlt1=0.06654; dlt2=0.09281; beta=0.0009; A=1; agm=0.088187;
%===============================================================
%Compute the nonlinear terms or simply right hand side of the model
f1=@(t,x,y,z,p) A-mu*x-dlt1*z-dlt2*p;
f2=@(t,x,y,z,p) beta*(x-y-z-p).*y-mu*y-y;
f3=@(t,x,y,z,p) agm*y-(mu+dlt1)*z;
f4=@(t,x,y,z,p) (1-agm)*y-(mu+dlt2)*p;
%===============================================================
%Algorithm of the Caputo Fractal-Fractional starts
tic;
for n=1:N
j=2:n;
% Define
x(n+1), y(n+1), z(n+1) and p(n+1) as contained in R.H.S (4.22)
t(n+1)=t(n)+h;
end
%Output Results
plot(t,x,’r-’,t,y,’k-’,t,z,’b’,t,p,’g-’,’Linewidth’,2);
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