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Abstract
This paper addresses a leader–follower formation control problem for four-legged robots under discrete-valued input con-
straints. Four-legged robots are more suitable for rough terrain missions than wheeled robots because the tip positions of their
legs can be changed depending on the terrain. However, it is difficult to control these robots through continuous-valued inputs
because they are steered by switching between specific movements (i.e., discrete-valued signals). Motivated by this fact,
we have proposed controllers that achieve fixed formations of four-legged robots using discrete-valued inputs, but moving
formations, which are necessary for some applications, have not been considered yet. Herein, we present a solution to the
above leader–follower formation control problem based on the combination of PD-like formation controllers and dynamic
quantization. We further introduce a performance index to evaluate the difference between two systems whose inputs are
quantized and unquantized and analyze the index for the feedback system with the presented controllers. As a result, an upper
bound of the performance index is derived as a function of the system parameters. This is useful to evaluate the impact of the
quantization on the behavior of the feedback system and to provide a theoretical guarantee of the stability of the system.

Keywords Discrete-valued inputs · Four-legged robots · Leader–follower formations · Multi-robot systems

1 Introduction

A popular research topic in the area of systems and con-
trol is the formation control of multi-robot systems to allow
multiple robots to achieve a prespecified configuration in a
distributed manner. The popularity of this topic is attributed
to its modern applications, including the formation flight of
unmanned aerial vehicles and the exploration of hazardous
environments through mobile robots.

Herein, we focus on four-legged robots (see, e.g., Fig. 1)
as robots to be controlled. Four-legged robots are capable of
performing straight, lateral, and rotational movements using
their four legs. They can also cross obstacles if the tips of
their legs can reach the top surfaces of the obstacles. Com-
pared to wheeled robots, four-legged robots are suitable for
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rough terrain missions because the tip positions of their legs
can be changed depending on the terrain. Moreover, using
four legs improves the walking stability and reduces the pro-
duction and operation costs. A lower number of legs reduce
the walking stability of robots, whereas a higher number of
legs increase the hardware cost and the energy consumption.

In our previous study [1], we addressed a formation con-
trol problem for four-legged robots subject to discrete-valued
input constraints. The motivation was that the commands
of specific movements are used to drive four-legged robots
[2,3] and switching between the commands (i.e., discrete-
valued signals) enables the position control of the robots.
We then proposed formation controllers as a solution to
this problem. The proposed controllers were obtained based
on the combination of conventional formation controllers
for omnidirectional robots and dynamic quantization, i.e.,
transforming continuous-valued signals into discrete-valued
ones through feedback mechanisms. However, [1] focused
on achieving fixed formations and did not consider moving
formations.Moving formations are necessary formany appli-
cations, including cooperative exploration and transportation
through mobile robots.
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Fig. 1 Four-legged robot [2]

Motivated by this, we aim to extend the theoretical
framework developed in [1] to the case of leader–follower
formations [4]. In the leader–follower formation, we regard
one robot as the leader and the other robots as the follow-
ers, and the followers track the leader while preserving a
prespecified formation. In this scenario, moving formations
can be achieved simply by steering the leader. Although the
leader–follower approach leads to an over-reliance on a sin-
gle robot for achieving the group objective and is not robust
against disturbances [5], its simplicity and scalability are
major advantages [6]. In addition, there are some caseswhere
the leader and the followers are preassigned in the target sys-
tem and applying the leader–follower approach is natural,
e.g., following and hunting a target with mobile robots [7],
the formation flying of two spacecraft [8,9], and adaptive
cruise control systems [10].

The main contributions of this paper are summarized
below.

1. We present controllers that achieve leader–follower for-
mations using discrete-valued inputs. Our controllers are
basedon the combinationofPD-like formation controllers
and dynamic quantization. These controllers are given as
a simple extension of the controllers in [1] by focusing on
their structures and extending the specific parts appropri-
ately. Numerical examples demonstrate the performance
of the presented controllers.

2. We theoretically analyze the feedback system with the
presented controllers. Specifically, we evaluate a perfor-
mance index that quantifies the difference between the
behavior of the feedback systems whose inputs are quan-
tized and unquantized. We derive an upper bound of the
performance index as a function of the system parameters.
This result helps to evaluate the impact of the quantiza-
tion on the system behavior and to provide a theoretical
guarantee of the stability of the feedback system.

Finally, we discuss the related works. A number of results
on leader–follower formation control have been reported.

Consolini et al. [6] considered the formation control for
unicycle-type robots with constraints on their input magni-
tudes. Mariottini et al. [5] and Han et al. [11] discussed the
combination of localization and control to achieve leader–
follower formations. Lin et al. [12] proposed an approach
based on complex-valued graphLaplacians to study a leader–
follower formation control problem.Dai et al. [13] developed
adaptive formation controllers to achieve both prescribed
transient and steady-state performance. Tang et al. [14] stud-
ied the formation control in three-dimensional space based
on the persistence of excitation of the desired formation.
Moreover, we can find results in the cases where quantized
signals are included. Qiu et al. [15] addressed a leader-
following consensus problem for high-order multi-agent
systems with quantized outputs. Xiong et al. [16] studied
the leader–follower formation control of linear heteroge-
neous multi-agent systems using a quantizer with a zoom
variable. Huang and Dong [17] focused on the reliable for-
mation control under quantized communication and cyber
attacks. Hu et al. [18] and Wang et al. [19] developed adap-
tive formation controllers for unmanned aerial vehicles with
uncertainties and quantized inputs. They [20] also consid-
ered the case where both inputs and outputs are quantized.
However, the aforementioned studies primarily focused on
omnidirectional robots, unicycle-type robots, and robotswith
general linear dynamics, and four-legged robots were not
considered. In addition, the quantization of signals in the
existing studies is due to the limitation of the capacity of the
communication network between robots, whereas that in our
study is due to the property of four-legged robots. As a result,
our quantization method is distinguished from the existing
ones; therefore, the existing results cannot be directly applied
to this study.

Notation: We denote the real number field and the set of
positive real numbers byR andR+, respectively. For the com-
plex number z, Re(z), Im(z), and |z| represent its real part,
imaginary part, and absolute value, respectively. For the vec-
tors x1, x2, . . . , xn ∈ R

2 and the set I := {i1, i2, . . . , im} ⊆
{1, 2, . . . , n}, let [xi ]i∈I := [x�

i1
x�

i2
· · · x�

im
]� ∈ R

2m . The
∞-norms of vectors and matrices and the Euclidean norms
of vectors are described using ‖·‖ and ‖·‖2, respectively. Let
0n×m be then×m zeromatrix, and let In be then-dimensional
identity matrix.We denote the diagonal matrix with the diag-
onal elements x1, x2, . . . , xn ∈ R by diag(x1, x2, . . . , xn).
The Kronecker product of the matrices M1 and M2 is defined
by M1⊗M2. The cardinality of the set S is denoted by |S|.We
use B(c, r) to represent a closed disk in R

2 with the center
c and the radius r , i.e., B(c, r) := {x ∈ R

2 | ‖x − c‖2 ≤ r}.
For the positive number c and the vector v, let satc(v) denote
the saturation function such that |vi | ≤ c is guaranteed for
each element vi of v.
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2 Problem formulation

Consider the multi-robot system � shown in Fig. 2, which
comprisesn four-legged robots in two-dimensional space and
controllers embedded in them.

Robot i (i ∈ {1, 2, . . . , n}) is given as the discrete-time
system

⎡
⎣

xi1(t + 1)
xi2(t + 1)
θi (t + 1)

⎤
⎦ =

⎡
⎣

xi1(t)
xi2(t)
θi (t)

⎤
⎦ +

⎡
⎣

(cos(θi (t) + ui2(t))
(sin(θi (t) + ui2(t))

ui2(t)

×(1 − ui3(t)) + sin(θi (t) + ui2(t))ui3(t))ui1(t)
×(1 − ui3(t)) − cos(θi (t) + ui2(t))ui3(t))ui1(t)

⎤
⎦ , (1)

where t ∈ {0, 1, . . .} denotes the discrete time and
[xi1(t) xi2(t)]� ∈ R

2 (defined as xi (t)) and θi (t) ∈ (−π, π ]
denote the position and orientation of robot i , respectively.
The variables ui1(t), ui2(t) ∈ R and ui3(t) ∈ {0, 1} stand
for the control inputs determining the translational and rota-
tional velocities and the movement type, respectively. The
relation between the value of ui3(t) and themovement type is
shown in Fig. 3. If ui3(t) = 0, robot i performs rotational and
straight movements, whereas if ui3(t) = 1, it performs rota-
tional and lateral movements. The system (1) is derived by
incorporating ui3(t) into a discrete-timemodel of a unicycle-
type robot in order to enable lateral movements.

The controller embedded in robot i is of the form

Ki :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξi (t + 1) = fi1(ξi (t), [x j (t) − xi (t)] j∈Ni ,

θi (t), [y j (t)] j∈Ni ),

ui (t) = fi2(ξi (t), [x j (t) − xi (t)] j∈Ni ,

θi (t), [y j (t)] j∈Ni ),

yi (t) = fi3(ξi (t), [x j (t) − xi (t)] j∈Ni ,

θi (t), [y j (t)] j∈Ni ),

(2)

Fig. 2 Multi-robot system �

Fig. 3 Relation between the value of ui3(t) and the movement type of
robot i

where ξi (t) ∈ R
m is the state, [x j (t) − xi (t)] j∈Ni ∈ R

2|Ni |,
θi (t), and [y j (t)] j∈Ni ∈ R

μ|Ni | are the inputs, ui (t) =
[ui1(t) ui2(t) ui3(t)]� and yi (t) ∈ R

μ are the outputs, and
fi1 : Rm × R

2|Ni | × (−π, π ] × R
μ|Ni | → R

m , fi2 : Rm ×
R
2|Ni | × (−π, π ] × R

μ|Ni | → R
3, and fi3 : Rm × R

2|Ni | ×
(−π, π ] × R

μ|Ni | → R
μ are functions characterizing the

controller. The set Ni ⊂ {1, 2, . . . , n} consists of the indices
of the neighboring robots from which robot i can obtain the
information on the relative positions. To simplify the discus-
sion, we assume the initial state to be zero.We further assume
that for the output ui (t), its elements ui1(t) and ui2(t) must
take discrete values, that is, ui1(t) ∈ {0,±s,±2s, . . .} and
ui2(t) ∈ {0,±π/4,±π/2,±(3π)/4, π}, where s ∈ R+ is
the step size. This restricts the movement distance and direc-
tion of robot i at each time t to integer multiples of s and
π/4, respectively.

To represent the network structure of the system �, we
introduce the time-invariant directed graph G = (V,E),
where V := {1, 2, . . . , n} and E ⊂ V × V denote the vertex
and edge sets that correspond to the indices of the robots and
the connections among them, respectively. Then, we define
Ni := { j ∈ V | ( j, i) ∈ E}.

To consider the leader–follower formation control for the
system�, we suppose that robot 1 is the leader and robots 2 to
n are the followers without loss of generality. Let d1(t) ∈ R

2

and ri j ∈ R
2 denote the desired velocity of the leader and the

desired position of robot i relative to robot j , respectively.
Under this setting, we address the following problem.

Problem 1 Consider the multi-robot system�. Suppose that
the step size s and the desired leader’s velocity d1(t) and
relative positions ri j (i, j = 1, 2, . . . , n) are given. Find
controllers K1, K2, . . . , Kn (i.e., functions f11, f12, f13,
f21, . . . , fn3) that satisfy

lim
t→∞(x1(t + 1) − x1(t) − d1(t)) = 02×1, (3)

lim
t→∞(xi (t) − x j (t)) = ri j ∀(i, j) ∈ V × V (4)
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for every initial state (xi (0), θi (0)) ∈ R
2 × (−π, π ] (i =

1, 2, . . . , n).

For Problem 1, we note the following three points. First,
we cannot exactly achieve (3) and (4) due to the constraint of
discrete values for the control inputsui1(t) andui2(t). Hence,
our goal is to achieve (3) and (4) approximately. Second, the
leader is unaware of its own position in the world coordinate
frame, and thus its desired velocity d1(t) is given instead of
the desired position. Further, we have to design the controller
for the leader because achieving (3) is not trivial due to the
discrete-valued input constraint. Finally, the followers do not
possess any information regarding d1(t), which implies that
we cannot solve Problem 1 by driving the followers at d1(t)
while preserving the fixed formation.

3 Leader–follower formation control with
discrete-valued inputs

In this section, a solution to Problem 1 is presented.

3.1 Existing controllers achieving fixed formations

Our approach toward Problem 1 involves extending the con-
trollers proposed in [1] that achieve fixed formations to the
case of the leader–follower formations. Therefore, we first
introduce the existing controllers.

The existing controller Ki for robot i is shown in Fig. 4.
This is composed of the four subcontrollers Ki0–Ki3. The
subcontroller Ki0 is described by

Ki0 : ũi (t) = −k
∑
j∈Ni

(xi (t) − x j (t) − ri j ), (5)

where xi (t) − x j (t) for j ∈ Ni (corresponding to [x j (t) −
xi (t)] j∈Ni in (2)) is the input, ũi (t) ∈ R

2 is the output, and
k ∈ R+ is the controller gain.The subcontroller Ki1 iswritten
as

Ki1 :
{

ξi1(t + 1) = g(θi (t), ui (t)) − vi (t),

vi (t) = satv̄(−ξi1(t) + ũi (t)),
(6)

Fig. 4 Controller Ki proposed in [1]

where ξi1(t) ∈ R
2 is the state, θi (t), ui (t), and ũi (t) are

the inputs, vi (t) ∈ R
2 is the output, and satv̄ denotes the

saturation function introduced in Sect. 1. The function g :
(−π, π ] × R

3 → R
2 provides the velocity vector in the

(xi1, xi2) plane when robot i is driven by ui (t), that is, xi (t +
1) − xi (t). The subcontroller Ki2 is of the form

Ki2 : wi (t) =
[ ‖vi (t)‖2
arctan2(vi2(t), vi1(t)) − θi (t)

]
, (7)

where vi (t) = [vi1(t) vi2(t)]� and θi (t) are the inputs,
wi (t) ∈ R

2 is the output, and arctan2 denotes the four-
quadrant version of the inverse tangent function. Finally, Ki3

is given by

Ki3 : ui (t)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[q(wi1(t)) 0 0]� if − π/8 ≤ wi2(t) < π/8,

[q(wi1(t)) 0 1]�
if − (5π)/8 ≤wi2(t)< −(3π)/8,

[q(wi1(t)) π/4 0]�if π/8 ≤ wi2(t) < (3π)/8,

[q(wi1(t)) π/4 1]�
if − (3π)/8 ≤ wi2(t) < −π/8,

[q(−wi1(t)) 0 1]� if (3π)/8 ≤ wi2(t) < (5π)/8,

[q(−wi1(t)) π/4 0]�
if − (7π)/8 ≤wi2(t)< −(5π)/8,

[q(−wi1(t)) π/4 1]�
if (5π)/8 ≤ wi2(t) < (7π)/8,

[q(−wi1(t)) 0 0]� otherwise,

(8)

where wi (t) = [wi1(t) wi2(t)]� and ui (t) are the input
and the output, respectively, and q : R → {0,±s,±2s, . . .}
denotes the mid-tread uniform quantizer with the step size s.
Notably, (8) assumes wi2(t) ∈ (−π, π ].

The working of the aforementioned controller Ki is as
follows. The subcontroller Ki0 is a conventional forma-
tion controller and outputs the desired velocities in the xi1

and xi2 directions as ũi (t). The subcontroller Ki1 modi-
fies ũi (t) into vi (t) using ξi1(t). It follows from (6) that
ξi1(t) = g(θi (t − 1), ui (t − 1)) − vi (t − 1) holds. More-
over, g(θi (t), ui (t))−vi (t) represents the quantization error,
i.e., the difference between the resulting velocities of robot
i taking discrete values and the original vi (t) taking con-
tinuous values. Hence, the modification of ũi (t) based on
ξi1(t) reflects the quantization error in the desired velocities,
which suppresses the adverse impact of the discrete-valued
input constraint on the resulting formation. Subsequently,
to obtain the desired translational and rotational velocities,
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vi (t) is transformed intowi (t) by Ki2. Based onwi (t) and the
discrete-valued input constraint, Ki3 determines an appropri-
ate ui (t) that achieves the velocities close to those specified
by wi (t) under the input constraint.

3.2 Proposed controllers

The explanation in the previous section implies that the sub-
controller Ki0 determines the direction in which robot i
should move, and Ki1–Ki3 modify the output ũi (t) of Ki0 by
considering the dynamics (1) and the discrete-valued input
constraint. Therefore, we modify Ki0 to achieve the leader–
follower formation.

Based on this concept, we update the subcontroller Ki0 as

K ′
i0 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξi0(t + 1) = g(θi (t), ui (t)),

ũi (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d1(t) if i = 1,

1

|Ni |
∑
j∈Ni

(y j (t) − κ(xi (t) − x j (t)

−ri j )) if i = 2, 3, . . . , n,

yi (t) = ξi0(t),

(9)

where yi (t) ∈ R
2 (i.e., μ := 2), ξi0(t) ∈ R

2 is the
state, and κ ∈ R+ is the controller gain. For the leader
(i = 1), its desired velocity d1(t) is directly set as ũi (t).
As a result, the leader moves according to d1(t). For the
followers (i = 2, 3, . . . , n), ũi (t) is given by a PD-like con-
troller because y j (t) = g(θ j (t − 1), u j (t − 1)) holds from
(9) and g(θ j (t − 1), u j (t − 1)) is equal to x j (t) − x j (t − 1).
Unlike (5), the performance for the leader tracking would be
improved by using the information on the velocities of the
neighboring robots. This subcontroller K ′

i0 for each follower
i is inspired by the controllers developed in [21].We propose
the controllers given by (6)–(9) as a solution to Problem 1.

The performance of the proposed controllers is demon-
strated through numerical examples. Consider the multi-
robot system � with n := 5 and s := 0.05. The
desired velocity of the leader is chosen as d1(t) :=
[0.02 0.03 sin(0.05t)]�. The desired formation of the robots
and the network structure G are shown in Fig. 5, where the
robots, their indices, and the edges of the graph G are repre-
sented by the circles, the numbers 1, 2, . . . , 5, and the arrows,
respectively. We employ the controllers Ki (i = 1, 2, . . . , 5)
given by (6)–(9) with v̄ := 0.15 and κ := 0.05.

For the initial formation in Fig. 6, the snapshots of the
resulting formation are shown in Fig. 7, where the red thick
line indicates the desired trajectory of the leader specified by
d1(t). Figure 8 depicts the evolution over time of the control
input u2(t) for robot 2 as an example. It can be observed that
the followers track the leader while preserving the desired

Fig. 5 Desired formation and the network structure G

Fig. 6 Initial formation

formation, although the control inputs are restricted to the dis-
crete values. Similarly, the results for d1(t) := [0.01 0.02]�
and d1(t) := [0.025 −0.02 sin(0.04t)]� are shown in Figs. 9
and 10, respectively. We see that the leader–follower for-
mations are achieved also for the different velocities of the
leader. In addition, Fig. 11 depicts the snapshots of the forma-
tion when the existing controllers given by (5)–(8) are used
for the followers, where d1(t) := [0.02 0.03 sin(0.05t)]�,
k := 0.05, and the other conditions remain unchanged. The
comparisonwithFig. 7 indicates that the proposed controllers
achieve higher performance in terms of the accuracy of the
resulting formation.

3.3 Introducing collision avoidance algorithm

Figure 12 shows the trajectory of each robot for the result in
Fig. 7. This and Fig. 7(a) indicate that the collision between
robots 4 and 5 occurs at around t = 10. The reason for the
collision is that each robot observes only those specified by
the network structure G. Such collisions pose a challenge
when the proposed controllers are applied to real robots.
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Fig. 7 Snapshots of the formation obtained by the proposed controllers for d1(t) := [0.02 0.03 sin(0.05t)]�

Fig. 8 Time evolution of u2(t)

Thus, we introduce a collision avoidance algorithm based
on the potential filed approach [22] to the proposed con-
trollers. In the potential field approach, each robot is steered
to a location with a lower value of a potential function using
the information on the gradient of the function. By designing

the potential function, we can control the behavior of each
robot.

Let x ∈ R
2n denote the positions of all the robots, i.e.,

x := [x�
1 x�

2 · · · x�
n ]�. Then, based on [22], we consider

the potential function

φ([x j − xi ] j∈Nr
i (x)) := κφ

∑
j∈Nr

i (x)

1

‖xi − x j‖2 (10)

for each robot i , where κφ ∈ R+ is a constant and N
r
i (x) :=

{ j ∈ V \ {i} | x j ∈ B(xi , r)} for r ∈ R+. The potential
function φ is given as the sum of the inverse of the distances
between robot i and others within the radius r . Hence, by
decreasing φ, the collisions between the robots do not occur.
Using φ, we modify a part of (9) as

ũi (t) = 1

|Ni |
∑
j∈Ni

(y j (t) − κ(xi (t) − x j (t) − ri j ))

− ∂

∂xi
φ([x j (t) − xi (t)] j∈Nr

i (x(t)))

= 1

|Ni |
∑
j∈Ni

(y j (t) − κ(xi (t) − x j (t) − ri j ))

+ κφ

∑
j∈Nr

i (x(t))

xi (t) − x j (t)

‖xi (t) − x j (t)‖23
, (11)

where i = 2, 3, . . . , n. By introducing the term on the gra-
dient of φ, each follower can track the leader while avoiding
the collisions with other robots.

Figures 13 and14 show the results corresponding toFigs. 7
and12whenusing (11)withκφ := 0.01 and r := 0.3, respec-
tively. We see that the leader–follower formation is achieved
without any collision unlike the case of Figs. 7 and 12.
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Fig. 9 Snapshots of the formation obtained by the proposed controllers for d1(t) := [0.01 0.02]�

Fig. 10 Snapshots of the formation obtained by the proposed controllers for d1(t) := [0.025 − 0.02 sin(0.04t)]�

Fig. 11 Snapshots of the formation for d1(t) := [0.02 0.03 sin(0.05t)]� when the existing controllers introduced in Sect. 3.1 are used for the
followers
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Fig. 12 Trajectory of each robot for the result in Fig. 7

4 Theoretical analysis

This section presents the theoretical analysis of the feedback
system with the proposed controllers. The analysis method
employed here is similar to that in our previous study [1].
Specifically, we first discuss if the leader–follower formation
is achieved in the case without the quantization of the control
inputs, and then examine the impact of the quantization on
the resulting formation. In the following, similar to [1], we
assume that the saturation of the signal by satv̄ in (6) does
not occur; i.e., the magnitude of each element of the input
vector to satv̄ does not exceed v̄ for every t ∈ {0, 1, . . .}. This
assumption is intended to focus on the impact of the quanti-
zation on the resulting formation. To simplify the discussion,
we further suppose that the feedback system to be analyzed
does not contain the collision avoidance algorithm described
in Sect. 3.3.

Fig. 14 Trajectory of each robot for the result in Fig. 13

4.1 Analysis of feedback systemwithout
quantization

Let A f ∈R
(n−1)×(n−1) be the adjacency matrix of the graph

describing the network structure of the followers, and let
D f := diag(1/|N2|, 1/|N3|, . . . , 1/|Nn |). Using these nota-
tions, we define

M :=
[
(1 − κ)In−1+(1 + κ)D f A f −D f A f

In−1 0(n−1)×(n−1)

]
. (12)

Then, the following result is obtained.

Lemma 1 For the feedback system constructed by (1) and
(6)–(9), assume that d1(t) and ri j (i, j = 1, 2, . . . , n) are
given and there is no quantization of ui1(t) and ui2(t) in (8).
Assume further that there exists a constant d̄1 ∈ R+ such
that ‖d1(t)‖ ≤ d̄1 for every t ∈ {0, 1, . . .}. If the following
two conditions hold, (3) and

‖xi (t) − x1(t) − ri1‖ ≤ 2d̄1‖(I2(n−1) − M)−1‖

Fig. 13 Snapshots of the formation obtained by the proposed controllers with the collision avoidance algorithm
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as t → ∞ ∀i ∈ V \ {1} (13)

hold for every (xi (0), θi (0)) ∈ R
2 × (−π, π ] (i =

1, 2, . . . , n).

(C1) On the graph G, there exists a directed path from the
vertex corresponding to the leader to the other vertices.

(C2) The gain κ satisfies

κ < min{1, ε1, ε2, . . . , εn−1}, (14)

where εi (i ∈ V \ {n}) is defined as

εi := 2|1 − λi |2(2(1 − Re(λi )) − |1 − λi |2)
|1 − λi |4 + 4(Im(λi ))2

(15)

and λi represents each eigenvalue of D f A f .

Proof Based on the assumption that there is no quantization
of ui1(t) and ui2(t) in (8), we obtain ξi1(t) ≡ 02×1 for every
i ∈ V because the initial states of the controllers are supposed
to be zero and no quantization error occurs. From this fact,
(6)–(9), and the assumption of no quantization, we can show
that the velocities of robot i in the xi1 and xi2 directions are
determined by ũi (t) in (9). Therefore, the dynamics of the
leader is written as

x1(t + 1) = x1(t) + d1(t), (16)

and that of each follower i is written as

xi (t + 1) = xi (t) + 1

|Ni |
∑
j∈Ni

(x j (t) − x j (t − 1)

− κ(xi (t) − x j (t) − ri j )). (17)

Because (16) is independent of θi (0) (i = 1, 2, . . . , n),
(3) holds for every (xi (0), θi (0)) ∈ R

2 × (−π, π ] (i =
1, 2, . . . , n). Meanwhile, applying zi (t) := xi (t) + r1i to
(17) and using ri j = r1 j − r1i yield

zi (t + 1) = zi (t) + 1

|Ni |
∑
j∈Ni

(z j (t) − z j (t − 1)

− κ(zi (t) − z j (t))). (18)

We can consider (18) as the consensus algorithm for tracking
a time-varying reference state proposed in [21] by regarding
z1(t) as the reference state. According to [21], the magnitude
of each element of the tracking error zi (t) − z1(t) = xi (t) −
x1(t)− ri1 (i ∈ V \ {1}) is bounded by the right-hand side of
(13) as t → ∞ for every zi (0) ∈ R

2 (i = 1, 2, . . . , n) under
conditions (C1) and (C2), where r11 = 02×1 and r1i = −ri1

are used. Combining this result and the definition of the ∞-
norm and using the fact that (18) is independent of θi (0)
(i = 1, 2, . . . , n), we can prove that (13) holds for every
(xi (0), θi (0)) ∈ R

2 × (−π, π ] (i = 1, 2, . . . , n) under (C1)
and (C2). This completes the proof. ��

Lemma 1 shows that under the boundedness of the desired
velocity d1(t) and conditions (C1) and (C2), the leader’s
velocity becomes d1(t) and the tracking error of each fol-
lower is ultimately bounded if there is no quantization of the
control inputs. In this sense, the proposed controllers with-
out the quantization achieve the leader–follower formation.
Here, (C1) means that all the followers can share the infor-
mation on the leader, and (C2) is satisfied by choosing an
appropriate gain κ .

4.2 Analysis of impact of quantization

Next, we analyze the impact of the quantization of the control
inputs on the behavior of the feedback system.

4.2.1 Problem formulation

We use x∗(t) ∈ R
2n to denote the group position x(t)

for the proposed controllers where ui1(t) and ui2(t) in (8)
are unquantized. Then, we consider the following problem
described with reference to [23].

Problem 2 For the feedback system constructed by (1) and
(6)–(9), suppose that the step size s, the desired leader’s
velocity d1(t) and relative positions ri j (i, j = 1, 2, . . . , n),
and the parameter v̄ of satv̄ in (6) are given. Evaluate the
performance index

E := sup
x(0)∈R2n

sup
τ∈{0,1,...}

‖x(τ ) − x∗(τ )‖. (19)

In Problem 2, E represents the difference between the
behavior of the original (i.e., quantized) feedback system
and that of the unquantized version. The magnitude of E
corresponds to that of the quantization effects on the behavior
of the feedback system.

4.2.2 Main result

We begin with the following result on the quantization error
ei (t) := g(θi (t), ui (t)) − vi (t) (i ∈ V).

Lemma 2 For the feedback system constructed by (1) and
(6)–(9), suppose that s and v̄ are given. Then,

‖ei (t)‖ ≤
√( s

2

)2 +
(
1 − cos

(π

8

)) (
4v̄2 + √

2sv̄
)

(20)

holds for every i ∈ V and t ∈ {0, 1, . . .}.
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Proof This lemma can be proven in a similar manner to that
in [1] because ‖ei (t)‖ depends only on (1) and (6)–(8) and
is unrelated to (9) introduced in this study. ��
Lemma 2 presents an upper bound of ‖ei (t)‖ as a function
of the system parameters s and v̄.

From Lemma 2, we obtain the following result.

Theorem 1 For the feedback system constructed by (1) and
(6)–(9), suppose that s, d1(t), ri j (i, j = 1, 2, . . . , n), and v̄

are given. Then,

E ≤
(
1 +

∞∑
�=0

∥∥∥F∗�+1 − F∗�
∥∥∥
)

×
√( s

2

)2 +
(
1 − cos

(π

8

)) (
4v̄2 + √

2sv̄
)

(21)

holds, where

F∗ :=
[
(In + D A − κ DL) ⊗ I2 −(D A) ⊗ I2

I2n 02n×2n

]
(22)

for D := diag(0, 1/|N2|, 1/|N3|, . . . , 1/|Nn |) and the adja-
cency matrix A and graph Laplacian L of the graph G.

Proof Byadiscussion similar to that in the proof ofLemma1,
the dynamics of the feedback systemwithout the quantization
of the control inputs can be written using (16) and (17), that
is,

[
x∗(t + 1)
ζ ∗(t + 1)

]
= F∗

[
x∗(t)
ζ ∗(t)

]
+ η∗(t), (23)

where ζ ∗(t) := x∗(t − 1) and

η∗(t) :=
[
κ(D ⊗ I2)b + d(t)

02n×1

]
(24)

for b := [01×2
∑

j∈N2
r�
2 j

∑
j∈N3

r�
3 j · · · ∑

j∈Nn
r�

nj ]� and

d(t) := [d�
1 (t) 01×2(n−1)]�. Similarly, from (1) and (6)–(9),

the dynamics of the original feedback system is described as

⎡
⎣

x(t + 1)
ζ(t + 1)
ξ(t + 1)

⎤
⎦ = F

⎡
⎣

x(t)
ζ(t)
ξ(t)

⎤
⎦ + η(t), (25)

where ζ(t) := x(t − 1), ξ(t) := [ξ�
11(t) ξ�

21(t) · · · ξ�
n1(t)]�,

and

F :=
⎡
⎣ F∗ −I2n

02n×2n

02n×2n 02n×2n 02n×2n

⎤
⎦ , (26)

η(t) :=
⎡
⎣

κ(D ⊗ I2)b + d(t) + e(t)
02n×1

e(t)

⎤
⎦ (27)

for e(t) := [e�
1 (t) e�

2 (t) · · · e�
n (t)]�. Equations (23) and

(25) yield

x∗(τ ) = [
I2n 02n×2n

]

×
(

F∗τ

[
x∗(0)
ζ ∗(0)

]
+

τ−1∑
�=0

(
F∗τ−�−1

η∗(�)
))

, (28)

x(τ ) = [
I2n 02n×2n 02n×2n

]

×
⎛
⎝Fτ

⎡
⎣

x(0)
ζ(0)
ξ(0)

⎤
⎦ +

τ−1∑
�=0

(
Fτ−�−1η(�)

)⎞
⎠ , (29)

respectively. Using (24), (26), and (27), we can rewrite (29)
as

x(τ ) = [
I2n 02n×2n 02n×2n

]

×
⎛
⎝Fτ

⎡
⎣

x(0)
ζ(0)
ξ(0)

⎤
⎦ +

τ−2∑
�=0

(
Fτ−�−1η(�)

)
+ η(τ − 1)

⎞
⎠

= [
I2n 02n×2n

] (
F∗τ

[
x(0)
ζ(0)

]

+
τ−2∑
�=0

([
F∗τ−�−1 −F∗τ−�−2

[
I2n

02n×2n

]]
η(�)

)

+ η∗(τ − 1) +
[

e(τ − 1)
02n×1

])

= [
I2n 02n×2n

] (
F∗τ

[
x(0)
ζ(0)

]

+
τ−2∑
�=0

(
F∗τ−�−1

η∗(�) + (F∗τ−�−1 − F∗τ−�−2
)

×
[

e(�)
02n×1

])
+ η∗(τ − 1) +

[
e(τ − 1)
02n×1

])

= [
I2n 02n×2n

] (
F∗τ

[
x(0)
ζ(0)

]
+

τ−1∑
�=0

(
F∗τ−�−1

η∗(�)
)

+
τ−2∑
�=0

(
(F∗τ−�−1 − F∗τ−�−2

)

[
e(�)
02n×1

])

+
[

e(τ − 1)
02n×1

])
, (30)
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where ξ(0) = 02n×1 is used to derive the second equality.
From (28), (30), and Lemma 2, we obtain

‖x(τ ) − x∗(τ )‖

=
∥∥∥∥
[
I2n 02n×2n

] (τ−2∑
�=0

(
(F∗τ−�−1 − F∗τ−�−2

)

×
[

e(�)
02n×1

])
+

[
e(τ − 1)
02n×1

])∥∥∥∥

≤ ∥∥[
I2n 02n×2n

]∥∥
∥∥∥∥

τ−2∑
�=0

(
(F∗τ−�−1 − F∗τ−�−2

)

×
[

e(�)
02n×1

])
+

[
e(τ − 1)
02n×1

]∥∥∥∥

≤
∥∥∥∥

τ−2∑
�=0

(
(F∗τ−�−1 − F∗τ−�−2

)

[
e(�)
02n×1

])∥∥∥∥

+
∥∥∥∥
[

e(τ − 1)
02n×1

]∥∥∥∥

≤
τ−2∑
�=0

∥∥∥∥(F∗τ−�−1−F∗τ−�−2
)

[
e(�)
02n×1

]∥∥∥∥

+
∥∥∥∥
[

e(τ − 1)
02n×1

]∥∥∥∥

≤
τ−2∑
�=0

∥∥∥F∗τ−�−1 − F∗τ−�−2
∥∥∥

∥∥∥∥
[

e(�)
02n×1

]∥∥∥∥

+
∥∥∥∥
[

e(τ − 1)
02n×1

]∥∥∥∥

=
τ−2∑
�=0

∥∥∥F∗τ−�−1 − F∗τ−�−2
∥∥∥ ‖e(�)‖ + ‖e(τ − 1)‖

≤
(
1 +

τ−2∑
�=0

∥∥∥F∗τ−�−1 − F∗τ−�−2
∥∥∥
)

×
√( s

2

)2 +
(
1 − cos

(π

8

)) (
4v̄2 + √

2sv̄
)
. (31)

The right-hand side of (31) is monotonically non-decreasing
with respect to τ ∈ {0, 1, . . .} and is independent of x(0).
This, together with (19), proves the statement. ��

Theorem 1 presents an upper bound of the performance
index E as a solution to Problem 2. If F∗� converges as
� → ∞, the upper bound is finite because ‖F∗�+1 − F∗�‖
in (21) goes to zero as � → ∞. Therefore, under the con-
dition that F∗� converges, the impact of the quantization of
the control inputs can be estimated. In addition, this result
and Lemma 1 imply that under the above condition and
those in Lemma 1, the behavior difference between the orig-

inal feedback system and the unquantized version, where
the leader–follower formation is achieved, is smaller than or
equal to a certain level. In this sense, we can guarantee the
stability of the feedback system.

Remark 1 We compare Theorem 1 with the corresponding
result in [1] that considered fixed formations. Replacing F∗
in (21)with (In−kL)⊗ I2 yields the result in [1]. This implies
that the key matrix in the analysis result becomes more com-
plicated by updating Ki0 to K ′

i0. The difference between the
matrices F∗ and (In − kL) ⊗ I2 causes the difference in the
magnitudes of the quantization effects in the sense of their
upper bounds.

4.2.3 Examples

We consider the example that provides the result in Fig. 7
again. In this example, d̄1 in Lemma 1 exists, and conditions
(C1) and (C2) are satisfied. Moreover, for F∗ in (22), we can
numerically confirm that F∗� converges as � → ∞. Thus, as
mentioned previously, Lemma 1 and Theorem 1 guarantee
the stability of the feedback system. Next, from (21) and the
behavior of the robots shown in Fig. 7, we obtain E ≤ 1.266
and supτ∈{0,1,...,120} ‖x(τ )−x∗(τ )‖ = 0.04011, respectively.
This demonstrates the validity of Theorem 1.

Similar results are obtained in the cases of Figs. 9
and 10. The desired velocities d1(t) := [0.01 0.02]� and
d1(t) := [0.025 − 0.02 sin(0.04t)]� of the leader sat-
isfy the condition in Lemma 1, and (C1), (C2), and F∗ do
not depend on d1(t). Hence, by a discussion similar to the
above, the stability of the feedback systems is guaranteed.
In addition, the behavior of the robots shown in Figs. 9
and 10 yields supτ∈{0,1,...,70} ‖x(τ ) − x∗(τ )‖ = 0.04671
and supτ∈{0,1,...,100} ‖x(τ )−x∗(τ )‖ = 0.05229, respectively.
These results support Theorem 1 because (21) remains to be
E ≤ 1.266 due to its independence from d1(t).

5 Conclusion

In this study, we discussed the leader–follower formation
control of four-legged robots via discrete-valued inputs.
By focusing on the structures of existing controllers and
modifying the specific parts appropriately, we obtained
leader–follower formation controllers using discrete-valued
inputs. In addition, we analyzed the resulting feedback sys-
tem based on a performance index that quantifies the impact
of the discrete-valued input constraint on the behavior of
the system. The results in this study contribute to achieving
moving formations of four-legged robots.

A future direction of this research is to develop better con-
trollers in terms of the performance index considered in this

123



Leader–follower formation control of four-legged robots with discrete-valued inputs 2409

paper. Another direction is to extend our results to a more
general setting, e.g., the case where the quantization inter-
val in the rotational direction of the robots is generalized. In
addition to these theoretical works, the experimental verifi-
cation of the proposed controllers using real robots should
be addressed in the future.
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