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Abstract
We develop a general SIS model to study the epidemic transmission in such semi-closed communities. The community
population is divided into susceptible and infected in terms of the infection state, and concerning the physical structure of the
crowd, they are classified into mobile and fixed individuals. The mobile individuals can be inside or outside the community,
while the fixed individuals can be only inside the community. There are fixed infection sources outside the community,
measuring the epidemic severity in society. We attribute the spreading to two reasons: (i) clustered infection among the
community population and (ii) the epidemic in society spreading to the community population. We discuss the model in two
cases. In the first case, the epidemic spreads in society, such that reasons (i) and (ii) work together. The results show that
concerning fixed individuals (e.g. the elderly in nursing homes), a more closed community always promotes the infection. In
the second case, there is no epidemic spreading in society, such that only reason (i) works. The results show that restricting all
individuals to the community produces equivalent consequences as allowing them going outside the community. We should
evenly distribute individuals inside and outside to form isolation. A counterexample is residential universities implementing
closed management, where only students are restricted to campus. The model shows such management may lead to severe
epidemics, and to prevent the epidemic outbreaks, students should have free access to being on or off campus.

Keywords SIS model · Semi-closed community · Clustered infection · Closed management · COVID-19

1 Introduction

Since Kermack and McKendrick [1] proposed the compart-
mentmodel of epidemic transmission, this simplemathemat-
ical paradigm has been obtained for studying propagation
dynamics. In recent years, the compartment model, used
not only to describe the spread of epidemics [2–4] but also
to describe the fermentation of rumours [5], radicalization
[6–9], and public opinions [10,11], has become a popular
research tool of sociophysics. One of the classic epidemic
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compartment models is the SIS model. In the classic SIS
epidemic model, the population is divided into susceptible
individuals (S), not infected by the disease, and infected indi-
viduals (I ), infected by the disease. The epidemic spreads
at a rate of α through human-to-human transmission, and
the infected individuals heal at a rate of μ. In a unit time,
on the one hand, susceptible individuals whose number
depends on the different incidence rates, such as the bilin-
ear incidence rate αSI [12,13], the fractional or standard
incidence rate αSI/(S + I ) [14,15], the saturated incidence
rate αSI/(1 + σ I ) [16–18], the non-monotone incidence
rate αSI/(1 + σ I 2) [19,20], become infected individuals.
On the other hand, μI infected individuals recover and
become susceptible individuals. The above process hap-
pens in a well-mixed population, but the SIS model has
also been investigated on graphs [21,22] and hypergraphs
[23,24]. Studies on introducing new factors into the SIS epi-
demic model continued to appear, including the study on
vaccination [25], heterogeneous contacts [26], competing
mechanism on complex networks [27,28], immigrants arriv-
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ing with the same infection [29], and the external source of
infection [30–32]. In particular, the external source of infec-
tion,measured by a constant, is an additional infection source
to the infected individuals, to which we refer for the descrip-
tion of epidemic severity in society in this paper.

The inspiration for this work begins as follows. Ref. [33]
proposed an epidemic model in a semi-closed community to
study closed management in residential universities for epi-
demic prevention. The semi-closed community divides the
environment into internal and external environments, with
individuals in the internal environment by default, and only
a fraction of individuals able to go to the external environ-
ment. Ref. [33] supposed that individuals with a proportion
of θ per unit time could freely choose to stay in or out of the
community (we label these individuals as the mobile indi-
viduals), and the remaining individuals with a proportion of
(1− θ) can only stay in the community (we label these indi-
viduals as the fixed individuals). They considered susceptible
individuals S and infected individuals I in the population
N , S + I = N ; therefore, on average, θ S susceptible indi-
viduals and θ I infected individuals are mobile individuals,
while the remaining (1 − θ)S susceptible individuals and
(1 − θ)I infected individuals are fixed individuals, in a unit
time. Ref. [33] studied the evolution of the systemwhen there
is no diagnosed case and also explained why nursing homes
and prisons worldwide are prone to become severe epidemic
communities by the mathematical model.

However, Ref. [33] did not take into account the fact that,
in the above scenarios, mobile individuals (e.g. faculty and
staff, nursing workers, corrections officers) and fixed indi-
viduals (e.g. students, the elderly, prisoners) are the same
people, rather than a result of average selection from the
population in each unit time. We could ask: is infected pro-
portion in mobile and fixed individuals in the two cases
equivalent? Let us denote the number of susceptible fixed
individuals S0 and infected fixed individuals I0 in fixed indi-
viduals N0:=(1 − θ)N , and susceptible mobile individuals
S1 and infected mobile individuals I1 in mobile individuals
N1:=θN , yielding S0+ I0 = N0, S1+ I1 = N1, S0+S1 = S,
I0 + I1 = I ; that is,

A� = b. (1)

where

A =

⎛
⎜⎜⎝
1 0 1 0
0 1 0 1
0 0 1 1
1 1 0 0

⎞
⎟⎟⎠ ,� =

⎛
⎜⎜⎝
I0
I1
S0
S1

⎞
⎟⎟⎠ ,b =

⎛
⎜⎜⎝
N0

N1

S
I

⎞
⎟⎟⎠ . (2)

An obvious solution of the system of Eq. (1) is I0 =
(1 − θ)I , I1 = θ I , S0 = (1 − θ)S, S1 = θ S (the average
selection in each unit time proposed by Ref. [33]). However,

by calculating the rank r([A,b]) = r(A) = 3 �= n (the order
of matrix A is n = 4), we can know that the solution of
non-homogeneous linear equations (1) is not unique. There-
fore, if mobile and fixed individuals are classified into two
fixed sub-populations instead of the average selection per
unit time, the evolution results will be different from those
in Ref. [33], worthy of further study.

This paper intends to qualitatively investigate the risk
of transmission of epidemics in several typical semi-closed
communities (including but not limited to nursing homes,
prisons, residential universities, etc.). Instead of the SIR
model [34,35] or the SEIR model [36], this paper develops
on the classic SIS model, because the SIS system has the
simplest irreducible complexity for the questions we would
like to study. This paper aims to address the following ques-
tions: In the presence of different intensities of infectious
sources outside the community, how does the closeness of a
community and the propensity of people to enter and leave
the community affect the transmission of epidemics? How
can we adjust variables such as community closeness, to
minimize the risk of transmission of epidemics in such com-
munities?

2 Model

Consider a semi-closed community of N individuals. Among
them, some individuals, called mobile individuals, can be
within and outside the community freely. As stated in Intro-
duction, we assume them a fixed group, the proportion of
whom is θ , and the number of whom is N1 = θN . Other
individuals, calledfixed individuals, are restricted to the com-
munity, the proportion of whom is (1 − θ), and the number
of whom is N0 = (1 − θ)N .

An infectious disease spreads through the population.
Based on whether an individual is infected with the disease,
the population is further divided into infected individuals (I )
and susceptible individuals (S). The susceptible individuals
are not infected, while the infected individuals are infected
and are infectious. In summary, we have the following classi-
fication. Among the mobile individuals, there are I1 infected
individuals and S1 susceptible individuals, S1 + I1 = N1,
and, among the fixed individuals, there are I0 infected indi-
viduals and S0 susceptible individuals, S0 + I0 = N0. The
infected (or susceptible) individuals among the mobile and
fixed individuals must be regarded as independent variables,
because I1 �≡ θ I , I0 �≡ (1−θ)I (or S1 �≡ θ S, S0 �≡ (1−θ)S)
as a result of groups fixed.

Consider the personal will of mobile individuals. Unlike
fixed individuals who can only stay in the community, the
mobile individuals can freely stay in and out of the commu-
nity. The isolation of the internal and external environment of
the community (themeaning of a closed community) leads to
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the following assumption. In a unit time, if a mobile individ-
ual chooses to stay in the community, she is isolated from the
crowd outside the community. If she goes outside the com-
munity, she is isolated from the crowd inside the community.
We suppose that mobile individuals stay outside and inside
the community with the respective tendency of ε and (1−ε).
The tendency ε can be understood as the average proportion
of mobile individuals outside the community each time, or
the probability of a mobile individual being out of the com-
munity.

Suppose additional infected individuals (not included in
the community population) in the external environment of
the community, measuring the epidemic severity in society.
To keep themodel concise, the number of these individuals is
regarded as a constant, denoted by Ic. The size of Ic depends
on the epidemic severity in given countries or regions. The
mobile individuals outside the community are exposed to
these fixed infected individuals. Below, we discuss the expo-
sure of each part of the population.

(i) The susceptible fixed individuals, whose number is S0,
can only be inside the community, and contact the follow-
ing infected individuals. (i-1) The infected fixed individuals,
who can only be inside the community, numbered I0. (i-2)
The infected mobile individuals, who stay inside the com-
munity with a tendency (1− ε), numbered I1. Therefore, the
average size of the infection sources that the susceptible fixed
individuals are exposed to is I0 + (1 − ε)I1.

(ii) The susceptible mobile individuals, whose number
is S1, have the following possibility. (ii-1) They are inside
the community with a tendency (1 − ε), and contact: (ii-
1-1) the infected fixed individuals, who can only be inside
the community, numbered I0; (ii-1-2) the infected mobile
individuals, who stay inside the community with a tendency
(1 − ε), numbered I1. (ii-2) They are outside the commu-
nity with a tendency ε, and contact: (ii-2-1) the infected
mobile individuals, who stay outside the community with a
tendency ε, numbered I1; (ii-2-2) the fixed infected individu-
als in the external environment of the community, numbered
Ic. Therefore, the average size of the infection sources
that the susceptible mobile individuals are exposed to is
(1 − ε)[I0 + (1 − ε)I1] + ε(ε I1 + Ic).

The schematic diagram of population classification and
epidemic transmission direction is shown in Fig. 1.

We only study the evolution before any individual is diag-
nosed (i.e. all the infected individuals are infected, so people
are unaware and do not take action); therefore, it is reasonable
to assume a well-mixed population. The epidemic spreads at
a constant rate of α through human-to-human contact. In
order to reflect the aggregation of infection, we use bilin-
ear incidence rate αSI [12,13]. In addition, we assume the
infected individuals spontaneously heal at a rate of μ (i.e. in
a unit time, respectively, μI0 and μI1 individuals flow from
compartment I0 and I1 to compartment S0 and S1).

In summary, the following nonlinear system is proposed.

�̇ =

⎛
⎜⎜⎝
İ0
İ1
Ṡ0
Ṡ1

⎞
⎟⎟⎠ , (3)

where

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

İ0 = αS0[I0 + (1 − ε)I1] − μI0,

İ1 = αS1{(1 − ε)[I0 + (1 − ε)I1] + ε(ε I1 + Ic)}
− μI1,

Ṡ0 = − İ0,

Ṡ1 = − İ1.

In system (3), we stipulate θ, ε ∈ (0, 1), α,μ, N ∈
(0,+∞), Ic ∈ [0,+∞). According to the sociological fea-
sible region, we have the variables’ domain I0, S0 ∈ [0, N0],
I1, S1 ∈ [0, N1].

Note that İ0 = −μN0 < 0, when I0 = N0; İ1 =
−μN1 < 0, when I1 = N1; İ0 = αN0(1 − ε)I1 ≥ 0,
when I0 = 0; İ1 = αN1[(1− ε)I0 + ε Ic] ≥ 0, when I1 = 0;
therefore, if the initial state of variables is in the domain,
then they will not leave the domain during the evolution of
system (3).

3 Discussion and results

Substituting the constraints S1 + I1 ≡ N1, S0 + I0 ≡ N0

into system (3), we can eliminate S1 and S0. We denote � =
(I1, I0)T, satisfying system (4) where S1 and S0 have been
eliminated.

�̇ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

İ0 = − α I0
2 + (αN0 − μ)I0 − α(1 − ε)I0 I1

+ αN0(1 − ε)I1,

İ1 = − α(2ε2 − 2ε + 1)I1
2

+ [αN1(2ε
2 − 2ε + 1) − αε Ic − μ]I1

− α(1 − ε)I0 I1 + αN1(1 − ε)I0

+ αN1ε Ic.

(4)

Then, the study of the state � = (I0, I1, S0, S1)T of
system (3) can be converted into the study of the state
� = (I0, I1)T of system (4).

We denote system (4) achieving equilibrium at �∗ =
(I ∗

1 , I ∗
0 )T. Obviously, when system (4) achieves equilibrium,
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Fig. 1 The schematic diagram
of population classification and
epidemic transmission direction.
The arrows indicate the direction
of transmission of the epidemic.
I0, I1, S0, S1 are independent
variables. N0, N1 are auxiliary
variables, calculated by θ , N .
I0 + S0 is constrained by N0;
I1 + S1 is constrained by N1. I ,
S are dependent variables,
calculated by I0, I1 or S0, S1. Ic
is an input parameter

we have �̇ = 0; that is,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = − α I ∗
0
2 + (αN0 − μ)I ∗

0 − α(1 − ε)I ∗
0 I

∗
1

+ αN0(1 − ε)I ∗
1 ,

0 = − α(2ε2 − 2ε + 1)I ∗
1
2

+ [αN1(2ε
2 − 2ε + 1) − αε Ic − μ]I ∗

1

− α(1 − ε)I ∗
0 I

∗
1 + αN1(1 − ε)I ∗

0

+ αN1ε Ic.

(5)

Directly solving Eq. (5) involves complex quartic equa-
tions. However, we can use somemathematical techniques to
understand the properties of the analytical solution indirectly.
The applicable mathematical techniques vary in different
cases (Ic > 0 and Ic = 0). We discuss them separately
below.

3.1 The case of Ic > 0

In this case, the epidemic spreads in society (outside the com-
munity). For semi-closed communities in these societies,
the fixed infected individuals outside the community meet
Ic > 0.

In order to avoid solving complicated quartic equations
(after attempts, it is almost impossible to solve it), we use
the first equation in Eq. (5) to write I ∗

1 as a function of I ∗
0 ,

denoted by g1(I ∗
0 ),

I ∗
1 = I ∗

0

1 − ε

[
μ

α(N0 − I ∗
0 )

− 1

]
=:g1(I ∗

0 ), (6)

and use the second equation inEq. (5) towrite I ∗
0 as a function

of I ∗
1 , denoted by g0(I ∗

1 ),

I ∗
0 = I ∗

1

1 − ε

[
μ

α(N1 − I ∗
1 )

− (2ε2 − 2ε + 1)

]

− ε

1 − ε
Ic

=: g0(I ∗
1 ). (7)

At first glance, as Ic increases, I ∗
0 in Eq. (7) decreases;

then, from Eq. (6), I ∗
1 further decreases with a decrease in

I ∗
0 . This is an illusion, in fact. Figure 2a presents I ∗

1 as a
function g1(I ∗

0 ) of I ∗
0 and I ∗

0 as a function g0(I ∗
1 ) of I ∗

1 ,
where the parameters take α = 0.1, μ = 0.05, N = 1,
θ = 0.5, ε = 0.5. The equilibrium of system (4) satisfies
both equations in Eq. (5); that is, the equilibrium point is
the intersection point of the function curves of g1(I ∗

0 ) and
g0(I ∗

1 ). We denote such an intersection point by �∗(1) =
(I ∗(1)

1 , I ∗(1)
0 )T, labelling it as the endemic equilibrium. The

function curves when Ic = 0.1 and Ic = 0.9 are plotted,
respectively, in Fig. 2a; g1(I ∗

0 ) is independent of Ic, hence the
curve of g1(I ∗

0 ) keeping the same with different Ic. It is seen
that,when Ic = 0.9, I ∗

0 = g0(I ∗
1 ) is indeed smaller thanwhen

Ic = 0.1. However, the intersection coordinates I ∗(1)
1 and

I ∗(1)
0 of the curves g1(I ∗

0 ) and g0(I ∗
1 ) both increases in effect.

In otherwords, an increase in Ic (epidemic severity in society)
aggravates the epidemic in the community population, which
is in line with common sense. Meanwhile, it is robust—it is
easy to verify ∂g1(I ∗

0 )/∂ I ∗
0 > 0, ∂2g1(I ∗

0 )/∂ I ∗
0
2 > 0, and

∂g0(I ∗
1 )/∂ I ∗

1 > 0, ∂2g0(I ∗
1 )/∂ I ∗

1
2 > 0; therefore, a decrease

in I ∗
1 or I ∗

0 always leads to the increase in the intersection

coordinates I ∗(1)
1 and I ∗(1)

0 . In addition, from the above four
inequalities and the concavity and convexity of the function,
it is known that curves g1(I ∗

0 ) and g0(I ∗
1 ) have at most two

intersections. Considering g1(I ∗
0 ) = 0 in Eq. (6) when I ∗

0 =
0, and g0(I ∗

1 ) < 0 in Eq. (7) when I ∗
1 = 0, we can know that

the other possible intersection is not within the sociological
feasible region, and (I ∗(1)

1 , I ∗(1)
0 )T is the unique intersection

of curves g1(I ∗
0 ) and g0(I ∗

1 ). Therefore, �∗(1) is the unique
equilibrium of system (4) when Ic > 0. Considering that
system (4) is continuous, �∗(1) is stable.

In numerical simulation, we set the following three
indexes to measure the epidemic severity in the commu-
nity population: pI0 = I0/N0, the infected proportion in
fixed individuals; pI1 = I1/N1, the infected proportion in
mobile individuals; pI = I/N = (I1 + I0)/(N1 + N0), the
infected proportion in community population. The numerical
method follows the forward-Euler difference method in Ref.
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Fig. 2 When α = 0.1,
μ = 0.05, N = 1, θ = 0.5,
ε = 0.5, a the analytic curves of
functions I ∗

1 = g1(I ∗
0 ) and

I ∗
0 = g0(I ∗

1 ) with Ic = 0.1 and
Ic = 0.9; b1 time evolution of
indexes pI0(t), pI1(t) and
pI (t) when Ic = 0.1; b2 time
evolution of indexes pI0(t),
pI1(t) and pI (t) when
Ic = 0.9. The intersection
coordinate of g1(I ∗

0 ) and g0(I ∗
1 )

is the equilibrium point. The
theoretical prediction is
consistent with numerical
simulations under different Ic

[33], with time-step 10−2, letting system (4) evolves from
t = 10−2 to t = 104.

Figure 2b1 and b2, respectively, demonstrates the time
evolution of indexes pI0(t), pI1(t) and pI (t) when Ic =
0.1 and Ic = 0.9, with other parameters unchanged from
Fig. 2a. It is seen that, at the approximate equilibrium
at t = 104, pI0(t) and pI1(t) achieves the intersection
coordinates of g1(I ∗

0 ) and g0(I ∗
1 ) presented in Fig. 2a:

�∗(1) = (0.2852, 0.3130)T when Ic = 0.1, and �∗(1) =
(0.5830, 0.4134)T when Ic = 0.9. The theoretical results in
Fig. 2a and numerical results in Fig. 2b1, b2 are verified by
each other.

Figures 3, 4, and 5 take the numerical equilibrium state
at t = 104, and study the index pI ∗(1)

0 , pI ∗(1)
1 and pI ∗(1) as

functions of the proportion of mobile individuals and their
personal will (i.e. parameter θ and ε) under different Ic,
where θ and ε vary from 0.01 to 0.99 with step 0.01. For
each index, we denote two functions: (i) θ∗(ε), the value of
θ that minimizes the index (of the epidemic severity) for a
given ε; (ii) ε∗(θ), the value of ε that minimizes the index for
a given θ . The numerical methods of solving θ∗(ε) is to go
through ε = 0.01, 0.02, . . . , 0.99 in the numerical results;
for each ε, go through θ = 0.01, 0.02, . . . , 0.99 and mark
the θ that minimizes the index. The same method applies to
the numerical solution of ε∗(θ). Figures 3, 4, and 5, respec-
tively, demonstrate the situations when Ic = 1.2, Ic = 0.5
and Ic = 0.1, with parameters α = 0.1, μ = 0.05, N = 1
unchanged. The subfigures (a), (b1), (b2), respectively, show
the index pI ∗(1)

0 , pI ∗(1)
1 and pI ∗(1).

In Fig. 3, Ic = 1.2, which means the epidemic in society
is relatively severe. As seen in Fig. 3a, for the community
population, when the mobile individuals’ tendency of being

out of the community ε ≤ 0.30, we have θ∗(ε) = 0.01,
and the proportion of mobile individuals should be as small
as possible; when ε ≥ 0.31, θ∗(ε) increases with ε. The
more mobile individuals tend to go out of the community, the
larger their proportion should be to best control the epidemic
in the community population. When the mobile individuals’
proportion θ ≤ 0.63, we have ε∗(θ) = 0.99, and they should
stay out of the community as much as possible; when θ ≥
0.64, we have ε∗(θ) = 0.01, and they should stay in the
community as much as possible. As seen in Fig. 3b1, for
fixed individuals, we have θ∗(ε) = 0.99, ε∗(θ) = 0.99.
To reduce the infected proportion in fixed individuals, there
should be asmanymobile individuals as possible, andmobile
individuals should tend to go out of the community as much
as possible. As seen in Fig. 3b2, for mobile individuals, we
have θ∗(ε) = 0.99 when ε ≤ 0.20, and θ∗(ε) increases from
0.01 to 0.99 with ε when 0.21 ≤ ε ≤ 0.54, and θ∗(ε) =
0.01 when ε ≥ 0.55. The more mobile individuals tend to
go out of the community, the more their proportion should
be reduced. In addition, ε∗(θ) = 0.01, which means that
mobile individuals should stay in the community as much as
possible to best control the epidemic transmission in mobile
individuals.

In Fig. 4, Ic = 0.5, and the epidemic severity in soci-
ety is milder than in Fig. 3. For the community population
(Fig. 4a), the mobile individuals’ optimum proportion θ∗(ε)
initially decreases and ultimately increases as ε increases,
and their optimum tendency towards being out of the com-
munity ε∗(θ) decreases with an increase in θ . For fixed
individuals (Fig. 4b1), we have θ∗(ε) = 0.99, ε∗(θ) = 0.99.
For mobile individuals (Fig. 4b2), the mobile individuals’
optimum proportion θ∗(ε) decreases with an increase in ε,
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Fig. 3 When Ic = 1.2, α = 0.1, μ = 0.05, N = 1, the heat maps depicting different indexes as binary functions of θ and ε. The numerical solution
of θ∗(ε) and ε∗(θ) are directly marked in the heat maps. a pI ∗(1). b1 pI ∗(1)

0 . b2 pI ∗(1)
1 . In this case, the epidemic in society is relatively severe

and their optimum tendency towards being out of the com-
munity ε∗(θ) decreases with an increase in θ .

In Fig. 5, Ic = 0.1, whichmeans the epidemic in society is
not severe. To benefit the community population (Fig. 5a), the
mobile individuals’ proportion θ∗(ε) should decrease with
an increase in ε, and their tendency towards going out of
the community ε∗(θ) should decrease with an increase in θ .
To benefit fixed individuals (Fig. 5b1), the mobile individ-
uals’ proportion and their tendency towards being outside
the community should be as large as possible. To benefit
mobile individuals (Fig. 5b2), the mobile individuals’ pro-
portion θ∗(ε) should decrease with an increase in ε, and their
tendency towards going out of the community ε∗(θ) should
decrease with an increase in θ .

In a word, a simple model like system (3) creates com-
plex results. Under different epidemic severity in society, the
epidemic transmission in the community is different, which
leads to different strategies for epidemic prevention and con-
trol. An open community is defined to have a large proportion
ofmobile individuals, whose tendency towards going outside
the community is significant; that is, θ → 1−, ε → 1−. On
the contrary, a closed community is defined to have a tiny pro-
portion ofmobile individuals, whose tendency towards being
outside the community is slight; that is, θ → 0+, ε → 0+.
In this model, a semi-closed community is between a com-
pletely open community and a completely closed community.
According to the size of θ and ε, we can describe a semi-
closed community as relatively open or relatively closed. It
is known from Figs. 3a, 4a, and 5a that, with the same epi-

demic severity in society, a more open community always
leads to a more severe epidemic in the community. Never-
theless, with a relatively mild epidemic in society, we find
that a more closed community also leads to a severe epi-
demic (Fig. 5a). This is because, when the community is
more closed, the contact density of the individuals increases;
that is, what we call “clustered infection”. When the com-
munity is more open, more mobile individuals go out of the
community, which produces the effect of isolation between
mobile and fixed individuals, reducing the contact density
of the crowd; however, this inevitably increases the contact
between the community population and the fixed infected
individuals in society, such that the impact of the epidemic
severity in society becomes more significant. With a more
severe epidemic in society, the epidemic severity in soci-
ety plays the key role, and, when the epidemic in society
is less severe, the clustered infection within the community
becomes the leading role.

An explanation for clustered infection in typical semi-
closed communities in daily life such as nursing homes and
prisons is provided by Figs. 3b1, 4b1, and 5b1. The numer-
ical results reveal that, for fixed individuals (the elderly and
prisoners), a more closed community (θ → 0+, ε → 0+)
always leads to amore severe epidemic. On the contrary, with
a more open community (θ → 1−, ε → 1−), the epidemic
is less severe. This result is robust under different values of
Ic; therefore, for fixed individuals in these communities, the
clustered infection rather than the epidemic severity in soci-
ety plays the leading role. In otherwords, a closed community
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Fig. 4 When Ic = 0.5, α = 0.1, μ = 0.05, N = 1, the heat maps depicting different indexes as binary functions of θ and ε. The numerical solution
of θ∗(ε) and ε∗(θ) are directly marked in the heat maps. a pI ∗(1). b1 pI ∗(1)

0 . b2 pI ∗(1)
1 . In this case, the epidemic in society is mild

Fig. 5 When Ic = 0.1, α = 0.1, μ = 0.05, N = 1, the heat maps depicting different indexes as binary functions of θ and ε. The numerical solution
of θ∗(ε) and ε∗(θ) are directly marked in the heat maps. a pI ∗(1). b1 pI ∗(1)

0 . b2 pI ∗(1)
1 . In this case, the epidemic in society is not severe
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always leads to a more severe epidemic in fixed individuals
than a completely open community does.

3.2 The case of Ic = 0

In the second case, the epidemic does not spread in society.
For the semi-closed communities in such society, the fixed
infected individuals outside the community meet Ic → 0+.
Ignoring the sporadic cases and making idealized assump-
tions, let us say, Ic = 0.

In this case, Eqs. (6) and (7), respectively, satisfy g1(0) =
0, g0(0) = 0; therefore, I ∗

1 = I ∗
0 = 0 is an intersection of

curves g1(I ∗
0 ) and g0(I ∗

1 ) (i.e. a solution of Eq. (5). Figure 6a
presents the analytical curves of functions I ∗

1 = g1(I ∗
0 ) and

I ∗
0 = g0(I ∗

1 ) when Ic = 0, μ = 0.05, N = 1, θ = 0.5,
ε = 0.5, α = 0.1. As seen in Fig. 6a, such an intersection
is different from endemic equilibrium �∗(1); therefore, we
label such an intersection as “epidemic-free equilibrium”,
denoted by

�∗(0) = (I ∗(0)
1 , I ∗(0)

0 )T = (0, 0)T (8)

or

�∗(0) = (I ∗(0)
0 , I ∗(0)

1 , S∗(0)
0 , S∗(0)

1 )T

= (0, 0, N0, N1)
T. (9)

As discussed in Sect. 3.1, the concavity and convexity of
the functions g1(I ∗

0 ) and g0(I ∗
1 ) make them have at most

two intersections. Now, given Ic = 0, the two intersections
both exist and are nonnegative; that is, system (4) has two
equilibrium points.

To analyse the stability of the two equilibrium points
(i.e. which equilibrium does the system achieve), we use
the mathematical techniques proposed by van den Driessche
and Watmough [37] to solve the basic reproduction number
of the epidemic and then judge the system’s stability. Using
this method, investigating system (3) is more convenient. We
separate system (3) into �̇ = F − V , where

F =

⎛
⎜⎜⎝
FI0
FI1
FS0
FS1

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

αS0[I0 + (1 − ε)I1]
αS1[(1 − ε)I0 + (2ε2 − 2ε + 1)I1]

−FI0
−FI1

⎞
⎟⎟⎠ , (10)

V =

⎛
⎜⎜⎝
VI0
VI1
VS0
VS1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

μI0
μI1
−VI0
−VI1

⎞
⎟⎟⎠ . (11)

Let alone the uninfected compartments, and calculate
the Jacobian matrix of the remaining compartments at the
epidemic-free equilibrium �∗(0):

F =
⎛
⎜⎝

∂FI0

∂ I0

∂FI0

∂ I1
∂FI1

∂ I0

∂FI1

∂ I1

⎞
⎟⎠ (�∗(0))

= α

(
N0 (1 − ε)N0

(1 − ε)N1 (2ε2 − 2ε + 1)N1

)
, (12)

V =
⎛
⎜⎝

∂VI0

∂ I0

∂VI0

∂ I1
∂VI1

∂ I0

∂VI1

∂ I1

⎞
⎟⎠ (�∗(0)) = μ

(
1 0
0 1

)
. (13)

Then, calculate the following spectral radius of F · V−1.

R0 = α

2μ

[
N0 + (2ε2 − 2ε + 1)N1

+
√

[N0 + (2ε2 − 2ε + 1)N1]2 − 4ε2N0N1

]

= αN

2μ
[1 − 2(1 − ε)(θε)

+
√
4(ε2 − 2ε + 2)(θε)2 − 4(θε) + 1

]
. (14)

R0 is called the basic reproduction number. Therefore,
in terms of Ic = 0, we are able to judge the stability of
system (3) or (4)with the help of Ref. [37] - the epidemic-free
equilibrium �∗(0) (�∗(0)) is locally asymptotically stable, if
R0 < 1; and, the epidemic-free equilibrium �∗(0) (�∗(0)) is
not stable, if R0 > 1. In the latter case, considering that the
system is continuous, �∗(1) (�∗(1)) is stable.

Figure 6b1 demonstrates the time evolution of indexes
pI0(t), pI1(t) and pI (t) when μ = 0.05, N = 1, θ = 0.5,
ε = 0.5, α = 0.1. According to Eq. (14), we have R0 =
1.3090 > 1; therefore, �∗(0) is not stable. It is seen from
Fig. 6b1 that system (4) is stable at �∗(1), consistent with
our analytical judgement. Secondly, Fig. 6b2 demonstrates
the time evolution of indexes pI0(t), pI1(t) and pI (t) when
μ = 0.05, N = 1, θ = 0.5, ε = 0.5, α = 0.05. According
to Eq. (14), we have R0 = 0.6545 < 1; therefore, �∗(0) is
locally asymptotically stable. It is seen from Fig. 6b2 that
system (4) is stable at �∗(0), consistent with our theoretical
prediction as well.

Similar to Figs. 3, 4, and 5, the stable indexes as func-
tions of θ and ε when Ic = 0 and α = 0.1, μ = 0.05,
N = 1 are presented in Fig. 7. As shown in the numer-
ical heat maps, to benefit the total community population
(Fig. 7a), fixed individuals (Fig. 7b1), or mobile individu-
als (Fig. 7b2), the strategies for controlling the proportion
of infected individuals are similar. When ε is smaller than
half, we have θ∗(ε) = 0.99, and when ε is greater than half,
θ∗(ε) decreases to half as ε increases.When θ is smaller than
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Fig. 6 When Ic = 0, μ = 0.05,
N = 1, θ = 0.5, ε = 0.5, a the
analytic curves of functions
I ∗
1 = g1(I ∗

0 ) and I ∗
0 = g0(I ∗

1 )

with α = 0.1; b1 time evolution
of indexes pI0(t), pI1(t) and
pI (t) when α = 0.1
(R0 = 1.3090 > 1); b2 time
evolution of indexes pI0(t),
pI1(t) and pI (t) when
α = 0.05 (R0 = 0.6545 < 1).
The intersection coordinates of
g1(I ∗

0 ) and g0(I ∗
1 ) are the

equilibrium points. The
theoretical prediction is
consistent with numerical
simulations under different R0

half, we have ε∗(θ) = 0.99, and when θ is greater than half,
ε∗(θ) decreases to half as θ increases. It is noticed that in the
region of θ > 1/2 and ε > 1/2, the numerical solutions of
θ∗(ε) and ε∗(θ) are coincident. We find such a phenomenon
can be derived from Eq. (14), the expression of the basic
reproduction number R0.

According to the reduction result in the second line of
Eq. (14), we assume that (θε) is a whole as an indepen-
dent variable, and the remaining ε in the equation and other
parameters are regarded as constants. Performing elemen-
tary mathematical knowledge (prompt: solving the equation
with the first derivative of (θε) equal to zero), the minimum
point of R0 can be found. In the solution of the equation,
the remaining ε in the equation are fortunately eliminated.
Two extreme points are found: (i) R0 = αN/(2μ), when
(θε) = 1/2; (ii) R0 → αN/μ, when (θε) → 0+. Through
comparison, it is obvious that R0 achieves the minimum
value αN/(2μ) when (θε) = 1/2. Since the basic reproduc-
tion number R0 is a measure of the reproductive capacity
of the epidemic, the minimum R0 leads to the infection in
the community population being the mildest. Therefore, we
can declare that the analytic solution of θ∗(ε) and ε∗(θ) in
Fig. 7a is θ∗ε∗ = 1/2; that is, a hyperbola curve with inverse
proportional coefficient 1/2.

As seen in Fig. 7, when there is no epidemic in society,
the clustered infection plays a leading role in epidemic out-
breaks in the community. Gathering all individuals outside
the community (θ → 1−, ε → 1−) and gathering all indi-
viduals inside the community (θ → 0+, ε → 0+) produce
the same consequences. As Ref. [33] has studied before,
when Ic = 0, we have a scenario of semi-closed commu-
nity: residential universities with closed management. With
regard to such a scenario, the mobile individuals include the
faculty and staff, the children of the faculty and staff, the res-

ident express personnel, and construction personnel, while
the fixed individuals include merely the students. The origi-
nal intention of the closed management includes preventing
and controlling epidemics; meanwhile, for universities, the
number of fixed individuals is far greater than that of mobile
individuals (i.e. θ → 0+). Therefore, our model predicts that
such closed management will put the population in the uni-
versity at risk (Fig. 7a). Of course, in the absence of patient
zero, the risk does not appear—As we analysed before, when
Ic = 0, the epidemic-free equilibrium �∗(0) always exists;
however, it is not always stable. Once exposed to a patient
zero, the universities implementing such closedmanagement
will suffer severe epidemics. Below, we discuss the optimal
management policy. As a rough estimate, a person’s rest and
bedtime take up about half of the day. In general, a student
not only goes to bed in the dormitory at night, but also needs
to have classes on campus when they are wake up; therefore,
we have an estimation ε < 1/2. According to Fig. 7, there
is always θ∗(ε) → 1− when ε < 1/2. Therefore, the model
suggests that the universities shouldmake all studentsmobile
individuals (allowed free access to being inside and outside
the campus) to reduce the risk of clustered infection, thus
achieving the effect of epidemic prevention and control.

4 Conclusion

The frequent epidemic outbreaks in semi-closed communi-
ties such as nursing homes and prisons are of great concern to
the public. In this work, we developed a general SISmodel in
semi-closed community,where an epidemic repeatedly trans-
mits. The system’s evolution is studied before any individual
is diagnosed. In one dimension, the population is divided into
susceptible (S) and infected (I ). In the other dimension, the
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Fig. 7 When Ic = 0, α = 0.1, μ = 0.05, N = 1, the heat maps depicting different indexes as binary functions of θ and ε. The numerical solution
of θ∗(ε) and ε∗(θ) are directly marked in the heat maps. a pI ∗(1) or pI ∗(0). b1 pI ∗(1)

0 or pI ∗(0)
0 . b2 pI ∗(1)

1 or pI ∗(0)
1 . In this case, there is no

epidemic in society

population is classified intomobile (S1, I1) and fixed individ-
uals (S0, I0). Based on human-to-human contact propagation,
a nonlinear system (3) was proposed. We, respectively, stud-
ied theoretical properties and numerical results of system (3)
against the background of the epidemic spreading or not in
society.

First, we studied the case where the epidemic spreads
in society (Ic > 0). In this case, the endemic equilib-
rium is the unique solution of system (3). We attribute the
infection to two reasons: (i) a number of individuals gather
in the community, resulting in increased contact between
them (i.e. clustered infection); (ii) the epidemic in society
(fixed infected individuals outside the community) spreads
to the community population. Reasons (i) and (ii) cannot be
logically dealt with simultaneously. With the community’s
openness varying, they shift and produce complex numer-
ical results. The results show that, with a severe epidemic
in society, the epidemic in society spreading to the com-
munity population plays a leading role. We should adjust
the proportion of mobile individuals and their tendency, and
reduce the community’s openness. Secondly, when the epi-
demic in society is mild, the clustered infection within the
community plays a key role for infection. We should adjust
the proportion of mobile individuals and their tendency, and
increase the openness of the community. In addition, we
notice that, having nothing to dowith the epidemic severity in
society, the clustered infection within the community always
plays the key role for fixed individuals. The more closed the

community is, the more severe the infection is among fixed
individuals, which provides a new qualitative explanation for
frequent pandemics in communities such as nursing homes
and prisons: compared with a completely open community, a
semi-closed community is always more closed, thus causing
more infections in fixed individuals (the elderly and prison-
ers).

Secondly, we studied the case where the epidemic does
not spread in society (Ic = 0). In this case, system (3)
has both epidemic-free equilibrium and endemic equilib-
rium. We solve the basic reproduction number R0 of the
epidemic, and judge that the system is stable at epidemic-
free equilibrium when R0 < 1, and is stable at endemic
equilibrium when R0 > 1 [37]. Without the threat of epi-
demics outside the community, the clustered infection among
the community population plays the leading role of infec-
tion. The results show that gathering all individuals inside
the community produces the same consequences as gathering
all individuals outside the community. To prevent and con-
trol the epidemic, individuals should be evenly distributed
inside and outside the community, thus forming isolation
and reducing aggregation.More specifically, the optimal pro-
portion of mobile individuals θ∗ and their tendency towards
being outside the community ε∗ lie on a hyperbola with 1/2
as the inverse proportion coefficient. A counterexample is
residential universities implementing closed management.
The closed management is effectively semi-closed, among
which only students are fixed individuals, and other people
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are mobile individuals. We estimated the parameter range on
a qualitative level. The results under the parameters show
that the closed management results in excessive aggregation
of the crowd, leading to severe epidemic outbreaks once there
is a patient zero. The results also indicate that to prevent and
control the epidemic, we should allow all students free access
to being on or off campus, forming isolation.

In this paper,wewere unable tofind a simplemathematical
tool like the basic reproduction number R0 to analyse the
optimal control strategy at an analytic level when Ic > 0.
Also, the global stability of the two equilibria can be further
studied strictly. In some real situations, the fixed individuals
can manage to go out of the community. Future research can
further consider the description of fixed individuals being
outside the community in some ways.

Funding No Funding.

Data availability The theoretical data used to support the findings of
this study are already included in the article.

Code availability The Matlab code of the numerical simulation can be
requested from the corresponding author.

Conflict of interest No Conflict of interest.

References

1. KermackWO,McKendrick AG (1927) A contribution to the math-
ematical theory of epidemics. Proc R Soc A 115(772):700–721

2. Srivastav AK, Tiwari PK, Srivastava PK, GhoshM, Kang Y (2021)
Amathematicalmodel for the impacts of facemask, hospitalization
and quarantine on the dynamics of COVID-19 in India: determin-
istic vs. stochastic. Math Biosci Eng 18(1):182–213

3. Tiwari PK, Rai RK, Khajanchi S, Gupta RK, Misra AK
(2021) Dynamics of coronavirus pandemic: effects of commu-
nity awareness and global information campaigns. Eur Phys J Plus
136(10):994

4. Rai RK, Khajanchi S, Tiwari PK, Venturino E, Misra AK (2022)
Impact of social media advertisements on the transmission dynam-
ics of COVID-19 pandemic in India. J Appl Math Comput
68(1):19–44

5. Daley DJ, Kendall DG (1964) Epidemics and rumours. Nature
204(4963):1118–1118

6. GalamS, JavaroneMA (2016)Modeling radicalization phenomena
in heterogeneous populations. PLoS ONE 11(5):0155407

7. McCluskey C, Santoprete M (2017) A bare-bones mathematical
model of radicalization. arXiv preprint (2017)

8. Santoprete M, Xu F (2018) Global stability in a mathematical
model of de-radicalization. Physica A 509:151–161

9. Santoprete M (2019) Countering violent extremism: a mathemati-
cal model. Appl Math Comput 358:314–329

10. WangC (2020)Dynamics of conflicting opinions considering ratio-
nality. Physica A 560:125160

11. Wang C, Wang Z, Pan Q (2021) Injurious information propaga-
tion and its global stability considering activity and normalized
recovering rate. PLoS ONE 16(10):0258859

12. Korobeinikov A (2004) Global properties of basic virus dynamics
models. Bull Math Biol 66(4):879–883

13. La Salle JP (1976) The stability of dynamical systems. SIAM,
Philadelphia

14. Anggriani N (2015) Global stability for a susceptible-infectious
epidemic model with fractional incidence rate. Appl Math Sci
9(76):3775–3788

15. Vargas-De-León C (2011) On the global stability of SIS, SIR and
SIRS epidemic models with standard incidence. Chaos Solitons
Fractals 44(12):1106–1110

16. SahuGP,Dhar J (2012)Analysis of an SVEIS epidemicmodel with
partial temporary immunity and saturation incidence rate. Appl
Math Model 36(3):908–923

17. Sun Q, Min L, Kuang Y (2015) Global stability of infection-free
state and endemic infection state of a modified human immunode-
ficiency virus infection model. IET Syst Biol 9(3):95–103

18. Jana S, Mandal M, Nandi SK, Kar TK (2021) Analysis of a
fractional-order SIS epidemic model with saturated treatment. Int
J Model Simul Sci Comput 12(01):2150004

19. Bonhoeffer S, May RM, Shaw GM, Nowak MA (1997) Virus
dynamics and drug therapy. Proc Natl Acad Sci 94(13):6971–6976

20. Meskaf A, Khyar O, Danane J, Allali K (2020) Global stability
analysis of a two-strain epidemic model with non-monotone inci-
dence rates. Chaos Solitons Fractals 133:109647

21. JingX, LiuG, Jin Z (2022) Stochastic dynamics of an SIS epidemic
on networks. J Math Biol 84(6):1–26

22. WeiX, ZhaoX, ZhouW (2022) Global stability of a network-based
SIS epidemic model with a saturated treatment function. Physica
A 597:127295

23. Jhun B, Jo M, Kahng B (2019) Simplicial SIS model in scale-free
uniform hypergraph. J Stat Mech Theory Exp 2019(12):123207

24. Jhun B (2021) Effective epidemic containment strategy in hyper-
graphs. Phys. Rev. Res. 3(3):033282

25. Zhao Y, Jiang D, O’Regan D (2013) The extinction and persistence
of the stochastic SIS epidemic model with vaccination. Physica A
392(20):4916–4927

26. EconomouA,Gómez-CorralA,López-GarcíaM (2015)A stochas-
tic SIS epidemic model with heterogeneous contacts. Physica A
421:78–97

27. Cheng X,Wang Y, Huang G (2021) Dynamics of a competing two-
strain SIS epidemic model with general infection force on complex
networks. Nonlinear Anal Real World Appl 59:103247

28. Wang X, Yang J, Luo X (2022) Competitive exclusion and coexis-
tence phenomena of a two-strain SIS model on complex networks
from global perspectives. J Appl Math Comput

29. Saikh A, Gazi NH (2021) The effect of the force of infection and
treatment on the disease dynamics of an SIS epidemic model with
immigrants. Results Control Optim 2:100007

30. Banerjee S, Chatterjee A, Shakkottai S (2014) Epidemic thresholds
with external agents. In: IEEE INFOCOM 2014-IEEE conference
on computer communications. IEEE, pp 2202–2210

31. Amador J (2016) The SEIQS stochastic epidemicmodelwith exter-
nal source of infection. Appl Math Model 40(19–20):8352–8365

32. Rao X, Zhang G, Wang X (2022) A reaction-diffusion-advection
SIS epidemicmodel with linear external source and open advective
environments. Discrete Contin Dyn Syst B

33. Wang C, Huang C (2020) An epidemic model with the closed
management in Chinese universities for COVID-19 prevention. In:
Journal of physics: conference series, vol 1707. IOP Publishing, p
012027

34. ProdanovD (2020) Analytical parameter estimation of the SIR epi-
demic model. Applications to the COVID-19 pandemic. Entropy
23(1):59

35. Barlow NS, Weinstein SJ (2020) Accurate closed-form solution of
the SIR epidemic model. Physica D 408:132540

36. Weinstein SJ, HollandMS,RogersKE, BarlowNS (2020)Analytic
solution of the SEIR epidemic model via asymptotic approximant.
Physica D 411:132633

123



A simple epidemic model for semi-closed community reveals the hidden outbreak risk… 1517

37. Van den Driessche P, Watmough J (2002) Reproduction numbers
and sub-threshold endemic equilibria for compartmental models of
disease transmission. Math Biosci 180(1–2):29–48

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123


	A simple epidemic model for semi-closed community reveals the hidden outbreak risk in nursing homes, prisons, and residential universities
	Abstract
	1 Introduction
	2 Model
	3 Discussion and results
	3.1 The case of Ic>0
	3.2 The case of Ic=0

	4 Conclusion
	References




