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Abstract
In this paper, we study a diffusive SIR epidemic model with saturated incidence rate and discontinuous treatments under
Neumann boundary conditions. Firstly, the existence and boundedness of the solution of the system are addressed. Then, on
the basis of the differential inclusions theory, we analysis the existence of endemic equilibrium. Furthermore, by constructing
different appropriate Lyapunov functions, we investigate the global asymptotic stability of the disease free equilibrium(DFE)
and the endemic equilibrium(EE), respectively. Additionally, numerical simulations are given to confirm the correctness of
theorem. Finally, we give a brief conclusion and discussion in the end of the paper.
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1 Introduction

Nowadays, The SARS-Cov-2 pandemic pose a great threat
to human health, which has introduced an evident research
boom into biophysical and mathematical modeling of infec-
tion expansions. In order to develop control strategies to pre-
vent disease epidemics and reduce the number of infections,
many scholars have used mathematical models of reaction-
diffusion equations to study the infection mechanisms of
infectious diseases, for example in [1–6]. Moreover, reac-
tion -diffusion mechanisms have been successfully applied
to many patterning phenomena in predator-prey system [7–
12].

It should be noted that most of the above models have
continuous terms. But in practice, when an infectious dis-
ease occurs in the host population, some treatment measures
need to be considered, which usually was described by
some discontinuous (or non-smooth) control functions when
constructing the mathematical model. Moreover, the discon-
tinuous control strategy has been also extensively studied
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in many other resource management areas in real life. For
instance, discontinuous harvesting on fishery was investi-
gated in [13]. Li et al. [14] studied the the dynamic behaviour
of a computer worm virus system with discontinuous control

strategy. In [15], Guo et al. considered the impact of dis-
continuous treatments to SIR epidemic system. Zhang and
Zhao considered a predator-prey model with discontinuous
harvesting policy with spatial diffusion in [16]. However,
there are few results in the public literature on the effects of
discontinuous treatments in SIR epidemic diffusive system.
Recently, in [17], Li et al. studied the global dynamics of
a diffusive SIR epidemic system with linear incidence rate
and discontinuous term. Other relate work can be found in
[18–20].

Inspired by [17] and the above discussions. In this article,
we consider a diffusive SIR epidemic model with nonlinear
saturated incidence rate and discontinuous treatments. First,
we denote the densities of susceptible and infected individu-
als at position x and time t by S(x, t) and I (x, t), respectively.
Besides, a saturated incidence rate function g(I ) = β I

1+mI
is considered, which was first proposed by Capasso and
Serio in [21], subsequently, many scholars have done rel-
evant research about this type of incidence rate (for example,
[22–24]). Where m > 0 is the saturation coefficient, β > 0
is the rate of disease transmission. This incidence rate seems
to be more realistic in some cases, as the number of effective
contacts between infected and susceptible individuals may
be saturated at high levels of infection due to congestion
in infected individuals or protective measures in susceptible
individuals. Therefore, we focus on the following epidemic
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reaction-diffusion model under Neumann boundary condi-
tions

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂S

∂t
− d1�S = A − βSI

1 + mI
− μS, x ∈ �, t > 0,

∂ I

∂t
− d2�I = βSI

1 + mI
− μ1 I − λh(I )I , x ∈ �, t > 0,

∂S(t, x)

∂n
= ∂ I (t, x)

∂n
= 0, x ∈ ∂�, t > 0,

S(0, x) = S0(x) ≥ 0, I (0, x) = I0(x) ≥ 0, x ∈ �,

(1.1)

where S(x, t), I (x, t) and m are described as before. � is a
bounded open set in Rn , n is the outward unit normal vector
of the boundary ∂�. The homogeneous Neumann boundary
conditions indicate that the epidemic system is self-inclusion
and zero population flux across the boundary. d1 > 0 and
d2 > 0 are the diffusion rates of susceptible and infected
individuals, respectively. And the positive number A is the
recruitment rate of susceptible individuals. The positive coef-
ficients μ and μ1 represents natural mortality and mortality
caused by diseases, respectively. Function h(I ) represents
the treatment strategy which λ is positive coefficient. We
give some properties of function h(I ) as follows.

(H1) h(I ) is continuous except in a cluster of countable iso-
lated points ρk , where h(ρ+

k ) and h(ρ−
k ) represents the

right and left limits, respectively, with h(ρ+
k ) > h(ρ−

k ).
Besides, h(I ) has a finite discontinuous points in any
compact interval [0,+∞).

(H2) h(I ) ismonotonically non-decreasing in [0,+∞),∀I ∈
[0,+∞), 0 ≤ h(I ) ≤ 1 and h(0) = h(0+) = 0.

Due to the function h(I ) is not continuous, here, we
applying differential inclusion theory instead of theories and
methods in ordinary differential equations, So the system
(1.1) can be written as the following differential inclusion

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂S

∂t
− d1�S = A − βSI

1 + mI
− μS, x ∈ �, t > 0,

∂ I

∂t
− d2�I ∈ βSI

1 + mI
− μ1 I − λco[h(I )]I , x ∈ �, t > 0,

∂S(t, x)

∂n
= ∂ I (t, x)

∂n
= 0, x ∈ ∂�, t > 0,

S(0, x) = S0(x) ≥ 0, I (0, x) = I0(x) ≥ 0, x ∈ �,

(1.2)

where co[h(I )] = [h(I−), h(I+)], h(I−), h(I+) represent
the left and right limits of function h at I , respectively.

Remark 1.1 co[h(I )] is an interval with non-empty interior
when h is discontinuous at I , while co[h(I )] = h(I ) is a
singleton if h is continuous at I .

When saturation coefficient m = 0, the nonlinear satu-
rated incidence rate become the linear incidence rate, which
is corresponding to the system in literature [17]. To the best of

the authors’ knowledge, there are few analysis results about
diffusive SIR epidemic model with saturated incidence rate
and discontinuous term in the open literature. The aim of
this paper is to investigate whether we can conclude some
different dynamic behaviour of the system (1.1) owing to the
saturated incidence rate, and whether saturation coefficient
m will affects the global stability of the endemic equilibrium
of system (1.1). The rest of this paper is arranged as fol-
lows. Firstly, we mainly investigate the existence and some
properties of the solution of the diffusive epidemic system
(1.1) in Sect. 2. Secondly, we discuss about the existence of
the endemic equilibrium of the system in Sect. 3. Thirdly,
by constructing different suitable Lyapunov functions, we
prove the global asymptotic stability of the disease free equi-
librium(DFE) and endemic equilibrium(EE) respectively in
Sect. 4. Finally, we give a brief conclusion in Sect. 5.

2 The existence of solution

In this section, we are concernedwith the existence and prop-
erties of the solution of the system (1.1). Firstly, we assume
that the initial values S(x, 0), I (x, 0) of system (1.1) satisfy
the following condition.

(H3) S(x, 0), I (x, 0) ∈ L∞, S(x, 0) > 0 and I (x, 0) > 0
on �.

Lemma 2.1 Suppose that the assumptions (H1-H3) hold,
then there exist two positive constants M1 and M2, which
depend on A, β,m, μ, μ1, λ and initial values S0, I0, such
that every possible solution (S(x, t), I (x, t)) of system (1.1)
satisfy

M1 ≤ S(x, t), I (x, t) ≤ M2. (2.1)

Proof Firstly, to prove the boundedness of solutions (S(x, t),
I (x, t)), we give the invariant rectangle � := [S1,S2] ×
[I1, I2], where

S1 = min

{
Am

β + μm
,
μ1

β
,min
x∈�

S0(x)

}

;
S2 = max

{
A
μ
,maxx∈� S0(x)

}
,

I1 = min

{
βS1 − μ1

mμ1
,min
x∈�

I0(x)

}

;
I2 = max

{
βS2

m(μ1+λ)
,maxx∈� I0(x)

}
.

(2.2)

Obviously, S0(x) and I0(x) are closed for the rectangle �.
The vector field of the system (1.1) is given

(

A − βSI

1 + mI
− μS,

βSI

1 + mI
− μ1 I − λh(I )I

)

, (2.3)

all points on the rectangle � point inside. Secondly, through
the above analysis, we have the following conclusions:
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(i) On the left side of the first quadrant invariant rectangle
with S = S1, I1 < I < I2, by the definition of S1, it
satisfies the following estimate:

A − βSI

1 + mI
− μS = A − βS1 I

1 + mI
− μS1

> A − βS1

m
− μS1 ≥ 0. (2.4)

(ii) On the right side of the the first quadrant invariant rect-
angle with S = S2, I1 < I < I2, by the definition of
S2, it satisfies the following estimate:

A − βSI

1 + mI
− μS = A − βS2 I

1 + mI
− μS2

< A − μS2 ≤ 0. (2.5)

(iii) On the bottom side of the the first quadrant invariant
rectangle with I = I1, S1 < S < S2, by the definition
of I1, it satisfies the following estimate:

βSI

1 + mI
− μ1 I − λco[h(I )]I = βSI1

1 + mI1 − μ1I1

>
βS1I1
1 + mI1 − μ1I1 ≥ 0. (2.6)

(iv) On the left side of the the first quadrant invariant rect-
angle with I = I2, S1 < S < S2, by the definition of
I2, it satisfies the following estimate:

βSI

1 + mI
− μ1 I − λco[h(I )]I = βSI2

1 + mI2
− μ1I2 − λI2

<
βS2
m

− μ1I2 − λI2 ≤ 0. (2.7)

Finally, by virtue of the definition on [20], in view of the
above discussions, we can conclude that � := [S1,S2] ×
[I1, I2] is the invariant rectangle of the vector field (2.3).
Thus, we can choose M1 = min{S1, I1} and M2 =
max{S2, I2}, which completes the proof. �	

Now, we give the following definition. Firstly, we denote

ϕ1(S, I ) = A − βSI

1 + mI
− μS,

ϕ2(S, I ) = βSI

1 + mI
− μ1 I − λco[h(I )]I . (2.8)

Definition 2.1 (S, I ) is the strong solution [orweak solution]
of the differential inclusion (1.2),where S, I ∈ C([0, T ]; H),
and there exists ψ2(S, I ) ∈ L1([0, T ]; H), ψ2(S, I ) ∈
ϕ2(S, I ) almost everywhere in (0, T ), and such that solu-
tion is a strong solution [or weak solution] over (0, T ) to the

system, which is given by

⎧
⎪⎪⎨

⎪⎪⎩

∂S

∂t
− d1�S = ϕ1(S, I ),

∂ I

∂t
− d2�I = ψ2(S, I ).

(2.9)

Obviously, we can obtain that the map ϕ1(S, I ) is bounded.
By assumptions (H1), (H2) and (H3), with combining the
above discussions, it is easy to know ϕ2(S, I ) is an upper
semi-continuous bounded set-valued mapping with non-
empty compact convex values.

Next, we denote


U = (d1�S, d2�I ),U = (S, I ) ∈ D(
),

D(
) =
{

U = (S, I ) ∈ H2(�)2,
∂S(x, t)

∂n
= 0,

∂ I (x,t)
∂n = 0

}

.

Let X be a real Banach space, U = (S, I ) be the solu-
tion of system (1.1) with initial value U (0) = (S0, I0) > 0,
and we defined 
 : D(
) 
 X → X is the infinitesimal
generator of aC0-semigroup of linear contractions I (t). Fur-
thermore, we defined 
 : [0, T ] × X → X be a function
which measurable in t and Lipschitz continuous in X , uni-
formlywith respect to t ∈ [0, T ]. Thenwe have the following
conclusion:

(i) IfU0 ∈ X , there exists a unique weak solution of system
(2.9).

(ii) If X is a Hilbert space, 
 is a self-adjoint and dissipative
on X with U (0) ∈ D(
), and we can obtained

U ∈ W 1,2([0, T ]; X) ∩ L2([0, T ]; D(
)), (2.10)

which shows that the weak solution of system (2.9) is
actually a strong solution.

Theorem 2.1 Suppose that assumptions (H1),(H2) and (H3)
hold, then system (1.1) has at least one strong solution.

Proof By the Theorem 2.4 in [28], there exists a strong solu-
tion (S, I ) of system(1.1) with t ∈ [0, T0], where 0 < T0 <

+∞. Thus, for system (1.1), there exists a maximum exis-
tence interval [0, Tmax ]. According to [29], if the condition
Tmax < +∞, then

max(‖ S(x, t) ‖L∞(�) + ‖ I (x, t) ‖L∞(�))

= ∞ in [L2(�)]2, when t → Tmax . (2.11)

But by Lemma 2.1, where the invariant � is an L∞ a
priori bound for the solution (S, I ) of the system (1.1), it
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is a contradiction which implies Tmax = ∞, i.e., so for all
(x, t) ∈ �×[0,+∞), the solution of system (1.1) exists and
bounded. Which completes the proof. �	

3 The existence of the equilibria

In this section, we are concerned about the existence of dis-
ease free equilibrium(DFE) and endemic equilibrium(EE)
of the system (1.1). We using the analysis method in [17].
Firstly, when h(I ) = 0, the DFE E0(S∗

0 , I
∗
0 ) = ( A

μ
, 0)

always exists. Additionally, the EE E∗ = (S∗, I ∗) satisfies
⎧
⎪⎨

⎪⎩

0 = A − βSI

1 + mI
− μS,

0 ∈ βSI

1 + mI
− μ1 I − λco[h(I )]I .

(3.1)

Through a simple transformation, we define g(I ) as follows

g(I ) := 1

λ

[
Aβ

(β + μm)I + μ
− μ1

]

= [h(I−), h(I+)].
(3.2)

Lemma 3.1 The system (3.1) has a unique positive solution
Ī satisfying Ī <

Aβ−μμ1
μ1(β+μm)

if Aβ > μμ1 holds.

Proof We are divided into the following three steps to prove.

Step 1. Weprove that system (3.1) exists a positive solution
Ī , when Aβ > μμ1 holds, it means g(0) > 0, and
we know the function g(I ) is the monotonically
decreasing of I and h(I ) is non-decreasing of I .
Obviously, g(I ) ≤ 0 if I ≥ Aβ−μμ1

μ1(β+μm)
. Therefore,

the set
{
I : g(I ) ≥ h(I+), I > 0

}
is bounded, then

denote Ī = sup
{
I : g(I ) ≥ h(I+), I > 0

}
. So,

we can obtained that g( Ī ) ≥ h( Ī−) and 0 ≤ Ī ≤
Aβ−μμ1

μ1(β+μm)
.

Step 2. We prove g( Ī ) ∈ [h( Ī−), h( Ī+)]. If not, g( Ī ) >

h( Ī+) = lim I→ Ī+ h(I ). Therefore, we can find
a small constant number ε such that g( Ī + ε) >

h( Ī + ε) = h(( Ī + ε)+), which does not conform
to the definition of Ī . So, g( Ī ) ∈ [h( Ī−), h( Ī+)].

Step 3. We prove that Ī is the unique positive solution of
system (3.1). Let I1 = Ī is a solution of (3.1), and
I2 �= I1 is another positive solution of (3.1), then,
there exists γ1 ∈ co[h(I1)] and γ2 ∈ co[h(I2)], so
we have

Aβ

(β + μm)I1 + μ
− μ1 = λγ1,

Aβ

(β + μm)I2 + μ
− μ1 = λγ2. (3.3)

From themonotonicity of h(I ), it implies that H =
γ1−γ2
I1−I2

≥ 0. However, after subtraction of the two
equations of (3.3), we obtain

γ1 − γ2 = − Aβ(β + μm)

λ[(β + μm)I1 + μ][(β + μm)I2 + μ]
(I1 − I2), (3.4)

which is a contradiction. The proof of the lemma is com-
pleted. �	

A direct result of Lemma 3.1 is the following theorem of
endemic equilibrium.

Theorem 3.1 Assume assumptions (H1-H3) hold and Aβ >

μμ1 +μλ, then the system (1.1) has a unique endemic equi-
librium E∗ = (S∗, I ∗), where I ∗= Aβ−μ(μ1+λγ ∗)

(μ1+λγ ∗)(β+μm)
and S∗=

A(1+mI ∗)
β I ∗+μ(1+mI ∗) with γ ∗ ∈ co[h(I )].
Remark 3.1 By differentiating the equilibrium density of
infected individuals with respect to the saturation coefficient
m, we get

dI ∗

dm
= −μ[Aβ − μ(μ1 + λγ ∗)]

(μ1 + λγ ∗)(β + μm)2
, (3.5)

when Aβ > μμ1 +μλ holds, I ∗ is decreasing with the satu-
ration coefficient m, it means when m → +∞, the infective
individuals may cannot persist.

4 Global stability of DFE and EE

In this section, we discussed the global stability of disease
free equilibrium and endemic equilibrium in the invariant
rectangle �, respectively. Firstly, the global stability of DFE
E0 is discussed as follows.

Theorem 4.1 Suppose that Aβ ≤ μμ1, then DFE E0 =
(S∗

0 , I
∗
0 ) of system (1.1) is globally asymptotically stable.

Proof We define

V1(t) =
∫

�

[

S − S∗
0 − S∗

0 ln
S

S∗
0

+ I

]

dx . (4.1)

Obviously, V1(t) is a smooth function. Now, denote

G(S, I ) =
(

d1�S + A − βSI
1+mI − μS

d2�I + βSI
1+mI − μ1 I − λco[h(I )]I

)

. (4.2)

From (H1) and (H2), it is easy to know that the map G is
an upper semi-continuous set-valued map with non-empty
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compact convex value. For any (w1, w2) ∈ G(S, I ), there
exist a function γ1(t) ∈ co[h(I )], we have

w =
(

w1

w2

)

=
(

d1�S + A − βSI
1+mI − μS

d2�I + βSI
1+mI − μ1 I − λγ1 I

)

. (4.3)

So from the above discussions, by calculating ∇V (S, I ) · w,
we can obtain that

d

dt
V1(t) =

∫

�

[
d

dt

(

S − S∗
0 − S∗

0 ln
S

S∗
0

+ I

)]

dx,

=
∫

�

[(

1 − A

Sμ

) (

d1�S + A − βSI

1 + mI
− μS

)

+
(

d2�I + βSI

1 + mI
− μ1 I − λγ1 I

)]

dx,

=
∫

�

[(

1 − A

Sμ

)

d1�S + d2�I

]

dx

+
∫

�

[(

1 − A

Sμ

) (

A − βSI

1 + mI
− μS

)

+
(

βSI

1 + mI
− μ1 I − λγ1 I

)]

dx .

(4.4)

Owing to the homogeneous Neumann boundary condition,
we obtain

F1 =
∫

�

[(

1 − A

Sμ

)

d1�S + d2�I

]

dx,

= −
∫

�

A

μS2
d1|∇S|2dx ≤ 0.

(4.5)

Furthermore, when Aβ ≤ μμ1, we have

F2 =
∫

�

[(

1 − A

Sμ

) (

A − βSI

1 + mI
− μS

)

+
(

βSI

1 + mI
− μ1 I − λγ1 I

)]

dx,

=
∫

�

[(

2A − μS − A2

μS

)

+ Aβ I

μ(1 + mI )

+ (−μ1 I − λγ1 I )
]
dx,

≤
∫

�

[(

2A − μS − A2

μS

)

+ (
Aβ

μ
− μ1)I

]

dx,

≤ 0.

(4.6)

Therefore, we can obtain that

d

dt
V1(t) = F1 + F2 ≤ 0. (4.7)

Thus, the disease free equilibrium E0 is stable, and when
(S, I ) = ( A

μ
, 0), d

dt V1(t) = 0. So the singleton E0 is themax-

imum compact invariant set in  = {(S, I )| ddt V1(t)| = 0}.

By the Lasalle invariance principle [31], E0 is globally
asymptotically stable for system (1.1). The proof is com-
pleted. �	

Theorem 4.2 Suppose that 4A(1 + mI ∗) > βmM2 I ∗2 and
Aβ > μμ1 + μλ hold, then EE E∗ = (S∗, I ∗) of system
(1.1) is globally asymptotically stable.

Proof We define

V2(t) =
∫

�

[

S − S∗ − S∗ ln S

S∗ + I − I ∗ − I ∗ ln I

I ∗

]

dx .

(4.8)

V2(t) is a smooth function, based on assumptions (H1) and
(H2), there exist a function γ2 ∈ co[h(I )], we have

w =
(

w1

w2

)

=
(

d1�S + A − βSI
1+mI − μS

d2�I + βSI
1+mI − μ1 I − λγ2 I

)

. (4.9)

By calculating ∇V (S, I ) · w, we can obtain

d

dt
V2(t) =

∫

�

[(
S − S∗

S

)
dS

dt
+

(
I − I ∗

I

)
dI

dt

]

dx,

=
∫

�

(
S − S∗

S
d1�S + I − I ∗

I
d2�I

)

dx

+
∫

�

[(
S − S∗

S

)(

A − βSI

1 + mI
− μS

)

+
(
I − I ∗

I

) (
βSI

1 + mI
− μ1 I − λγ2 I

)]

dx .

(4.10)

Owing to the homogeneous Neumann boundary condi-
tion, we can get

F3 =
∫

�

(
S − S∗

S
d1�S + I − I ∗

I
d2�I

)

dx,

= −
∫

�

[
S∗

S2
d1|∇S|2 + I ∗

I 2
d2|∇ I |2

]

dx ≤ 0.
(4.11)

F4 =
∫

�

[(
S − S∗

S

)(

A − βSI

1 + mI
− μS

)

+
(
I − I ∗

I

)(
βSI

1 + mI
− μ1 I − λγ2 I

)]

dx,

=
∫

�

[
(
S − S∗)

(
A

S
− A

S∗ + β I ∗

1 + mI ∗ − β I

1 + mI

)

+ (
I − I ∗)

(
βS

1 + mI
− βS∗

1 + mI ∗

)

−λ
(
I − I ∗) (γ2 − γ∗)

]
dx,

=
∫

�

[

− A

SS∗
(
S − S∗)2 + βmI ∗ (I − I ∗) (S − S∗)

(1 + mI ∗)(1 + mI )

− βmS∗(I − I ∗)2

(1 + mI ∗)(1 + mI )
− λ(I − I ∗)(γ2 − γ∗)

]

dx .

(4.12)
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Fig. 1 Dynamic behavior of system (1.1) for S(0, x) = I (0, x) = 1, d1 = d2 = 1, A = 2, β = 0.1,m = 0.5, μ = 0.5, μ1 = 0.6, λ = 0.2

Fig. 2 Dynamic behavior of system (1.1) for S(0, x) = I (0, x) = 1, d1 = d2 = 1, A = 3, β = 0.5,m = 0.5, μ = 0.5, μ1 = 0.6, λ = 0.2

By themonotonicity of h(I ), we haveλ(I−I ∗)(γ2−γ∗) ≥ 0.
Therefore, if

(
βmI ∗(I − I ∗)

(1 + mI ∗)(1 + mI )

)2

− 4Aβm(I − I ∗)2

S(1+mI ∗)(1+mI )

= βm(I−I ∗)2

(1+mI ∗)(1 + mI )

(
βmI ∗2

(1+mI ∗)(1 + mI )
−4A

S

)

< 0,

(4.13)

holds, then F4 ≤ 0. By a simple calculation, if 4A(1 +
mI ∗) > βmM2 I ∗2 , then we can get

βmI ∗2

(1 + mI ∗)(1 + mI )
− 4A

S
<

βmI ∗2

1 + mI ∗ − 4A

S
,

<
βmI ∗2

1 + mI ∗ − 4A

M2
< 0.

(4.14)
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As a result, combined with (4.11), we have

d

dt
V2(t) = F3 + F4 ≤ 0. (4.15)

Thus, the endemic equilibrium E∗ is stable, and when
(S, I ) = (S∗, I ∗), d

dt V2(t) = 0. So the singleton E∗ is the
maximum compact invariant set in  = {(S, I )| ddt V2(t)| =
0}. By the Lasalle invariance principle [31], E∗ is globally
asymptotically stable for system (1.1). The proof is com-
pleted. �	

5 Numerical simulation

In this section, we show numerical simulations regarding our
model to illustrate and support the theoretical results of the
previous sections. We illustrate the DFE is globally asymp-
totically stable if the basic regeneration number R0 is less
than unity in Fig.1 corresponding to S(0, x) = I (0, x) =
1, d1 = d2 = 1, A = 2, β = 0.1,m = 0.5, μ = 0.5, μ1 =
0.6, λ = 0.2. Then we obtain R0 = 0.667 < 1, which
implies that DFE E0 = (4, 0) is globally asymptotically sta-
ble by Theorem 4.1where disease will extinct. And for Fig.2,
we show that the EE is globally asymptotically stable, for

h(I ) =
{
0, I (t) < 1
0.8, I (t) ≥ 1

, let S(0, x) = I (0, x) = 1, d1 =
d2 = 1, A = 3, β = 0.5,m = 0.5, μ = 0.5, μ1 = 0.6, λ =
0.2. Then we obtain Aβ > μμ1 + μλ, which implies the
EE is globally asymptotically stable by Theorem 4.2 where
disease spread in the human world.

6 Conclusion

In this paper, we investigate the dynamic of a diffusive
SIR epidemic model under discontinuous treatments. Due
to the discontinuous term, the existence of strong solu-
tion or weak solution of system(1.1) is proved under the
framework of differential inclusion. Based on the differen-
tial inclusions theory, we analysis the existence of endemic
equilibrium of the system (1.1). Moreover, by construct-
ing different suitable Lyapunov functions, we investigate
the global asymptotic stability of the disease free equilib-
rium(DFE) and the endemic equilibrium(EE), respectively.

Compared to literature [17], a different incidence rate
g(I ) = β I

1+mI is considered in the system (1.1). When satu-
rated incidence ratem = 0, the nonlinear saturated incidence
rate become the linear incidence rate, which is corresponding
to the system in [17]. When saturated incidence rate m →
+∞, we conclude that the infective individuals cannot persist
in Remark 3.1. This result seems to be consistent with real-
istic intuition : the more behavioral changes of susceptible

individuals or the inhibition of crowding effect of infected
individuals, the better disease control. When saturated inci-
dence rate 0 < m < +∞, from Theorem 4.2, it is shown
that saturated incidence ratem may affect the global stability
of the endemic equilibrium. Furthermore, if linear incidence
rate is considered and the discontinuous treatments term does
not exist in the system(1.1), that is m = 0 and λ = 0, then
from Theorem 4.1 and Theorem 4.2 we can easily define the
basic reproduction number R0 = Aβ

μμ1
. When R0 < 1, the

DFE is globally asymptotically stable, and when R0 > 1, the
EE is globally asymptotically stable. However, in the system
(1.1), due to nonlinear incidence rate and the discontinuous
term, it follows from Fig.1, we can obtain that when R0 < 1,
the DFE is also globally asymptotically stable, and when
R0 > 1 + λ

μ1
, it follows from Fig.2, the EE is also globally

asymptotically stable. But, when 1 < R0 < 1+ λ
μ1
, whether

the endemic equilibrium is globally asymptotically stable is
still unknown, which will be considered in our future work.
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