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Abstract In this paper, we use finite dimensional ordinary
differential equation (ODE) approximations of delay differ-
ential equations (DDEs) with variable delays for stability
and bifurcation studies. Two different approaches to handle
variable delays in these systems have been presented. The
first one involves embedding the variable time-delay in a
fixed delay interval and is suitable for variable delays whose
variation with time is explicitly defined and an upper-bound
is known apriori. The efficacy of this procedure is demon-
strated for the practical example of turning operation where
periodic or random variation of spindle speed is employed
for chatter control. For the practical application of a state-
dependent delayed model for turning, this approach leads to
a system of differential algebraic equations which are not
easily amenable to stability and bifurcation studies. Hence,
an alternate approach based on mapping the variable delay
to a fixed delay using a dynamic scaling of the delayed vari-
able is presented which results in system of ODEs facilitat-
ing the stability and bifurcation analysis. In all the cases, an
excellent agreement has been achieved between the stability
results from the approximation and the analytical/full numer-
ical simulation studies. Bifurcation diagrams have been pre-
sented only for the state-dependent delay case where they
match the existing results reported in the literature using
DDE-biftool.
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1 Introduction

In this paper, we study the effectiveness of obtaining reduced
order system of ordinary differential equations (ODEs) for
delay differential equations (DDEs) with variable delays
using a Galerkin projection scheme. Three different varia-
tions in the time-delay viz. a periodic variation, a random
variation and a state-dependent delay have been considered.
The procedure for each kind of variation has been demon-
strated for the practical example of a relevant model for chat-
ter during turning.

The study of time-periodic delays gained popularity in
the 1970s when several researchers [1–4] started focussing
on the suppression of tool-chatter using continuous modula-
tion of the spindle speed. The governing mathematical model
for machining with periodic spindle speed modulation is a
DDE with a variable delay as opposed to a DDE with con-
stant delay for machining with a constant spindle speed. This
complicates the stability analysis of machining with spindle
speed modulation. Sexton et al. [4] assumed a periodic solu-
tion for the problem and used harmonic balance to obtain the
stability boundary. Jayaram et al. [5] improved on the results
of Sexton et al. [4] by assuming a quasi-periodic solution
for the model which is expanded in terms of Bessel func-
tions and obtained the stability boundary using the method
of harmonic balance. Sri Namachchivaya and co-workers [6–
8] incorporated nonlinearity in the mathematical model for
cutting with variable spindle speed and performed a detailed
nonlinear analysis for small amplitudes of the modulation.
Insperger et al. [9,10], Long and Balachnadran [11], Bedi-
aga et al. [12], and Seguy et al. [13] obtained stability
charts for machining with periodic modulation of the spin-
dle speed using semi-discretization (introduced by Insperger
and Stépán [14]). Recently, Zhang and Ni [15] obtained ana-
lytical estimates for the stability boundary of turning with
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spindle speed variation using an internal energy based analy-
sis. In this work, we perform the stability analysis of cutting
with periodic spindle speed modulation using an approach
similar to the Galerkin projection technique introduced by
Wahi and Chatterjee [16] and Wahi [17] which can handle
variable delays. The Galerkin projection for periodic delays
results in system of ODEs with periodic coefficients whose
stability is accessed using the Floquet theory [18,19].

In contrast to the case of periodic delays, very limited
studies have been reported on the application of random
delays to real-world systems even though several studies have
appeared on developing the mathematical theory of systems
with random delays [20–23]. Most literature on the applica-
tion of random delays have focused on the effect of random
delays introduced in large scale communication networks
on the stability and subsequent control of these networks
[24–28]. Sinha and Lyschevski [29] considered microelectro-
mechanical motion devices and used a random delay based
fuzzy controller for the control of energy processes in these
devices. Mattia and Giudice [30] studied the role of random
synaptic delays in determining the average dynamics of a
network of neurons. Wen et al. [31] obtained conditions for
synchronization of chaotic systems in the presence of ran-
dom delays in the feedback loop. Random delays became
relevant to mechanical engineering when Yilmaz et al. [32]
considered the possibility of suppression of chatter using a
random modulation of the spindle speed. They analyzed the
stability of the linear system with the random delay using
a procedure developed by Grigoriu [33]. In this paper, we
will consider the mechanical system analyzed by Yilmaz et
al. [32] and obtain stability results using a system of ODEs
obtained using a Galerkin projection technique. The stability
of the system of these stochastic ODEs has been ascertained
using Lyapunov exponents [34].

The study of delayed systems with state-dependent delays
is in its nascent stage and the rigorous mathematical theory
for the stability and bifurcation analysis of these systems is
still under development. However, there has been a splurge of
studies on the application of state-dependent delays for mod-
eling machining processes and we present a brief account of
some important studies in this direction. Insperger et al. [35]
recently noted that an accurate modeling of the regenerative
effect involves a state-dependent delay (wherein the delay is
determined by a combination of the workpiece rotation and
tool vibration). In [36], Insperger et al. have shown using
a numerical continuation technique that there is a transition
from subcritical to supercritical bifurcation as the feed-rate
is increased. Wahi [37] investigated the Hopf bifurcation in
the state-dependent delay model proposed by Insperger et
al. [35] analytically using the method of multiple scales and
confirmed the change of criticality of the Hopf bifurcation. In
this paper, we present some results on the stability and bifur-
cation behavior of the same model as obtained through a

system of ODEs obtained via. a Galerkin projection scheme.
Some more results for the same can be obtained in [38,39].

The rest of the paper is organized as follows. In Sect. 2,
the Galerkin projection technique based on embedding the
variable delay in a fixed interval is presented followed by
its application to the study of stability of turning with peri-
odic and random modulation of the spindle speed in Sects. 3
and 4 respectively. An alternate approach based on dynamic
scaling of the variable delay to a fixed delay is presented in
Sect. 5 followed by its application to the stability and bifurca-
tion study of a two degree of freedom state-dependent delay
model for turning in Sect. 6. Finally some conclusions are
drawn in Sect. 7.

2 Galerkin projections for DDEs with variable delays
using embedding

The Galerkin projection technique presented in [16,17]
assumed fixed delays. In what follows, we present some mod-
ifications required for the method to be applied to the case
of variable delay and also summarize the Galerkin projec-
tion technique for completeness. This method for handling
variable delays has been reported in [40].

Consider a DDE with finitely many delays which are
bounded and vary in time (for simplicity we will present
the variation with time t only even though the method is
equally applicable to cases where the delay depends on other
variables)

ẋ(t) = f̂ (t, x(t), x(t − τ1(t)), x(t − τ2(t)), . . . , x(t − τn(t))) .

(1)

All the delays are assumed to be bounded functions of time.
Hence, we can choose

τi,max = sup
t>0

τi (t), i = 1, 2, . . . , n.

Now define the maximum delay as

τmax = max
(
τ1,max, τ2,max, . . . , τn,max

)

and scale time as t̄ = t

τmax
. This modifies Eq. (1) to

x ′(t̄) = f
(
t̄, τmax, x(t̄), x(t̄ − τ̄1(t̄)), x(t̄

−τ̄2(t̄)), . . . , x(t̄ − τ̄n(t̄))
)
, (2)

where ′ represents differentiation w.r.t. the scaled time t̄ and

τ̄i (t̄) = τi (t)

τmax
, i = 1, 2, . . . , n. Note that τ̄i (t̄) ≤ 1.

Now we are in a position to proceed with the Galerkin
projection as presented in [16,17]. At any given instant of
time t̄ , we introduce a local time variable s which lies in the
interval [0, 1] and define a bivariate function F(t̄, s) as

F(t̄, s) = xs(t̄) = x(t̄ − s), s ∈ [0, 1]. (3)
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Fig. 1 A schematic representation of the embedding of the variable
s-domain in a fixed domain [0, 1]

which gives us

∂ F

∂ t̄
+ ∂ F

∂s
= 0 (4)

in the interior of the s-interval. We note at this point that the
domain of interest for the local time variable s changes with
t , but we have embedded it in the fixed interval s ∈ [0, 1] over
which we proceed with our approximation for the bivariate
function F(t̄, s). This embedding scheme is represented pic-
torially in Fig. 1. We next approximate this bivariate function
F(t̄, s) as

F(t̄, s) ≈ a0(t̄) + a1(t̄) s +
N−2∑

k=1

ak+1(t̄) sin(kπs), (5)

where N is a finite number chosen by us. From Eqs. (3) and
(5), we have

x(t̄ − τ̄i (t̄)) = F(t̄, τ̄i (t̄)) ≈ a0(t̄) + a1(t̄) τ̄i (t̄)

+
N−2∑

k=1

ak+1(t̄) sin(kπτ̄i (t̄)) (6)

for i = 1, 2, . . . , n. Note from Eq. (6) that time-varying
delayed terms translate into time-varying coefficients in our

approximation. In addition, we have x(t̄) ≡ F(t̄, 0) =
a0(t), which on differentiation with respect to t̄ gives

a′
0(t̄)= x ′(t̄)= f

(
t̄, τmax , a0(t̄), a1(t̄), a2(t̄), . . . , aN−1(t̄)

)
,

(7)

where the function f is obtained by substituting Eqs. (3), (5)
and (6) in f̂ of Eq. (2). As shown in Fig. 1, Eq. (7) defines the
boundary condition for Eq. (4) on the semi-infinite edge with
s = 0 and t̄ > 0, as it governs the evolution of the function
F(t̄, s) on this boundary.

Substituting Eq. (5) in Eq. (4), we define

r(t̄, s) = a′
0(t̄) + a′

1(t̄) s +
N−2∑

k=1

a′
k+1(t̄) sin(kπs) + a1(t̄)

+
N−2∑

k=1

ak+1(t̄)kπ cos(kπs), (8)

where r(t, s) is called the residual. The residual is made
orthogonal to the shape functions (this is the Galerkin pro-
jection) to obtain the following N − 1 equations:

1∫

0

{

a′
0(t̄) + a′

1(t̄) s +
N−2∑

k=1

a′
k+1(t̄) sin(kπs) + a1(t̄)

+
N−2∑

k=1

ak+1(t̄)kπ cos(kπs)

}

· s ds = 0 (9)

and

1∫

0

{

a′
0(t̄) + a′

1(t̄) s +
N−2∑

k=1

a′
k+1(t̄) sin(kπs) + a1(t̄)

+
N−2∑

k=1

ak+1(t̄) kπ cos(kπs)

}

· sin(mπs) ds = 0, (10)

for m = 1, 2, . . . , N − 2.
Equations (7), (9) and (10) constitute N ODEs governing

the evolution of the variables ai (t̄) and can be written in the
form

Aa′(t̄) + Ba(t̄) = b(a(t̄), t̄), (11)

where A and B are N + 1 × N + 1 matrices, a is a vector
containing the ai s, and b(a(t̄), t̄) is a vector with a single
nonzero element representing time varying and/or nonlinear
terms from the DDE (Eq. (2)). Almost all elements of both
A and B can be evaluated once and for all, independent of
the specific DDE (the last N − 1 rows as determined by
Eqs. (9) and (10) and have constant coefficients which are
independent of the given DDE).
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In the case of either Eq. (1) being a linear DDE with only
time-varying coefficients as the time-dependence (or time-
periodic delays) or for stability analysis of Eq. (1), Eq. (11)
can be written as a linear time-dependent set of ODEs as

Aa′(t̄) + B(t̄)a(t̄) = 0, (12)

where only the first row of B(t̄) contains time-varying terms.
In the special case of the delays being periodic functions of
time, i.e., τi (t) = τi (t + T ) for some T , the time dependent

terms in B(t̄) will also be periodic with a period
T

τmax
and

the Floquet theory [18,19] can be used to study the stability
of Eq. (12).

We would like to emphasize that the above description of
the Galerkin projection method can also be applied for state-
dependent delays and also for random bounded delays. The
only requirement is that the delays should be bounded above
by some maximum delay τmax. For random delays, Eq. (6)
would include random coefficients resulting in a set of sto-
chastic ODEs whose stability properties can be ascertained
using tools from stochastic ODEs. The precise bound on the
delay in the case of state-dependent delays are difficult to
obtain apriori since it depends on the solution itself. How-
ever, depending on the particular application a conservative
upper bound for the delay can be obtained which can be used
for the scaling. The only difficulty with the treatment of state-
dependent delays using this method is that the dependence of
the delay on the state might be implicit or explicit and depend-
ing on the particular case, we might end up with a nonlinear
algebraic equation for the definition of the delay. This results
in a set of differential algebraic equations (DAEs) whose sta-
bility and bifurcation analysis is not as easy as the study of
ODEs. An alternative procedure to handle variable delays
based on dynamic scaling of the time variable in the delayed
interval which circumvents the above-mentioned difficulty
for state-dependent delays will be presented in Sect. 5.

First we present the application of this approach to the
case of time-periodic and random delays in the next two sec-
tions. In the next section, we present some stability results
obtained for a single degree of freedom (SDOF) model for
tool vibration in turning with periodically modulated spindle
speed.

3 A SDOF model of turning with varying spindle speed
as an illustrative example for periodic delays

A schematic of the turning process in 3-D, and a 2-D pro-
jection of the same on the x − y plane, are shown in Fig. 2.
The tool travels along the negative x-axis with a constant
nominal feed rate of C0 (length units/revolution). The chip
width w is the depth of cut in this cutting process, and is

k

c

C(t)

x(t)

m

tool travel

tool travel

ro
ta

tio
n

Ω
workpiece
movement

x

y

z

Fig. 2 A simple single degree of freedom model for tool vibrations

along the negative z-axis. The tool and tool-holder assembly
is approximated by a single degree of freedom spring-mass-
damper system in the x direction with coefficients k, m and c,
respectively. Let the instantaneous chip thickness be denoted
by C(t). The equation of motion for the tool about the steady-
state deflection is usually given as [41–43]

m ẍ(t) + c ẋ(t) + k x(t) = Fx (C(t)) − Fx (C0). (13)

Alternately, we can write

ẍ(t) + 2 ζ ωn ẋ(t) + ω2
n x(t) = Fx (C(t))

m
− Fx (C0)

m
, (14)

where ωn =
√

k

m
is the natural angular frequency of the tool

and ζ = c

2
√

m k
is the damping ratio. Using the power law

model of Taylor [44]

Fx (C(t)) = K w C(t)3/4,

where w is the chip width and K incorporates the depen-
dence on other cutting parameters like cutting velocity, nom-
inal feed, tool geometry etc., all assumed constant for our
analysis, we get

ẍ(t) + 2 ζ ωn ẋ(t) + ω2
n x(t) = K w

m
C(t)3/4 − K w

m
C3/4

0 ,

(15)

Equation (15) provides the basic model for the tool-workpiece
dynamics. The instantaneous chip thickness due to tool vibra-
tions is defined by

C(t) = C0 + x(t − τ(t)) − x(t),

where τ(t), the time delay is the time taken for the workpiece
to complete one revolution. Note that the time taken for one
revolution is no longer a constant since the spindle speed is
varying. Using the above definition of the instantaneous chip
thickness and linearizing about the nominal chip thickness,
we have the linearized model for tool vibration as
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ẍ(t)+2 ζ ωn ẋ(t)+ω2
n x(t) = P (x(t − τ(t)) − x(t)) , (16)

where P = 3 K w

4 m C1/4
0

.

If the modulation of the spindle speed is represented as

�(t) = �0 + �1 cos(ωmt), (17)

where �0 is the mean value of the spindle speed, �1 is the
amplitude of the modulation and ωm is the angular frequency
of the modulation, it has been shown in [10] that for small
�1, the time taken to complete one revolution τ(t) can be
approximated fairly accurately by the function

τ(t) ≈ τ0 − τ1 cos(ωm t), (18)

where τ0 = 2π

�0
and

τ1

τ0
= �1

�0
. Accordingly the time period

of modulation which is also the time-period of the delay τ(t)

is given as T = 2π

ωm
.

Substituting Eq. (18) for τ(t) in Eq. (16) and introducing
the dimensionless time t̃ = ωnt , we get the dimensionless
linearized equation of motion as

ẍ(t̃)+2 ζ ẋ(t̃)+x(t̃)= P̃
(
x(t̃ − τ̃0 + τ̃1 cos(ω̃mt̃))−x(t̃)

)
,

(19)

where P̃ = P

ω2
n

= 3 K w

4 m C1/4
0 ω2

n

is the dimensionless chip

width, τ̃0 = ωnτ0 is the dimensionless mean delay, τ̃1 =
ωnτ1 is the dimensionless delay amplitude and ω̃m = ωm

ωn
is

the dimensionless modulation frequency. Next we introduce
the modulation amplitude ratio (as in [10])

Ra = τ̃1

τ̃0
= τ1

τ0
(20)

and the ratio of the modulation time period and the mean
time delay as

Rm = T̃

τ̃0
= 2π

ω̃m τ̃0
= 2π

ωm τ0
(21)

With the introduction of the above two ratios in Eq. (19)
and dropping the tildes with abuse of notation (for notational
convenience), we obtain

ẍ(t) + 2 ζ ẋ(t) + x(t)

= P

(
x

(
t − τ0

(
1 − Ra cos

(
2π t

Rmτ0

)))
− x(t)

)
.(22)

We now need to set Eq. (22) in the framework of the pro-
cedure presented in Sect. 2. Accordingly we scale time as

t̄ = t

τ0(1 + Ra)
which modifies Eq. (22) to

x ′′(t̄) + 2 ζ τ0 (1 + Ra) x ′(t̄) + τ 2
0 (1 + Ra)2 x(t̄)

= τ 2
0 (1 + Ra)2 P

(
x

(
t̄ − 1

1 + Ra
(1

−Ra cos

(
2π(1 + Ra)t̄

Rm

)))
− x(t)

)
. (23)

Now substituting the approximation for x(t̄) = F(t̄, 0) ≈
a0(t̄) and

x

(
t̄ − 1

1 + Ra

(
1 − Ra cos

(
2π(1 + Ra)t̄

Rm

)))

= F

(
t̄,

1

1 + Ra

(
1 − Ra cos

(
2π(1 + Ra)t̄

Rm

)))

in Eq. (23) yields

a0
′′(t̄) + 2 ζ τ0 (1 + Ra) a0

′(t̄) + τ 2
0 (1 + Ra)2 a0(t̄)

= P

(
a1(t̄)

1 + Ra

(
1 − Ra cos

(
2π(1 + Ra)t̄

Rm

))

+
N−2∑

k=1

ak+1(t̄) sin

(
kπ

1 + Ra
(1

−Ra cos

(
2π(1 + Ra)t̄

Rm

))))
τ 2

0 (1 + Ra)2 , (24)

where again N is a finite number representing the order of
our approximation. Equation (24) along with Eqs. (9) and
(10) constitute our finite-dimensional linear model for turn-
ing with periodic spindle speed modulation.

For illustration, we consider the stability charts for the
parameter values ζ = 0.03, Ra = 0.25 and Rm = 0.4
which was considered by Jayaram et al. [5] and Insperger
and Stépan [10]. The stability chart (the parameters P and
�0 corresponding to the absolute value of the largest Floquet
multiplier equal to 1) for these parameter values for different
values of N is shown in Fig. 3 along with the results from
direct numerical simulations. The results from direct numer-
ical simulations have been included in this figure because
there was a disagreement between the stability charts for
these parameters obtained using semi-discretization [14] by
Insperger and Stépán [10] and those obtained using Harmonic
balance combined with Bessel functions by Jayaram et al. [5].
Our stability chart matches the one presented in Insperger and
Stépán [10] wherein there are slanting stability lobes for these
parameter values. Details of the procedure followed to obtain
the stability charts using direct numerical simulation can be
found in [40]. The match of the stability boundaries from the
ODE approximation with the boundary obtained from direct
numerical simulation improves with an increase in N . For
the range of �0 considered in Fig. 3, we note that the small-
est number N required to properly represent the solution in
the maximum delayed interval is around 20. Accordingly we
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Fig. 3 Left Stability chart for turning with periodic spindle speed mod-
ulation for the parameters ζ = 0.03, Ra = 0.25 and Rm = 0.4. The
stability chart is shown for �0 in rpm which translates to �̃0 using
the natural frequency of the tool as fn = 100 Hz. The approximation

parameter N has been chosen to be 20, 30, 40 and 50. Right A zoomed
view of the boxed region in left clearly demonstrating the variation of
the stability boundary with varying N

have started from N = 20. It can be seen that the qualitative
nature of the stability diagram has been captured well with
N = 20 but the quantitative match is not very good. N = 30
improves the match but leads to an overestimate of the stable
regions for higher P values. The quantitative match is very
good for N = 40 and N = 50 as can be seen clearly from a
zoomed view of the boxed region shown in the right figure of
Fig. 3.

Continuing further, we present some more stability results
which are different from the ones reported in Insperger and
Stépán [10] wherein the modulation amplitude ratio Ra was
fixed to 0.1 and the modulation period ratios Rm varied over
a range of values from 2 to 20. In physical cases, it might
be more realistic to assume that the modulation time period
T is a constant for the system which induces the modula-
tion of the spindle speed. A series of stability charts with
modulation amplitude ratio Ra varying from 0.01 to 0.2
for a fixed modulation time period T = 1 is shown in
Fig. 4.

For Ra = 0.01, it can be seen in Fig. 4a that the stability
charts for turning with periodic spindle speed modulation and
conventional turning are almost coincident. This is expected
since the periodic variation in the spindle speed is very small.
From Fig. 4, it can be seen that the stable region increases as
the modulation amplitude ratio Ra is increased. However, it
can be seen from Fig. 4d that for larger modulation amplitude
ratio Ra , regions in the parameter space which were stable
for conventional cutting become unstable in the presence of
periodic modulation of the spindle speed. Hence, it can be
concluded that periodic modulation of the spindle speed leads
to an increase in the chatter-free region but caution has to be
taken in choosing the right parameters for the modulation

depending on the nominal operating range. At this point, we
would like to note that the value of the modulation time period
of 1 may not be physically realizable due to the requirement
of very high acceleration and deceleration from the modu-
lation system. However, the trends obtained for increasing
Ra remain the same for different values of T as shown in
[40].

In the next section, we consider the effect of a random
variation of the spindle speed about a nominal value on the
stability boundary as considered by Yilmaz et al. [32].

4 A SDOF model for turning with the spindle speed
having a random variation

We will only be interested in the linearized model for machine
tool vibration as presented earlier

ẍ(t) + 2 ζ ẋ(t) + x(t) = P (x(t − τ(ξ, t)) − x(t)) , (25)

where τ(ξ, t), the time taken for the workpiece to com-
plete one revolution is random in nature similar to one
of the case considered in [32]. For this study, we con-
sider the delay to be uniformly distributed in the interval
[τ0 (1 − Ra) , τ0 (1 + Ra)], i.e.,

τ(ξ, t) ≈ τ0 [1 + Ra (1 − 2 ξ(t, h))] ,

with ξ(t, h) ∈ [0, 1], (26)

where τ0 = 2 π

�0
represents the nominal time taken for one

revolution in the non-dimensional time and ra represents
the amplitude modulation ratio as in the previous section.
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Fig. 4 Stability charts for
turning with periodic spindle
speed modulation for the
parameters ζ = 0.03, T = 1,
ωn = 200 π and a Ra = 0.01,
b Ra = 0.05, c Ra = 0.1,
d Ra = 0.2. The approximation
parameter N is 22 in each case
resulting in a 23 × 23 transition
matrix
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Note that the delay variation is as considered in [32] but
written in a slightly different form to better suit the pre-
sentation in this paper. The variable ξ(t, h) can take any
value in the interval specified above with equal probabil-
ity at any instant of time t . However, once ξ(t, h) assumes
a value, it remains constant for a holding time of h. For
simplicity we have chosen h = 1. We note that Yilmaz et
al. [32] restricted themselves to finitely many possibilities
for the time-delay in accordance with the time-step used in
their time-discretization to convert the DDE into discrete
maps. However, since our approximation does not involve
any discretization of time, we have not put any restric-
tion on the admissible values for the time-delay. However,
to ensure solvability of the equation, we restrict the num-
ber of instances of changes in values of the time-delay.
If the delay changes at every instant of time, ẍ(t) from
Eq. (25) will not be continuous anywhere and hence, is
not integrable in the Riemmanian sense which is the basis
for most numerical schemes for solving differential equa-
tions. Accordingly, the numerical solution for x(t) and ẋ(t)
is meaningless. From the practical view point as well, the
delay value cannot be changed at every time instant and
any change becomes effective only after a certain response
time which is denoted by the holding time in our system. A
typical realization of the delay evolution for τ0 = 2π and
Ra = 0.1 for the time interval [0, 30] and [70, 100] is shown
in Fig. 5.

70 80 90 100
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τ

0 10 20 30
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6

6.5

7

time

τ

Fig. 5 A typical realization of the random time delay at two different
time windows

We again scale time in Eq. (22) as t̄ = t

τ0(1 + Ra)
(and

drop the bar for notational convenience) to get

x ′′(t) + 2 ζ τ0 (1 + Ra) x ′(t) + τ 2
0 (1 + Ra)2 x(t)

= τ 2
0 (1 + Ra)2 P (x(t − τ(ξ, t)) − x(t)) , (27)

where the delay in the rescaled time is

τ(ξ, t) = τ0 [1 + Ra (1 − 2 ξ(t, h))] . (28)
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From Eqs. (3) and (5), we have

x(t − τ(ξ, t)) = F(t, τ (ξ, t)) ≈ a0(t) + a1(t) τ (ξ, t)

+
N−2∑

k=1

ak+1(t) sin(kπτ(ξ, t)) (29)

for i = 1, 2, . . . , n where we substitute for τ from Eq. (28).
Again the random delay translates into random coefficients in
our approximation. In addition, we have x(t) ≡ F(t, 0) =
a0(t). Substituting for x(t) = a0(t) and x(t − τ(ξ, t)) from
Eq. (29) into Eq. (27) yields

ä0(t) + 2 ζ τ0 (1 + Ra) ȧ0(t) + τ 2
0 (1 + Ra)2 [a0(t)

−P

(

a1(t) τ (ξ, t) +
N−2∑

k=1

ak+1(t) sin(kπτ(ξ, t))

)]

= 0.

(30)

Equations (30), (9) and (10) constitute N ODEs governing
the evolution of the variables ai (t) and can be written in the
form

Aȧ + B(τ (ξ, t))a = 0, (31)

where A and B are N + 1 × N + 1 matrices, a =
[ȧ0, a0, a1, a2, . . . , aN ]T , and 0 represents the N +1 dimen-
sional zero vector. The last N − 1 rows of both A and B are
determined by Eqs. (9) and (10) and can be evaluated once
and for all, independent of the specific DDE. The first row
of the matrix B is the only row that depends on the specific
DDE and hence, involves random coefficients.

Before proceeding further, a note regarding the smooth-
ness of the solutions for Eq. (25) and that obtained from the
reduced set of equations (Eqs. (30), (9) and (10)) is due. We
first observe from Eq. (25) that ẍ(t) will have discontinuities
since τ and consequently x(t − τ) varies discontinuously
after each time-increment of h. However, x(t) and its first
derivative ẋ(t) are continuous and can be reliably obtained
for any realization of τ(ξ, t). This implies that there is a
meaningful solution x(t) to the differential equation repre-
sented by Eq. (25). However, the issue of discontinuities in
derivatives raises concerns about the validity of the Galerkin
projection. At this point, we note that discontinuities in the
DDE does not affect our Galerkin projection technique since
the projection is applied on the PDE governing the evolution
of the bivariate function F(t, s) in the domain as shown in
Fig. 1. The DDE only provides the boundary condition for
this PDE and discontinuities in the boundary conditions do
not put restrictions on the projection. We further note that
the bivariate function F(t, s) represents the solution to the
DDE only and hence will have the same level of smooth-
ness as the solution to the original DDE, i.e., a discontinuous
second derivative. Our approximation for F(t, s) has func-
tions which are infinitely smooth and hence, we only get an

approximation to the solution. The solutions obtained from
our approximation as well as from direct numerical integra-
tion of Eq. (25) for the same realization of τ(t) showed a very
good correspondence with each other giving us confidence
in our reduced system of equations.

Next, we study the stability of the reduced system of sto-
chastic ODEs using Lyapunov exponents [34]. The Lyapunov
exponent has also been evaluated from a direct integration
of the delayed equation using a fixed-step size DDE solver
reported in [16] with appropriate modifications to handle a
random bounded variation in the delay. To avoid numerical
errors due to largeness or smallness of x(t), the entire history
of the solution is scaled after a specific time interval (typically
1/5 times the nominal delay) to make the maximum value of
x(t) to be 1. The slope of a linear fit between time t and a
cumulative sum of the logarithm of the scaling factor gives
us an estimate for the largest Lyapunov exponent. A positive
slope implies unstable equilibrium with an average growth of
the perturbation while negative slope implies average decay
of the perturbation and hence, stable equilibria. A similar
procedure has been repeated with the system of stochastic
ODEs. The results obtained for both the approaches are very
similar but here we present the results for the approximate
set of ODEs only. For the set of ODEs, the solution at each
time step is known analytically in closed form and hence the
computation is much faster. The numerical integration is per-
formed till a non-dimensional time of 5000 starting with a
random initial condition. The solution for the first 200 time
units are discarded as transients and for the remaining time,
we fit a linear curve to the consecutive extrema of the solu-
tion whose slope gives us the average rate of growth or decay
(the average Lyapunov exponent). Care has been taken to
renormalize the magnitude of the solution after every 4 time
units to avoid numerical inaccuracies because of the solu-
tions becoming very small or very large. For each combina-
tion of τ0 and P for a given Ra , this calculation is repeated
for 20 different realizations of the random time-delay and an
average Lyapunov exponent over these realizations is taken
to represent the Lyapunov exponent at that combination of
the parameter values. The contour of zero Lyapunov expo-
nents in the relevant parameter plane represents the stability
boundary of our system.

The stability boundaries in the P − τ0 plane so obtained
for ζ = 0.02 have been presented in Fig. 6 for Ra = 0.01
and Ra = 0.1. Similar to the case of periodic delays we
notice from Fig. 6 that the stability charts for turning with
random spindle speed modulation and conventional turning
are almost coincident for Ra = 0.01 which is attributable
to the fact that variation in the spindle speed is very small.
However, for Ra = 0.1, there is a significant enlargement of
the stable regions in Fig. 6 implying that a random change
of the spindle speed caused by various factors during actual
turning operation by around 10% has a stabilizing effect on
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Fig. 6 Stability charts for turning with random spindle speed modulation for ζ = 0.02, ωn = 200 π and left Ra = 0.01, right Ra = 0.1. The
approximation parameter N is 50 in each case resulting in a 51 × 51 transition matrix

the process. A detailed investigation of the overall effect has
been left for future work.

We next present an alternative approach to handle variable
delays which requires no apriori bound on the time-delay
but requires the first time-derivative of the delay to exist.
It is especially suited for system of state-dependent delays
especially when the delay is implicitly defined.

5 An alternate approach for DDEs with variable delays
involving dynamic rescaling

In this section, we will consider a DDE with a variable delay
of the form

ẏ(t) = f (t, τ, y(t), y(t − τ)) , for t > 0, and xs(0)

≡ x(−s) = X (s), s ∈ (0, τ (0)], (32)

where X (s) is a given “initial function”. The dependence of
the delay τ on the time t is defined by

g (τ, t, y(t), y(t − τ)) = 0. (33)

The above general form for the determination of the delay
encompasses most cases of variable delays including the peri-
odic as well as state-dependent delays. Note from Eqs. (32)
and (33) that the calculation of the evolution of y(t) will
require tracking the solution over an immediately preceding
interval of time [t, t − τ ]. Accordingly, we define a local
variable s ∈ [0, 1] (as in [16,17]) but to account for the vari-
ability in the time delay we scale the s-domain by τ to get an
instantaneous time interval [0, τ ]. In this scaled time interval,
we define a bivariate function F(t, s) which coincides with
the function y(t) as

F(t, s) = y(t − s τ) , s ∈ [0, 1]. (34)

In the interior of the s-domain, Eq. (34) leads us to the equa-
tion

τ
∂ F

∂t
+

(
1 − s

dτ

dt

)
∂ F

∂s
= 0. (35)

Note from Eq. (35) that for this alternate approach to be valid,
we require the delay τ to be at least once differentiable w. r. t.
t which in turn requires the function g in Eq. (33) as well as
the solution y(t) to be sufficiently smooth as well. Following
[16,17], we approximate this bivariate function F(t, s) as

F(t, s) ≈ a0(t) + a1(t) s +
N−2∑

k=1

ak+1(t) sin(kπs). (36)

From Eqs. (34) and (36), we have y(t) = F(t, 0) ≈ a0(t)
and y(t −τ) = F(t, 1) ≈ a0(t)+a1(t) which on substitution
in Eqs. (32) and (33) gives us the evolution equations for
a0(t) and τ . The evolution equations for the remaining ai ’s
is obtained by substituting Eq. (36) in Eq. (35) and making the
residue orthogonal to the relevant shape functions. This gives

1∫

0

{

τ

(

ȧ0(t) + ȧ1(t) s +
N−2∑

k=1

ȧk+1(t) sin(kπs)

)

+
(

1 − s
dτ

dt

)

(

a1(t) +
N−2∑

k=1

ak+1(t)kπ cos(kπs)

)}

· s ds = 0, (37)

1∫

0

{

τ

(

ȧ0(t) + ȧ1(t) s +
N−2∑

k=1

ȧk+1(t) sin(kπs)

)

+
(

1 − s
dτ

dt

)

(

a1(t) +
N−2∑

k=1

ak+1(t)kπ cos(kπs)

)}

· sin(mπs) ds = 0, (38)
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Fig. 7 A schematic representation of the dynamic rescaling to convert
the variable s-domain to a fixed domain [0, 1]

for m = 1, 2, . . . , N −2. The system of equations, Eqs. (32),
(33), (37) and (38) defines our finite-dimensional system.
We further note that Eq. (33) is an algebraic equation while
Eqs. (32), (37) and (38) are ODEs resulting in a system of
differential-algebraic systems (DAEs). However, due to this
scaling the value of the solution at the delayed instant has a
very simple representation and for most cases like the exam-
ple considered in this paper for the state-dependent delay, we
can solve Eq. (33) for the delay τ in terms of the ai ’s resulting
in a system of ODEs only. We note that this alternate pro-
cedure has already been reported in [38,39]. The dynamic
rescaling scheme presented in this section is represented pic-
torially in Fig. 7.

We note further that this approach can also be used for
cases of periodic as well as random delays. However, the
resulting system of equations will have time-periodic coef-
ficients or random coefficients in Eqs. (37) and (38) which
amounts to almost the entire system of equations as opposed
to the approach presented in Sect. 2 where these terms were
restricted only to Eq. (7). As a result of this, the computations
required to obtain the stability matrix becomes more involved
and hence, this approach is not desirable for time-periodic
delays. Moreover, for the case of random delays, the differ-
entiability requirement of the time-delay τ need not be valid,

e.g., the delay could be considered to be white noise in which
case it is not differentiable. Therefore, the approach in this
section is best suited for the case of a state-dependent delay. In
the next section, we present the application of this alternative
approach to the state-dependent delayed model for regen-
erative turning proposed by [35] and studied numerically
in [36].

6 A state-dependent delay model for turning

The non-dimensionalized 2-DOF model for regenerative
turning process with a state-dependent delay (see [35,36]),
considering vibrations along the x and y axis of Fig. 2, is:

ẍ(t)+2 ζ ẋ(t)+x(t)= 1

kr
K1 ρq−1

(
τ

τ0
+y(t−τ)−y(t)

)q

,

(39)

ÿ(t)+2 ζ ẏ(t)+y(t)= K1ρ
q−1

(
τ

τ0
+y(t−τ)−y(t)

)q

,

(40)

where kr = Fy/Fx is the cutting force ratio, K1 is the dimen-
sionless depth of cut, ρ is the dimensionless feed rate, τ0 is the
time-period of one revolution which is inversely proportional
to the scaled spindle speed �/ωn (ωn being the natural fre-
quency of the tool-workpiece assembly) and q is the cutting
force exponent (a measure of the nonlinearity in the cutting
force). In the above, we have used the equivalent stiffness
and the damping coefficient in the x and the y direction to
be identical. The time-delay τ in Eqs. (39) and (40) is deter-
mined implicitly by the equation

τ

τ0
= 1 + ρ (x(t) − x(t − τ)) . (41)

We first note that a substitution of x(t) = y(t)/kr in Eq.
(39) reduces it identically to Eq. (40). Hence, this 2-DOF
system can effectively be studied as a SDOF system in the y-
coordinate alone, i.e., Eq. (40), with the equation determining
the delay modified to

τ

τ0
= 1 + ρ

kr
(y(t) − y(t − τ)) . (42)

Substituting the approximation for y(t) and y(t − τ) as
described in Sect. 5 in Eq. (42), we get

τ

τ0
= 1 − ρ

kr
a1(t). (43)

We next substitute Eq. (43) for τ and the approximations for
y(t) and y(t − τ) in Eq. (40) to get

ä0(t)+2 ζ ȧ0(t)+a0(t)= K1ρ
q−1

(
1+ kr − ρ

kr
a1(t)

)q

,

(44)
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A final substitution of Eq. (43) in Eqs. (37) and (38) com-
pletes out finite-dimensional system of ODEs. The system of
ODEs, Eqs. (44), (37) and (38) can now be used to generate
the relevant stability diagram and the bifurcation diagrams
for the state-dependent delay turning model as presented in
[35,36]. Complete results wherein we have continued the
branch of limit cycles arising due to the Hopf bifurcation till
the point of loss of contact (furthering the bifurcation dia-
grams in [36]) and more results have been reported in [39].
Here we present only a few of these results.

Figure 8 compares the stability chart and the frequencies at
the Hopf points obtained using the ODE approximation with
N = 20 and the analytical results obtained in [35] and [37]
for kr = 0.3, ζ = 0.02, ρ = 0.1 and q = 3/4. It can be seen
that the match is very good. Detailed procedure for obtaining
the stability chart has been reported in [39]. In summary, the
system of equations, Eqs. (44), (37) and (38) are first solved
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Fig. 8 Stability chart and frequencies at the Hopf bifurcation point for
kr = 0.3, ζ = 0.02, ρ = 0.1 and q = 3/4 from the ODE approximation
with N = 20. Also shown are the results obtained analytically in [35]
and [37]. The match is quite good
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for the steady-state solution, and a subsequent linearization
about this steady state gives us the matrix whose eigenvalues
determine the stability properties of the system. The char-
acteristic equation for this matrix is obtained and conditions
on the system parameters corresponding to a purely imag-
inary eigenvalues are obtained to obtain the stability chart.
We note here that we had to resort to numerical root finding
using Newton-Raphson in conjunction with a continuation
scheme to obtain the stability boundary.

Having established the accuracy of the ODE approxi-
mation through the linear stability analysis above, we use
the system of ODEs, Eqs. (44), (37) and (38) for nonlinear
bifurcation analysis. The bifurcation diagram for kr = 0.3,

ζ = 0.02,
�

ωn
= 1.2566 and q = 3/4 is shown in Fig. 9

which matches very well with a similar figure presented in
[36] for the same system parameters. These bifurcation dia-
grams have been generated using a code developed for this
purpose by the author in the platform MATLAB based on
obtaining limit cycles as roots of an appropriately defined
map and continuation as reported in [17,45]. It can be seen
from the figure that the nature of the bifurcation changes from
subcritical to supercritical with an increase in ρ, consistent
with the numerical observation in [36] and the analytical
observation in [37].

7 Conclusions

Galerkin projection has been used to obtain finite dimen-
sional ODE approximations of DDEs with variable delays.
Two different strategies for handling variable delays in the
Galerkin projection scheme has been presented. Effective-
ness of these strategies in studying the stability and bifurca-
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tion behavior of systems with three different kinds of vari-
able delays viz. the periodic delay, random delay and state-
dependent delay has been demonstrated. It has been shown
that embedding of the variable delay with a known upper
bound in a fixed delayed domain is best for periodic and
random delays. The stability boundaries obtained using the
finite-dimensional ODE approximations matches very well
with those obtained from full numerical simulations. For
the case of a state-dependent delay, the strategy of dynamic
scaling of the delayed time to convert the variable delayed
interval into a fixed interval works quite well. The results
obtained from the approximation for the example of a state-
dependent delay model of turning are in close agreement
with the previous results reported for this problem in the
literature. The bifurcation diagrams obtained for the state-
dependent delayed example also show a good correspon-
dence with existing results. In summary, Galerkin projection
as presented in this paper is a useful tool to obtain finite-
dimensional ODE approximations for systems with variable
delays which can be used to extract stability and bifurcation
behavior of these delayed systems.
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