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Abstract The characteristic function of a system with three
scalar delay channels contains cross terms of different delays.
This article studies the parameterization and geometric struc-
ture of the stability crossing set (the set of delay combi-
nations with at least one characteristic root on the imagi-
nary axis) for such systems. Understanding the structure of
this set is crucial to the identification of stable regions in
the delay parameter space using the D-subdivision method.
The presence of the cross terms significantly complicates the
analysis, and requires a quite different method than the case
without these cross terms, and it involves more numerical
computation.

Keywords Time delay · Differential-difference equations ·
Stability · Quasipolynomial

1 Introduction

This article studies the stability problem of time-delay sys-
tems with characteristic quasipolynomial

�(s) = p0(s)+ p1(s)e
−τ1s + p2(s)e

−τ2s + p3(s)e
−τ3s

+p12(s)e
−(τ1+τ2)s + p23(s)e

−(τ2+τ3)s

+p31(s)e
−(τ3+τ1)s + p123(s)e

−(τ1+τ2+τ3)s, (1.1)
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where p0(s), pk(s), pkl(s), k, l = 1, 2, 3 and p123(s) are
polynomials of s with real coefficients. It is know that the
system is of retarded type if the order of p0(s) is higher than
all the other coefficient polynomials. If at least one of them
have the same order as p0(s), then the system is of neutral
type. If the order p0(s) is lower than at least one of the other
ceofficient polynomials, then the system is always unstable
for any positive delays.

The objective of this article is to identify the set of delay
parameters (τ1, τ2, τ3) such that the system is stable. The
main focus is to parameterize and geometrically characterize
the stability crossing set, which is defined as the set of delay
combinations (τ1, τ2, τ3) such that the characteristic equation
has at least one imaginary solution. The importance of the
stability crossing set lies in the following fact: For a large
class of systems, the roots of the characteristic equation

�(s) = 0 (1.2)

in a neighborhood of the imaginary axis and on the right
half plane are continuous functions of the delays (τ1, τ2, τ3).
Therefore the stability crossing set divides the three-
dimensional delay parameter space into regions such that the
number of right-half-plane roots is fixed in each such region.
By studying the direction of crossing of roots at the imagi-
nary axis, the number of right-half-plane roots in each such
region can be determined, and therefore, the stable parameter
regions can also be determined as a special case.

The stability analysis based on the above principle is
known as the D-subdivision method (also known as the
D-decomposition or D-partition method). The readers are
referred to the survey paper [1] by Gryazina, et al., for a com-
prehensive review on this subject. D-subdivision method is
especially important for time-delay systems as direct stabil-
ity analysis using, for example, the Pontryagin’s Theorem [2]
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is very difficult to carry out in practice. The D-subdivision
method for time-delay systems was developed by Neimark
[3], and the English coverage of the method can be found
in the book [4] by El’sgol’ts and Norkin. A rich collection
of D-subdivision analysis in the form of stability charts can
be found in the book [5] by Stépán, which also considers
systems with distributed delays.

The validity of D-subdivision method requires the conti-
nuity of characteristic roots in a neighborhood of the imag-
inary axis and on the right half plane. This is automatically
satisfied for systems of retarded type [6]. However, this is
not necessarily the case for systems of neutral type with
multiple delays. Such discontinuity is intimately related to
the behavior of the difference equations of continuous time,
as documented in [7] and [8]. Such discontinuity has been
responsible for such surprising phenomena as the wellposed-
ness or stability at small delays [9,10], instability of Smith
predictor due to delay mismatch [11], and sensitivity to delay
variations in the discrete implementation of distributed delay
feedback control [12,13]. A review and unified discussion of
these phenomena can be found in [14].

In practice, the application of the D-subdivision method
is not trivial when it is used to analyze systems with multiple
delays. See, for example, [15]. In [16], Hale and Huang give
a complete analysis of the first order differential-difference
equation with two delays, and all the stable delay parameter
regions are obtained. In the last decade or so, many analyses
have been conducted on systems with two or three delays
with various generality. Examples include systems with two
delays without cross term [17], multiple delay systems with
cross terms [18], polynomial eigenvalue approach [19], and
three variable delays with additional fixed delays [20].

The main focus of this article is to obtain explicit parame-
terization and geometric characterization of stability crossing
set of the system given in (1.1). These have been achieved for
systems with two or three delays without cross terms in [21]
and [22], respectively, and for systems with two delays with
a cross term in [23]. The case discussed here is complicated
by the presence of the cross terms such as e−(τ1+τ2)s and
e−(τ1+τ2+τ3)s involving the sums of delays in the exponents.
As will be seen later, such a system requires a very different
method that involves more numerical computation than the
cases mentioned above, although some ideas developed in
[23] are instrumental.

Similar to the two delay case, the importance of including
the cross terms can be described as follows: As argued in
[24] and implied in [9], a linear system that contains three
single-input–single-output delay elements may be described
in a feedback configuration such that the forward subsystem
does not contain any delay,

ẋ(t) = Ax(t)+ Bu(t), (1.3)

y(t) = Cx(t)+ Du(t), (1.4)

where

x(t) ∈ R
n,

u(t) =
⎛
⎝

u1(t)
u2(t)
u3(t)

⎞
⎠ ∈ R

3,

y (t) =
⎛
⎝

y1(t)
y2(t)
y3(t)

⎞
⎠ ∈ R

3,

and the feedback subsystem consists of three scalar delay
elements

⎛
⎝

u1(t)
u2(t)
u3(t)

⎞
⎠ =

⎛
⎝

y1(t − τ1)

y2(t − τ2)

y3(t − τ3)

⎞
⎠ . (1.5)

In other words, such a system can be considered as having
three scalar delay channels. After substituting (1.3) and (1.4)
by (1.5), the characteristic equation of the system can be
easily seen as

�(s) = det

⎛
⎝

s I − A | −B E(τ1, τ2, τ3)

− − − + − − − − − − − − −
−C | I − DE(τ1, τ2, τ3)

⎞
⎠ = 0,

where

E(τ1, τ2, τ3) = diag
(

e−τ1s | e−τ2s | e−τ3s
)
.

An application of the Schur determinant complement yields

�(s) = det

⎛
⎝

s I − A | −B E(τ1, τ2, τ3)

− − − + − − − − − − −
0 | M(s)

⎞
⎠

= det (s I − A) · det [M(s)] , (1.6)

where

M(s) = I −
(

D + C (s I − A)−1 B
)

E(τ1, τ2, τ3). (1.7)

An expansion of det [M(s)] shows that �(s) indeed has the
form (1.1) in general.

The remaining part of this article is organized as fol-
lows. Section 2 presents the problem setting and nontrivi-
ality assumptions. Section 3 presents local parameterization
of stability crossing set using the frequencyω and a delay τw.
Section 4 defines the valid parameter range of (ω, τw) and
makes some nondegeneracy assumptions, and presents some
implications of these assumptions. Section 5 discusses the
boundary of the valid parameter range and the classification
of each connected piece of this boundary. Section 6 discusses
constant frequency curves, which are subsets of the stabil-
ity crossing set corresponding to a fixed ω and a maximal
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τw-interval. Section 7 discusses the calculation of the cross-
ing frequency set � and its partition to maximal intervals
�h

i of different classes. Section 8 refines the classification of
�h

i . Section 9 presents the parameterization and geometric
characterization of the crossing frequency set correspond-
ing to each maximal interval �h

i of all possible types except
one. This remaing type is presented in Sect. 10. Section 11
presents an example of stability analysis using the theory
developed. Section 12 presents some concluding remarks.

2 Problem setup

Some notation used in this article is defined below. R, R
n ,

and R
n×m denote the sets of real scalars, n -dimensional

real vectors, and (n × m)-dimensional real matrices, respec-
tively. Similarly, C, C

n and C
n×m denote the corresponding

sets with complex entries. For an α ∈ C, α∗ represents its
complex conjugage, and Re(α) and Im(α) represent its real
part and imaginary part, respectively. R+ represents the set of
nonnegative real scalars, and R

n+ is the set of n -dimensional
vectors with components in R+. C+ and C− denote the sets
of complex numbers with nonnegative real parts and strictly
negative real parts, respectively. For a given set S, So repre-
sents its interior and S̄ represents its closure. For example,
R

o+ represents the set of strictly positive real numbers. We
also define the set of integers as Z, and Z

+
3 = {1, 2, 3}.

For an infinite number of objects indexed by one integer,
Qk , k ∈ Z, we say there are a series of such objects. Typi-
cally, these objects approximately line up along one direction
in the three-dimensional space. We say there are an array
of objects to refer to objects indexed by two integers, Qkl ,
k ∈ Z, l ∈ Z, and they typically line up approximately along
two directions. We say there are a lattice of objects when
referring to objects indexed by three integers, Qklm , k ∈ Z,
l ∈ Z, m ∈ Z and they typically line up approximately in
three directions.

We will also freely exchange the order of the subscripts of
the polynomials in�(s). For example, p123 may also be writ-
ten as p321 or p231, and p12 may also be written as p21. There-
fore, for arbitrary {u, v, w} = Z

+
3 , we may write (1.1) as

�(s) = p0(s)+ pu(s)e
−τus + pv(s)e

−τvs + pw(s)e
−τws

+puv(s)e
−(τu+τv)s + pvw(s)e

−(τv+τw)s

+pwu(s)e
−(τw+τu)s

+puvw(s)e
−(τu+τv+τw)s . (2.1)

The three delays (τ1, τ2, τ3) may be considered as a point
in the 3-dimensional coordinate system with coordinate unit
vectors τ 0

1, τ 0
2 and τ 0

3, and the point may be written as a
vector

τ = τuτ 0
u + τvτ

0
v + τwτ 0

w.

As� depends on both s and τ1, τ2 and τ3 , we may sometimes
denote it as �τ (s) or �τ1,τ2,τ3(s) when we want to consider
� as a function of s for the given delays, and write�(s, τ ) or
�(s, τ1, τ2, τ3) when we want to emphasize it as a function
of both s and the delays. Similar notation is also used for
other functions of s and τ .

For the sake of convenience, we say a system is “stable” to
mean it is asymptotically stable. We will restrict ourselves to
systems that satisfy the following non-triviality assumptions:

Assumption I Existence of principal term

ord(p0) ≥ ord(pu), for all u ∈ Z
+
3 ;

ord(p0) ≥ ord(puv), for all u ∈ Z
+
3 , v ∈ Z

+
3 , u �= v;

ord(p0) ≥ ord(p123),

where ord(·) denotes the order of the polynomial.

Assumption II Zero frequency restriction

p0(0)+ p1(0)+ p2(0)+ p3(0)

+p12(0)+ p23(0)+ p31(0)+ p123(0) �= 0

Assumption III Infinite-frequency restriction

1 > lim
s→∞

1

|p0(s)| [|p1(s)| + |p2(s)| + |p3(s)|
+ |p12(s)| + |p23(s)| + |p31(s)| + |p123(s)|].
The above assumptions are made to make sure the prob-

lem considered is meaningful, and are similar in spirit to the
ones made in [21,22] and [23]. If Assumption I is violated,
then it is well known that the system is unstable for arbitrary
positive delays [2,6]. If Assumption II is violated, then 0 is
a characteristic root for arbitrary delays, and therefore the
system cannot be stable for any delays. Assumption III is
automatically satisfied if the system is of retarded type. For
system of neutral type, Assumption III is a simple condition
to guarantee that the difference equation associated with this
system is stable for arbitrary positive delays. Less restrictive
conditions to guarantee the stability of the difference equa-
tions for arbitrary positive delays may be used instead of
Assumption III. Such a condition also guarentees the conti-
nuity of the characteristic roots in the neighborhood of the
imaginary axis and the right half plane. Interested readers are
referred to [7,14,25–27] for more extended discussions on
this issue.

The main focus of this study is the stability crossing set,
which is defined as follows.

Definition 2.1 The stability crossing set, denoted as T , is the
set of all (τ1, τ2, τ3) ∈ R

3+ such that �τ1,τ2,τ3(s) = 0 has at
least one solution on the imaginary axis. An ω > 0 is known
as a crossing frequency if there exists a delay combination
(τ1, τ2, τ3) ∈ R

3+ such that

�( jω, τ1, τ2, τ3) = 0. (2.2)
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The set of all such ω is known as the crossing frequency set,
and is denoted as �. For any given set � ⊂ R

o+, we define
T� as the set of (τ1, τ2, τ3) ∈ R

3 such that (2.2) is satisfied
for some ω ∈ �. Especially, when � is a singleton {ω} , we
may write Tω instead of T{ω}.

Note that it is not necessary to consider ω < 0 due to the
fact that (2.2) is satisfied if and only if

�(− jω, τ1, τ2, τ3) = 0.

Assumption II also excludes the possibility of ω = 0 as a
crossing frequency. Therefore, it is sufficient to restrict � ⊂
R

o+. Obviously,

T� �= ∅

if and only if

� ∩ � �= ∅.

Noted also that while T is restricted to R
3+, T� and Tω

are not. As is well known [6], the system may not be stable
if (τ1, τ2, τ3) /∈ R

3+, and therefore, T is of practical mean-
ing only in R

3+. On the other hand, the solutions to (2.2) for
a given ω have some repetitive pattern that is more conve-
niently described if no such restriction is imposed. With this
convention in mind, we have the following relation

T = T�
⋂

R
3+ =

⋃
ω∈�

Tω
⋂

R
3+.

For a givenw ∈ Z
+
3 , we may useω and τw to parameterize

T . For u and v such that {u, v, w} = Z
+
3 , such a parameter-

ization means finding all the pairs (τu, τv) such that (2.2) is
satisfied.

Definition 2.2 For a given w ∈ Z
+
3 , and a parametric pair

(ω, τw) ∈ R
o+ × R,

T (w)
ω,τw

=
{
(τ1, τ2, τ3) ∈ R

3

| (2.2) is satisfied for the givenτw and ω
}
.

A pair (ω, τw) is known as a valid parametric pair if T (w)
ω,τw �=

∅. The set of all valid parametric pair is known as the valid
parameter range, and is denoted as �(w).

It should be noted that the crossing frequency set � is
independent of which delay τw is used withω to parameterize
T . On the other hand, a different choice ofw in general gives
a different valid parameter range �(w).

3 Reduced form and associated function

For any {u, v, w} = Z
+
3 , we may write�(s) in the following

w-reduced form

�(s, τ ) = p(w)0 (s)+ p(w)u (s)e−τus + p(w)v (s)e−τvs

+p(w)uv (s)e
−(τu+τv)s, (3.1)

where

p(w)0 (s) = p0(s)+ pw(s)e
−τws, (3.2)

p(w)u (s) = pu(s)+ pwu(s)e
−τws, (3.3)

p(w)v (s) = pv(s)+ pwv(s)e
−τws, (3.4)

p(w)uv (s) = puv(s)+ pwuv(s)e
−τws . (3.5)

Obviously, the functions defined in (3.2) to (3.5) depend on
τw. Similar to the case of �(s), such dependence may be
expressed explicitly. For example, we may write p(w)u,τw (s)

or p(w)u (s, τw) instead of p(w)u (s). It is also instrumental to
define the following w-associated function

�(w)(s) = P(w)0 (s)+ P(w)u (s)e−τus + P(w)v (s)e−τvs, (3.6)

where

P(w)0 (s) = p(w)uv (s)p
(w)
uv (−s)− p(w)0 (s)p(w)0 (−s), (3.7)

P(w)u (s) = p(w)uv (s)p
(w)
v (−s)− p(w)u (s)p(w)0 (−s), (3.8)

P(w)v (s) = p(w)uv (s)p
(w)
u (−s)− p(w)v (s)p(w)0 (−s). (3.9)

A useful fact that can be easily verified by direct calculation
is
∣∣∣P(w)v ( jω)

∣∣∣2 −
∣∣∣P(w)u ( jω)

∣∣∣2 = P(w)0 ( jω)

[∣∣∣p(w)u ( jω)
∣∣∣2

−
∣∣∣p(w)v ( jω)

∣∣∣2
]
. (3.10)

Note that there is no cross term with exponent involving
τu + τv in �w(s). Similar to the case discussed in [23], the
equation

�(w)( jω, τ1, τ2, τ3) = 0 (3.11)

is closely related to the Eq. (2.2) with�(s) written in the w-
reduced form (3.1). A significant advantage of working with
�(w)(s) is the fact that the three terms of �(w)( jω) may be

viewed as three vectors with lengths
∣∣∣P(w)0 ( jω)

∣∣∣ ,
∣∣∣P(w)u ( jω)

∣∣∣
and

∣∣∣P(w)v ( jω)
∣∣∣, respectively, in the complex plane. This fact

is instrumental in the proof of the folloiwng proposition.

Proposition 3.1 If ω and τw is such that

P(w)0 ( jω) �= 0, (3.12)

then (2.2) is satisfied if and only if (3.11) is satisfied. Under
the condition (3.12), there exists a pair (τu, τv) to satisfy (2.2)
if and only if
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2
∣∣∣P(w)u ( jω)

∣∣∣ ≥
∣∣∣∣P(w)0 ( jω)−

[∣∣∣p(w)u ( jω)
∣∣∣2

−
∣∣∣p(w)v ( jω)

∣∣∣2
]∣∣∣∣ , (3.13)

or equivalently

2
∣∣∣P(w)v ( jω)

∣∣∣ ≥
∣∣∣∣P(w)0 ( jω)+

[∣∣∣p(w)u ( jω)
∣∣∣2

−
∣∣∣p(w)v ( jω)

∣∣∣2
]∣∣∣∣ . (3.14)

Furthermore, the solutions to (2.2) can be expressed as

τu = τ ku±
u (ω, τw) = � P(w)u ( jω)± θu + (2ku − 1)π

ω
,

ku = 0,±1,±2, . . . ; (3.15)

τv = τ kv±
v (ω, τw) = � P(w)v ( jω)∓ θv + (2kv − 1)π

ω
,

kv = 0,±1,±2, . . . ; (3.16)

where

θu = arccos

⎛
⎜⎜⎝

P(w)0 ( jω)−
[∣∣∣p(w)u ( jω)

∣∣∣2−
∣∣∣p(w)v ( jω)

∣∣∣2
]

2
∣∣∣P(w)u ( jω)

∣∣∣

⎞
⎟⎟⎠ ,

(3.17)

θv= arccos

⎛
⎜⎜⎝

P(w)0 ( jω)+
[∣∣∣p(w)u ( jω)

∣∣∣2−
∣∣∣p(w)v ( jω)

∣∣∣2
]

2
∣∣∣P(w)v ( jω)

∣∣∣

⎞
⎟⎟⎠.

(3.18)

The proof may be carried out in a very similar manner to
those for Theorem 10, Proposition 5, and Proposition 15 in
[23]. A more unified proof is given below.

Proof Comparing (3.1) and (3.6), it can be verified that

�(w)( jω) = p(w)uv ( jω)e− jω(τu+τv)�(− jω)

−p(w)0 (− jω)�( jω). (3.19)

As (2.2) implies

�∗( jω) = �(− jω) = 0,

it is easily seen from (3.19) that (2.2) implies (3.11). On the
other hand, if (3.11) is satisfied, then

�(w)∗( jω) = �(w)(− jω) = 0,

and therefore,

P(w)0 ( jω)�( jω) = p(w)0 ( jω)�(w)( jω)

+p(w)uv ( jω)e− jω(τu+τv)�(w)(− jω) = 0,

which implies (2.2) under the condition (3.12). This proves
the equivalence of (2.2) and (3.11) under the condition (3.12).

Next, we will establish the equivalence of (3.13) and
(3.14). This can be done by taking square on the both sides
of (3.13) and then adding

4

(∣∣∣P(w)v ( jω)
∣∣∣2 −

∣∣∣P(w)u ( jω)
∣∣∣2
)

to both sides of the resulting inequality, and using (3.10).
The result can be easily seen as equivalent to taking square
on both sides of (3.14).

The next step is to show that (3.13) or (3.14) is necessary
and sufficient for the existence of solution for (3.11) (and
equivalently (2.2) when (3.12) is satisfied). The three terms
of �(w)( jω) in (3.6) may be viewed as three vectors in the
complex plane. The Eq. (3.11) means that these three vectors
must form a triangle when arranged from head to tail. For
ω > 0, the two vectors represented by the last two terms can
assume arbitrary orientations with appropriate choice of τu

and τv . Therefore, there exist τu and τv to satisfy (3.11) if
and only if the lengths of these vectors may form a triangle,
i.e.,
∣∣∣P(w)u ( jω)

∣∣∣ +
∣∣∣P(w)v ( jω)

∣∣∣ ≥
∣∣∣P(w)0 ( jω)

∣∣∣ , (3.20)
∣∣∣P(w)0 ( jω)

∣∣∣ +
∣∣∣P(w)v ( jω)

∣∣∣ ≥
∣∣∣P(w)u ( jω)

∣∣∣ , (3.21)
∣∣∣P(w)0 ( jω)

∣∣∣ +
∣∣∣P(w)u ( jω)

∣∣∣ ≥
∣∣∣P(w)v ( jω)

∣∣∣ . (3.22)

The first two conditions (3.20) and (3.21) together may be
equivalently written as

∣∣∣P(w)v ( jω)
∣∣∣ ≥

∣∣∣
∣∣∣P(w)0 ( jω)

∣∣∣ −
∣∣∣P(w)u ( jω)

∣∣∣
∣∣∣ .

Taking square of both sides and moving terms, we arrive at
the following equivalent inequality

2
∣∣∣P(w)0 ( jω)

∣∣∣
∣∣∣P(w)u ( jω)

∣∣∣

≥
∣∣∣P(w)0 ( jω)

∣∣∣2 +
∣∣∣P(w)u ( jω)

∣∣∣2 −
∣∣∣P(w)v ( jω)

∣∣∣2 . (3.23)

Divising
∣∣∣P(w)0 ( jω)

∣∣∣ on both sides of the above inequality

and using (3.10), we obtain

2
∣∣∣P(w)u ( jω)

∣∣∣ ≥ sgn
(

P(w)0 ( jω)
)

×
[

P(w)0 ( jω)−
(∣∣∣p(w)u ( jω)

∣∣∣2−
∣∣∣p(w)v ( jω)

∣∣∣2
)]
.

(3.24)

Therefore, (3.13) implies the first two inequalites (3.20) and
(3.21). Furthermore, If the third inequality (3.22) is satisfied,
then the right hand side of (3.23), and therefore the right
hand side of (3.24), is nonnegative. Therefore, (3.20 ), (3.21)
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Fig. 1 θu and θv are interior
angles of the triangle when
P(w)0 > 0

Fig. 2 θu and θv are exterior
angles of the triangle when
P(w)0 > 0

and (3.22) together implies (3.13). In other words, we have
established the fact that (3.13) implies the two inequalities
(3.20), (3.21), and the three inequalities (3.20), (3.21) and
(3.22) together implies (3.13). Using a similar procedure, we
can also show that (3.14) implies the two inequalities (3.20)
and (3.22), and the three inequalities (3.20), (3.21) and (3.22)
together implies (3.14). In view of the fact that (3.13) and
(3.14) are equivalent, we realize that we have shown that
either (3.13) or (3.14) is equivalent to the three inequalities
(3.20), (3.21) and (3.22), and the existence of τu and τv to
satisfy (3.11).

The final part to be proven is that all the solutions can be
expressed in (3.15) and (3.16) with θu and θv given in (3.17)
and (3.18). Define the angles θu and θv as the interior angles
of the triangle as shown in Fig. 1 when P(w)0 ( jω) > 0, and

as exterior angles as shown in Fig. 2 when P(w)0 ( jω) < 0,
and considering the two possibilities of forming a triangle

with the given lengths (the edges
∣∣∣P(w)u ( jω)

∣∣∣ and
∣∣∣P(w)v ( jω)

∣∣∣
above or below

∣∣∣P(w)0 ( jω)
∣∣∣), the expressions for τu and τv

are obvious. Using the law of cosine, θu and θv can be easily
obtained as

θu =arccos

×
⎛
⎜⎝sgn

(
P(w)0 ( jω)

)
∣∣∣P(w)0 ( jω)

∣∣∣2+
∣∣∣P(w)u ( jω)

∣∣∣2−
∣∣∣P(w)v ( jω)

∣∣∣2

2
∣∣∣P(w)0 ( jω)

∣∣∣
∣∣∣P(w)u ( jω)

∣∣∣

⎞
⎟⎠ ,

θv=arccos

×
⎛
⎜⎝sgn

(
P(w)0 ( jω)

)
∣∣∣P(w)0 ( jω)

∣∣∣2+
∣∣∣P(w)v ( jω)

∣∣∣2−
∣∣∣P(w)u ( jω)

∣∣∣2

2
∣∣∣P(w)0 ( jω)

∣∣∣
∣∣∣P(w)v ( jω)

∣∣∣

⎞
⎟⎠ ,

Using (3.10) in the above two expressions and cancelling

out
∣∣∣P(w)0 ( jω)

∣∣∣ in the numerators and the denominators, we

arrive at the expressions (3.17) and (3.18). Thus the proof is
complete. ��

We will see in the next section that the restriction (3.12)
may be removed when the system is nondegenerate.

4 Parameter range and nondegeneracy

When usingω and τw to parameterizeT , let theω-axis be hor-
izontal, and τw-axis be vertical. In this parametric space, the
condition (3.13) or (3.14) may be used to determine the valid
parameter range �(w), which consists of regions in R

o+ × R

that completely parameterize T . To be definite, we will use
(3.13). Define

φ(w)(ω, τw) = 4
∣∣∣P(w)u ( jω)

∣∣∣2 −
∣∣∣P(w)0 ( jω)

−
[∣∣∣p(w)u ( jω)

∣∣∣2 −
∣∣∣p(w)v ( jω)

∣∣∣2
]∣∣∣∣

2

. (4.1)

Then, Proposition 3.1 suggests that (ω, τw) ∈ �(w) if and
only if ω > 0, τw ∈ R and

φ(w)(ω, τw) ≥ 0. (4.2)

In other words,

�(w) = {(ω, τw) ∈ R
o+ × R | φ(w)(ω, τw) ≥ 0}. (4.3)

However, the conditions in Proposition 3.1 excludes those
(ω, τw) that satisfy

P(w)0 (ω, τw) = 0. (4.4)

A parametric pair (ω, τw) ∈ R
o+ × R that satisfies (4.4) is

known as a singular parametric pair. The set of all singular
parametric pairs is known as the singular parametric set and is
denoted as�(w)s . We may not conclude (4.3) until we can be
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certain that it is also true on�(w)s . The following proposition
does that.

Proposition 4.1 A parametric pair (ω, τw) ∈ R
o+ × R sat-

isfies (ω, τw) ∈ �(w) if and only if it satisfies (3.13).

Proof Using (3.1), we may write

�( jω) = p(uw)0 ( jω)+ p(uw)v ( jω)e− jωτv , (4.5)

where

p(uw)0 ( jω) = p(w)0 ( jω)+ p(w)u ( jω)e− jωτu ,

p(uw)v ( jω) = p(w)v ( jω)+ p(w)uv ( jω)e− jωτu .

Therefore, it is obvious that (2.2) can be satisfied for some
τu if and only if

∣∣∣p(uw)0 ( jω)
∣∣∣ =

∣∣∣p(uw)v ( jω)
∣∣∣ . (4.6)

The above equation is equivalent to
(

p(w)0 ( jω)+ p(w)u ( jω)e− jωτu
)

·
(

p(w)∗0 ( jω)+ p(w)∗u ( jω)e jωτu
)

=
(

p(w)v ( jω)+ p(w)uv ( jω)e− jωτu
)

·
(

p(w)∗v ( jω)+ p(w)∗uv ( jω)e jωτu
)
.

Direct calculation indicates that the above is equivalent to

2
∣∣∣P(w)u ( jω)

∣∣∣ cos(α − ωτu)

=
∣∣∣p(w)u ( jω)

∣∣∣2 −
∣∣∣p(w)v ( jω)

∣∣∣2 − P(w)0 ( jω), (4.7)

where

α = � P(w)u ( jω).

Obviously, (4.7) can be true for some τu if and only if (3.13)
is satisfied. ��

Before proceeding to extend the remaining parts of Propo-
sition 3.1 to the entire �(w) and further clarifying the prop-
erties of �(w), we introduce the following nondegeneracy
assumptions.

Assumption IV Nondegeneracy of coefficients. For any
{u, v, w} = Z

+
3 , no ω and τw may simultaneously satisfy

P(w)u ( jω, τw) = 0, (4.8)∣∣∣P(w)0 ( jω, τw)
∣∣∣ =

∣∣∣P(w)v ( jω, τw)
∣∣∣ . (4.9)

Assumption V No multiple critical delays. For a given ω,
if

φ(w)(ω, τw) = 0, (4.10)

∂φ(w)(ω, τw)

∂τw
= 0 (4.11)

are satisfied for τw = τ a and τ b, thenω(τ b −τ a)/(2π)must
be an integer.

Assumption VI Transversality at critical freqencies. Any
ω and τw that satisfy (4.10) and (4.11) must satisfy

∂φ(w)(ω, τw)

∂ω
�= 0, (4.12)

∂2φ(w)(ω, τw)

∂τ 2
w

�= 0. (4.13)

Assumption VII Noncritical zero frequency. For ω = 0,
no τw may simultaneously satisfy (4.10) and (4.11).

The above four nondegeneracy assumptions are made to
reduce the number of cases to be considered while covering
“almost all” cases in the sense that they are “generic” in the
terminology of dynamical systems [28]. This allows us to
present the main idea in a systematic way within a reason-
able amount of space. Similar to Remark 3.2 in [21], cases
that violate some nondegeneracy assumptions are not diffi-
cult to treat individually. The systems discussed in the rest
of this article are assumed to satisfy the three nontriviality
assumptions (Assumptions I to III) given in Sect. 2 and the
four nondegeneracy assumptions (Assumptions IV to VII)
given above.

Proposition 4.2 The valid parameter range�(w) has a non-
empty interior that can be expressed as

�(w)o =
{
(ω, τw) ∈ R

o+ × R | φ(w)(ω, τw) > 0
}
, (4.14)

and its boundary ∂�(w) away from the τw-axis can be char-
acterized by

∂�(w)
⋂

R
o+ × R

=
{
(ω, τw) ∈ R

o+ × R | φ(w)(ω, τw) = 0
}
. (4.15)

Proof The Assumptions VI implies that for any (ω, τw) that
satisfies (4.10) must satisfy either (4.12) or

∂φ(w)(ω, τw)

∂τw
�= 0,

from which the conclusions are obvious. ��
Proposition 4.3 For any (ω, τw) ∈ �(w),
P(w)u ( jω) �= 0, (4.16)

P(w)v ( jω) �= 0. (4.17)
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Proof If some (ω, τw) ∈ �(w) violates (4.16), i.e., it satisfies
(4.8), then the right hand side of the inequality (3.13) must
vanish, therefore

P(w)0 ( jω) =
∣∣∣p(w)u ( jω)

∣∣∣2 −
∣∣∣p(w)v ( jω)

∣∣∣2 .

Multiplying both sides of the above equation by P(w)0 ( jω)
and using (3.10) and (4.8) yield
∣∣∣P(w)0 ( jω)

∣∣∣2 =
∣∣∣P(w)v ( jω)

∣∣∣2 −
∣∣∣P(w)u ( jω)

∣∣∣2

=
∣∣∣P(w)v ( jω)

∣∣∣2 .
But this violates Assumption IV. This proves (4.16). The
proof of (4.17) is similar except that we use the equivalent
characterization (3.14) for �(w) instead of (3.13), and inter-
change u and v in Assumption IV. ��
Proposition 4.4 For any given (ω, τw) ∈ �(w), all τu and
τv that satisfy (2.2) can be expressed by (3.15) and (3.16).

Proof The proof is done by continuity argument. In the proof
of Proposition 4.1, all the possible τu that satisfy (4.7) can
be expressed as

τu = α ± β + 2k1π

ω
, k1 = 0,±1,±2, . . . , (4.18)

where

β = arccos

∣∣∣p(w)u ( jω)
∣∣∣2 −

∣∣∣p(w)v ( jω)
∣∣∣2 − P(w)0 ( jω)

2
∣∣∣P(w)u ( jω)

∣∣∣
.

Any such τu achieves (4.6). If

∣∣∣p(uw)v ( jω)
∣∣∣ �= 0, (4.19)

then we see from (4.5) that all τv that satisfy (2.2) can be
expressed as

τv =
� p(uw)v ( jω)− � p(uw)0 ( jω)+ (2k2 + 1)π

ω
,

k2 = 0,±1,±2, . . . . (4.20)

We will show that (4.19) is indeed true by contradiction.
Assume the opposite, i.e.,

p(uw)v ( jω) = p(w)v ( jω)+ p(w)uv ( jω)e− jωτu = 0. (4.21)

Then according to (4.6), we must also have

p(vw)0 (− jω) = p(w)0 (− jω)+ p(w)u (− jω)e jωτu = 0. (4.22)

Multiplying (4.21) by p(w)0 (− jω), and multiplying (4.22) by

p(w)uv ( jω)e− jωτu , and subtracting the resulting equations, we
obtain

p(w)uv ( jω)p(w)u (− jω)− p(w)v ( jω)p(w)0 (− jω) = 0. (4.23)

The left hand side of (4.23) equals to P(w)v ( jω). Therefore,
(4.23) is not possible according to Proposition 4.3. Thus we
have shown that (4.18) and (4.20) indeed represent all the
solutions to (2.2).

Next, we need to show that for (ω, τw) ∈ �(w), the set
of (τu, τv) expressed by (4.18) and (4.20) must be identi-
cal to the set expressed by (3.15) and (3.16). For (ω, τw) ∈
�(w)\�(w)s , this is true as both represent all the solutions to
(2.2). Because (4.18) and (4.20) are continuous functions of
ω and τw for fixed k1, k2, for any given (ω, τw) ∈ �(w)s , we
may find a sequence (ωk , τwk) ∈ �(w)\�(w)s , k = 1, 2, 3, . . .
such that (ωk, τwk) → (ω, τw) as k → ∞. Then, all (τu, τv)

that correspond to (ω, τw) given in (4.18) and (4.20) may
alternatively be expressed as the limit of the sequence formed
by (4.18) and (4.20) with (ω, τw) replaced by (ωk, τwk). This
sequence is equal to the one formed by (3.15) and (3.16) with
(ω, τw) replaced by (ωk, τwk). The continuity of (3.15) and
(3.16) allows us to conclude that the set of (τu, τv) given by
(3.15) and (3.16) is identical to the set given by (4.18) and
(4.20) for all (ω, τw) ∈ �(w)s . ��

It is interesting to point out that for (ω, τw) ∈ �
(w)
s , the

Eq. (3.11) has additional solutions that cannot be expressed
by (3.15) and (3.16). In other words, although the solu-
tions (3.15) and (3.16) were derived through the associ-
ated function �(w)( jω, τ ), they represent all the solutions
to the original characteristic equation �( jω, τ ) = 0 , but
not �(w)( jω, τ ) = 0 if ω ∈ �(w)s . We will not discuss this
point further in this article, and interested readers are referred
to [23].

5 Boundaries of parameter range

As indicated in Proposition 4.2, the boundary of the valid
parameter range away from the τw-axis can be characterized
by

φ(w)(ω, τw) = 0.

In other words, any (ω, τw) ∈ ∂�(w) ∩ (
R

o+ × R
)

must sat-
isfy one of the following two equations

2
∣∣∣P(w)u ( jω)

∣∣∣

= P(w)0 ( jω)−
[∣∣∣p(w)u ( jω)

∣∣∣2−
∣∣∣p(w)v ( jω)

∣∣∣2
]
, or

(5.1)
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−2
∣∣∣P(w)u ( jω)

∣∣∣

= P(w)0 ( jω)−
[∣∣∣p(w)u ( jω)

∣∣∣2 −
∣∣∣p(w)v ( jω)

∣∣∣2
]
. (5.2)

It is impossible to satisfy both (5.1) and (5.2) simultaneously
in view of Proposition 4.3. Using a similar method to show
the equivalence between (3.13) and (3.14) in Proposition 3.1,
we can easily show that (3.13) and (3.14) with “≥” replaced
by “=” are also equivalent. Therefore such an (ω, τw) must
also satisfy one and only one of the following two equations

2
∣∣∣P(w)v ( jω)

∣∣∣

= P(w)0 ( jω)+
[∣∣∣p(w)u ( jω)

∣∣∣2−
∣∣∣p(w)v ( jω)

∣∣∣2
]
, or

(5.3)

−2
∣∣∣P(w)v ( jω)

∣∣∣

= P(w)0 ( jω)+
[∣∣∣p(w)u ( jω)

∣∣∣2 −
∣∣∣p(w)v ( jω)

∣∣∣2
]
. (5.4)

These allow us to divide the boundary points into four differ-
ent types. The following proposition reduces the conditions
from two equatoins to one equation for each type.

Proposition 5.1 Each parametric pair in the boundary of
valid parameter range (ω, τw) ∈ ∂�(w) ∩ (

R
o+ × R

)
must

belong to one and only one of the following four types:

Type 1 :
∣∣∣p(w)v (ω, τw)

∣∣∣2 −
∣∣∣p(w)u (ω, τw)

∣∣∣2
∣∣∣P(w)u (ω, τw)

∣∣∣ +
∣∣∣P(w)v (ω, τw)

∣∣∣
= −1, (5.5)

Type 2 :
∣∣∣p(w)v (ω, τw)

∣∣∣2 −
∣∣∣p(w)u (ω, τw)

∣∣∣2
∣∣∣P(w)u (ω, τw)

∣∣∣ +
∣∣∣P(w)v (ω, τw)

∣∣∣
= 1, (5.6)

Type 3 : P(w)0 (ω, τw)∣∣∣P(w)u (ω, τw)

∣∣∣ +
∣∣∣P(w)v (ω, τw)

∣∣∣
= −1, (5.7)

Type 4 : P(w)0 (ω, τw)∣∣∣P(w)u (ω, τw)

∣∣∣ +
∣∣∣P(w)v (ω, τw)

∣∣∣
= 1. (5.8)

The corresponding θu and θv calculated by (3.17) and (3.18)
are

Type 1 : θu = 0, θv = π, (5.9)

Type 2 : θu = π , θv = 0, (5.10)

Type 3 : θu = π , θv = π, (5.11)

Type 4 : θu = 0, θv = 0. (5.12)

It is worth noting that for a given (ω, τw) ∈ ∂�(w) ∩(
R

o+ × R
)
, type 1 satisfies (5.1) and (5.4), type 2 satisfies

(5.2) and (5.3), type 3 satisfies (5.2) and (5.4), and type 4
satisfies (5.1) and (5.3).

Proof An (ω, τw) ∈ ∂�(w) ∩ (
R

o+ × R
)

must satisfy either
(5.1) or (5.2) but not both, and either (5.3) or (5.4) but
not both. If (5.1) and (5.4) are satisfied, we may sub-
tract (5.4 ) from (5.1) and divide the resulting equation by∣∣∣P(w)u (ω, τw)

∣∣∣ +
∣∣∣P(w)v (ω, τw)

∣∣∣ to arrive at (5.5). We may

also apply the relations (5.1) and (5.4) in (3.17) and (3.18) to
obtain (5.9). The proof for other types are similar.

The remaining fact to be proven is that no (ω, τw) ∈
∂�(w) ∩ (

R
o+ × R

)
may satisfy two Eqs. in (5.5) to (5.8)

simultaneously. It is obvious that (5.5) contradicts (5.6), and
(5.7) contradicts (5.8). Next we will show that (5.5) and (5.7)
may not be satisfied simultaneously by contradiction. If (5.5)
and (5.7) are both satisfied, then multiplying these two equa-
tions and using (3.10) yield

∣∣∣P(w)u (ω, τw)

∣∣∣2 −
∣∣∣P(w)v (ω, τw)

∣∣∣2
(∣∣∣P(w)u (ω, τw)

∣∣∣ +
∣∣∣P(w)v (ω, τw)

∣∣∣
)2 = 1.

Cancelling out the factor
∣∣∣P(w)u (ω, τw)

∣∣∣ +
∣∣∣P(w)v (ω, τw)

∣∣∣
results in
∣∣∣P(w)u (ω, τw)

∣∣∣ −
∣∣∣P(w)v (ω, τw)

∣∣∣
∣∣∣P(w)u (ω, τw)

∣∣∣ +
∣∣∣P(w)v (ω, τw)

∣∣∣
= 1.

But the above equation requires

P(w)v (ω, τw) = 0,

which contradicts Proposition 4.3. The proof for the remain-
ing possible combinations (5.5) and (5.8), (5.6) and (5.7),
(5.6) and (5.8) are similar. ��
Corollary 5.2 The type of all the parametric pairs (ω, τw)
on a continuous curve of ∂�(w) ∩ (

R
o+ × R

)
must be identi-

cal.

Proof The proof of Proposition 5.1 made it clear that it is
impossible to continuously change from one type to another.

��
Example 5.3 Consider a system with the characteristic qua-
sipolynomial �(s) in the form of (1.1) with

p0(s) = s6 + 3s5 + 8.5s4 + 13.5s3 + 10s2 + 10.5s + 2.5,

p1(s) = s4 + 3s3 + 7.5s2 + 10.5s + 2.5,

p2(s) = 2s4 + 2s3 + 12s2 + 2s + 10,

p3(s) = 3s4 + 6s3 + 4.5s2 + 6s + 1.5,

p12(s) = 7s2 + 2s + 1, p13(s) = 3s + 4,

p23(s) = 5s + 1, p123(s) = 1.

Using (ω, τ3) to parameterize T , the parameter range �(3)

is shown in Fig. 3, along with the boundary types.
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Fig. 3 �(3) and its boundary
types in Example 5.3

A few words is in order on the numerical process of gen-
erating the diagram in the above example. Direct calculation
indicates that φ(w)(ω, τw)may be expressed in the following
form

φ(w)(ω, τw) = C0(ω)+ C1(ω)e
jωτw + C∗

1 (ω)e
− jωτw

+C2(ω)e
j2ωτw + C∗

2 (ω)e
− j2ωτw , (5.13)

where C0(ω) is a real polynomial ofω, and C1(ω) and C2(ω)

are complex polynomials. Obviously, φ(w)(ω, τw) is a peri-
odic function of τw with period 2π/ω.

For a fixed ω, φ(w)(ω, τw) is a function of τw. Let

z = e jωτw . (5.14)

Then equation

φ(w)(ω, τw) = 0 (5.15)

becomes a fourth order equation of z,

C2(ω)z
4 + C1(ω)z

3 + C0(ω)z
2 + C∗

1 (ω)z + C∗
2 (ω) = 0.

(5.16)

There are four solutions of z to this equation. However, only
those solutions on the unit circle correspond to real τw and
are meaningful for our purpose. There may be either four
solutions, two solutions, or no solution on the unit circle. For
each solution z on the unit circle, let τw satisfy (5.14), then
τw + 2πk/ω for any integer k also satisfy (5.14).

Therefore, the diagram in the above example may be
numerically generated by the following procedure: Let ω
sweep through an interval [0, ωmax] for a sufficiently large
ωmax with a sufficiently small increment. For each such ω,
solve (5.16) for z in the unit circle and the corresponding
τw. This generates the boundary ∂�(w) ∩ (

R
o+ × R

)
of the

valid parameter range �(w). In order to judge which side of
the boundary is in �(w), we may evaluate φ(w)(ω, τw) at a
few strategic points away from the boundary to test if it is

nonnegative. Alternatively, we may test the sign of its partial
derivative with respect to ω or τw at a few strategic points on
the boundary. The type of each continuous piece of boundary
may be obtained by testing which equation among (5.5) to
(5.8) is satisfied.

Once �(w) is given, the stability crossing set T may be
generated by (3.15) and (3.16) with restriction to R

3+. As will
be seen later on, the geometric characteristics of T is largely
determined by the structure of �(w) and its boundary types.

6 Constant frequency curves

We start this section with some concepts.

Definition 6.1 Let C : R → R
3, be such that

C(α + α0) = C(α)+ a

for some α0 ∈ R
o+ and

a = a1τ
0
1 + a2τ

0
2 + a3τ

0
3 ∈ R

3.

Then the curve

C = {C(α) | α ∈ R}

is known as a spiral, βa for any β ∈ R, β �= 0 is known as
its axis, and

‖a‖ =
√

a2
1 + a2

2 + a2
3

is its pitch.

Obviously, a spiral is completely defined by C(α) in an
interval [0, α0] since

C =
+∞⋃

k=−∞
{C(α)+ ka | α ∈ [0, α0]} .
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Definition 6.2 For a given ω ∈ �, an interval [τ a
w, τ

b
w] is

known as a maximal τw-interval if (ω, τw) ∈ �(w)o for all
τ a
w < τw < τ b

w, and (ω, τ a
w) ∈ ∂�(w) , (ω, τ b

w) ∈ ∂�(w).
If ω ∈ � is such that (ω, τw) ∈ �(w)o for all τw ∈ R, then
(−∞,+∞) is also defined as a maximal τw-interval.

Using Proposition 4.2, it can be seen that [τ a
w, τ

b
w] is a

maximal τw-interval if and only if

φ(w)(ω, τw) > 0 for τw ∈ (τ a
w, τ

b
w),

and

φ(w)(ω, τ a
w) = 0, φ(w)(ω, τ b

w) = 0.

If

φ(w)(ω, τw) > 0 for all τw ∈ R ,

then (−∞,+∞) is the only maximal τw-interval corre-
sponding to this ω.

Definition 6.3 For an ω ∈ � and a maximal τw -interval I,
the constant frequency set (corresponding to ω and I) is

T (w)

ω,I =
⋃
τw∈I

T (w)
ω,τw

.

If the valid parameter range �(w) is plotted in a ω-τw
coordinate system as was done in Example 5.3, a maximal
τw-interval corresponds to a vertical line segment in�(w) that
touches the boundary on both ends. The boundary types of the
two ends determine some important geometric characteristics
of the corresponding constant frequency set as is stated in the
following proposition.

Proposition 6.4 Let ω ∈ � be given, and let [τ a
w, τ

b
w] be a

maximal τw-interval, then

i) if

Type(ω, τ a
w) = Type(ω, τ b

w),

then the corresponding constant frequency set consists of
an array of identical closed curves;

ii) otherwise, it consists of a series of identical spirals.

In the following, we will list all the possibilities, which
also serves as the proof for the above proposition. The fol-
lowing notation will be used below

T (w)kukv+
ω,I =

⋃
τw∈I

{(τ1, τ2, τ3) | τu = τ ku+
u (ω, τw),

τv = τ kv+
v (ω, τw)}, (6.1)

T (w)kukv−
ω,I =

⋃
τw∈I

{(τ1, τ2, τ3) | τu = τ ku−
u (ω, τw),

τv = τ kv−
v (ω, τw)}, (6.2)

where τ ku±
u (ω, τw) and τ kv±

v (ω, τw) are given in (3.15) and
(3.16), respectively. It is noted that T (w)kukv+

ω,I for different
ku and kv have an identical shape, and can be obtained from
any one of them by moving a multiple of 2π/ω in τ 0

u and τ 0
v

directions. The same thing can be said about T (w)kukv−
ω,I .

Case i) Type(ω, τ a
w) = Type(ω, τ b

w):

a. Type(ω, τ a
w) = Type(ω, τ b

w) = 1. Using (5.9), it is
easily seen that for both τw = τ a

w and τ b
w,

τ ku+
u (ω, τw) = τ ku−

u (ω, τw),

τ kv+
v (ω, τw) = τ kv−1,−

v (ω, τw).

This means that T (w)kukv+
ω,[τa

w,τ
b
w] is connected with

T (w)ku ,kv−1,−
ω,[τa

w,τ
b
w] at both ends, and form a closed curve

T (w)kukv
ω,[τa

w,τ
b
w] = T (w)kukv+

ω,[τa
w,τ

b
w]

⋃
T (w)ku ,kv−1,−
ω,[τa

w,τ
b
w] . (6.3)

Obviously, T (w)kukv
ω,[τa

w,τ
b
w] for different ku and kv have an

identical shape, and may be obtained from any one
of them by moving a multiple of 2π/ω in τ 0

u and τ 0
v

directions. The constant frequency set consists of an
array of such closed curves

T (w)

ω,[τa
w,τ

b
w] =

+∞⋃
ku=−∞

+∞⋃
kv=−∞

T (w)kukv
ω,[τa

w,τ
b
w]. (6.4)

b. Type(ω, τ a
w) = Type(ω, τ b

w) = 2. Then,

T (w)kukv
ω,[τa

w,τ
b
w] = T (w)kukv+

ω,[τa
w,τ

b
w]

⋃
T (w)ku+1,kv,−
ω,[τa

w,τ
b
w] (6.5)

is a closed curve for any ku, kv ∈ Z. These curves are
2π/ω apart in both τ 0

u and τ 0
v directions. The constant

frequency set T (w)

ω,[τa
w,τ

b
w] can again be expressed as

(6.4).
c. Type(ω, τ a

w) = Type(ω, τ b
w) = 3. Then

T (w)kukv
ω,[τa

w,τ
b
w] = T (w)kukv+

ω,[τa
w,τ

b
w]

⋃
T (w)ku+1,kv−1,−
ω,[τa

w,τ
b
w] (6.6)

is a closed curve with the same repetition pattern.
d. Type(ω, τ a

w) = Type(ω, τ b
w) = 4. Then

T (w)kukv
ω,[τa

w,τ
b
w] = T (w)kukv+

ω,[τa
w,τ

b
w]

⋃
T (w)kukv−
ω,[τa

w,τ
b
w] (6.7)

form a closed curve with the same repetition pattern.
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Case ii) Type(ω, τ a
w) �= Type(ω, τ b

w):

a. Type(ω, τ a
w) = 1, and Type(ω, τ b

w) = 2. In this case,
T (w)kukv+
ω,[τa

w,τ
b
w] is connected with T (w)ku ,kv−1,−

ω,[τa
w,τ

b
w] at τ a

w,

which is in turn connected with T (w)ku−1,kv−1,+
ω,[τa

w,τ
b
w] at

τ b
w, which is further connected with T (w)ku−1,kv−2,−

ω,[τa
w,τ

b
w]

at τ a
w, and so on. This forms a spiral. Each such spiral

may be expressed as

T (w)kuv
ω,[τa

w,τ
b
w] =

+∞⋃
k=−∞

(
T (w)k,kuv+k,+
ω,[τa

w,τ
b
w] ∪ T (w)k,kuv+k−1,−

ω,[τa
w,τ

b
w]

)

(6.8)

for some kuv ∈ Z. These spirals have an identical
shape, and different spirals can be obtained from any
one by moving along the τ 0

u or τ 0
v direction by mul-

tiples of 2π/ω. They have a common axis

τ = τ 0
u + τ 0

v.

The constant frequency set consists of a series of such
spirals

T (w)

ω,[τa
w,τ

b
w] =

+∞⋃
kuv=−∞

T (w)kuv
ω,[τa

w,τ
b
w]. (6.9)

If we reverse the types, i.e., if (ω, τ a
w) is type 2, and

(ω, τ b
w) is type 1, then T (w)kukv+

ω,[τa
w,τ

b
w] is still connected

with T (w)ku ,kv−1,−
ω,[τa

w,τ
b
w] , but at τ b

w instead τ a
w, and so on.

Therefore (6.8) still represents a spiral, but the con-
nections are at the opposite ends. The remaining sub-
cases are analogous when the type is reversed, and
will not be explicitly discussed.

b. Type(ω, τ a
w) = 1, and Type(ω, τ b

w) = 3. Then
T (w)kukv+
ω,[τa

w,τ
b
w] is connected with T (w)ku ,kv−1,−

ω,[τa
w,τ

b
w] at τ a

w,

which is in turn is connected with T (w)ku−1,kv,+
ω,[τa

w,τ
b
w] at

τ b
w, and so on. This pattern allows us to conclude that

T (w)

ω,[τa
w,τ

b
w] consists of a seris of the spirals

T (w)kuv
ω,[τa

w,τ
b
w] =

+∞⋃
k=−∞

(
T (w)kkuv+
ω,[τa

w,τ
b
w] ∪ T (w)k,kuv−1,−

ω,[τa
w,τ

b
w]

)
,

kuv = 0,±1,±2, . . . . (6.10)

The axis of the spirals is

τ = τ 0
u .

Different spirals can be obtained from any one by
moving along the τ 0

v direction by multiples of 2π/ω.
c. Type(ω, τ a

w) = 1, and Type(ω, τ b
w) = 4. Then

T (w)kukv+
ω,[τa

w,τ
b
w] is connected with T (w)ku ,kv−1,−

ω,[τa
w,τ

b
w] at τ a

w,

which is in turn connected with T (w)ku ,kv−1,+
ω,[τa

w,τ
b
w] at τb,

and so on. Therefore, T (w)

ω,[τa
w,τ

b
w] consists of the spirals

T (w)kuv
ω,[τa

w,τ
b
w] =

+∞⋃
k=−∞

(
T (w)kuv,k,+
ω,[τa

w,τ
b
w] ∪ T (w)kuv,k−1,−

ω,[τa
w,τ

b
w]

)
,

kuv = 0,±1,±2, . . . . (6.11)

The axis of the spirals is

τ = τ 0
v.

From one spiral, the remaining spirals can be gener-
ated by moving along the τ 0

u direction by multiples
of 2π/ω.

d. Type(ω, τ a
w) = 2, and Type(ω, τ b

w) = 3. In this
case, T (w)kukv+

ω,[τa
w,τ

b
w] is connected with T (w)ku+1,kv,−

ω,[τa
w,τ

b
w] at

τ a
w, which in turn is connected with T (w)ku ,kv+1,+

ω,[τa
w,τ

b
w] at

τ b
w, and so on. Therefore, T (w)

ω,[τa
w,τ

b
w] consists of the

spirals

T (w)kuv
ω,[τa

w,τ
b
w] =

+∞⋃
k=−∞

(
T (w)kuvk+
ω,[τa

w,τ
b
w] ∪ T (w)kuv+1,k,−

ω,[τa
w,τ

b
w]

)
,

kuv = 0,±1,±2, . . . . (6.12)

The axis of the spirals is

τ = τ 0
v.

From one spiral, the remaining spirals can be obtained
by moving along the τ 0

u direction by multiples of
2π/ω.

e. Type(ω, τ a
w) = 2, and Type(ω, τ b

w) = 4. In this
case, T (w)kukv+

ω,[τa
w,τ

b
w] is connected with T (w)ku+1,kv,−

ω,[τa
w,τ

b
w] at

τ a
w, which in turn is connected with T (w)ku+1,kv,+

ω,[τa
w,τ

b
w] at

τ b
w, and so on. Therefore, T (w)

ω,[τa
w,τ

b
w] consists of the

spirals

T (w)kuv
ω,[τa

w,τ
b
w] =

+∞⋃
k=−∞

(
T (w)kkuv+
ω,[τa

w,τ
b
w] ∪ T (w)k+1,kuv,−

ω,[τa
w,τ

b
w]

)
,

kuv = 0,±1,±2, . . . . (6.13)

The axis of the spirals is

τ = τ 0
u .

From one spiral, the remaining spirals can be obtained
by moving along the τ 0

v direction by multiples of
2π/ω.

f. Type(ω, τ a
w) = 3, and Type(ω, τ b

w) = 4. In this case,
T (w)kukv+
ω,[τa

w,τ
b
w] is connected with T (w)ku+1,kv−1,−

ω,[τa
w,τ

b
w] at τ a

w,

which in turn is connected with T (w)ku+1,kv−1,+
ω,[τa

w,τ
b
w] at
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τ b
w, and so on. Therefore, T (w)

ω,[τa
w,τ

b
w] consists of the

spirals

T (w)kuv
ω,[τa

w,τ
b
w] =

+∞⋃
k=−∞

(
T (w)k,kuv−k,+
ω,[τa

w,τ
b
w] ∪ T (w)k+1,kuv−k−1,−

ω,[τa
w,τ

b
w]

)
,

kuv = 0,±1,±2, . . . . (6.14)

The axis of the spirals is

τ = τ 0
u − τ 0

v.

From one spiral, the remaining spirals can be obtained
by moving along the τ 0

u or τ 0
v direction by multiples

of 2π/ω.

We will call the closed curve T (w)kukv
ω,[τa

w,τ
b
w] or the spiral

T (w)kuv
ω,[τa

w,τ
b
w] a constant frequency curve. Then we can say that

the constant frequency set consists of an array of constant
frequency curves (closed curves) in case i), and a series of
constant frequency curves (spirals) in case ii) above.

It should be pointed out that if [τ a
w, τ

b
w] is a maximal τw-

interval, then [τ a
w + kw2π/ω, τ b

w + kw2π/ω] for any inte-
ger kw is also a maximal τw-interval. It can be easily seen
that T (w)kuv

ω,[τa
w+kw2π/ω,τ b

w+kw2π/ω] may be obtained by moving

T (w)kuv
ω,[τa

w,τ
b
w] a distance of kw2π/ω in the τ 0

w direction.

For case ii) in Proposition 6.4, it is interesting to note
that the spirals are more conveniently parameterized by a
different delay than τw. For example, in the case ii-b), the
complete spiral T (w)k

ω,[τa
w,τ

b
w] may be parameterized by τu ∈ R

without the need to divide into different segments. This can
be done by using a u-reduced form instead of w-reduced
form in (3.1). Similarly, in the case ii-a), the spiral T (w)k

ω,[τa
w,τ

b
w]

may be completely parameterized by either τu or τv in the
range of (−∞,+∞), which can be accomplished by either
using the u -reduced form or the v-reduced form. On the
other hand, the geometric characterization in this parameter-
ization requires considering the case with an infinitely long
maximal delay interval, which will be discussed next. An
important tool for this purpose is the rotation index defined
below.

Definition 6.5 Let

F(τw) = A + Be jωτw + Ce− jωτw , (6.15)

where A, B, C ∈ C. If

F(τw) �= 0 for all τw ∈ [0, 2π/ω], (6.16)

then as τw increases from 0 to 2π/ω, let the corresponding
increment of � F(τw) be �� F(τw). Then the rotation index

of F is defined as

δτw (F) =
⎧⎨
⎩

0 if � � F(τw) = 0,
1 if �� F(τw) = 2π,

−1 if �� F(τw) = −2π.

The method to evaluate the rotation index is stated in the
following proposition.

Proposition 6.6 Let F(τw) be defined as (6.15). Let

ψ = � B + � C

2
.

Then,

i) If

|B| �= |C | ,

define

� =
[

Re
(

Ae− jψ
)

|B| + |C |

]2

+
[

Im
(

Ae− jψ
)

|B| − |C |

]2

.

Then the condition (6.16) is satisfied if and only if

� �= 1,

in which case,

δτw (F) =
⎧⎨
⎩

0 if � > 1,
1 if � < 1 and |B| > |C | ,

−1 if � < 1 and |B| < |C | .

ii) On the other hand, if

|B| = |C | ,

then the condition (6.16) is satisfied if and only if either

Im
(

Ae− jψ
)

�= 0, (6.17)

or

∣∣∣Re
(

Ae− jψ
)∣∣∣ > |B| + |C | (6.18)

are satisfied, in which case

δτw (F) = 0.
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Proof It can be shown that

e− jψ F(τw) = [Re(Ae− jψ)+ (|B| + |C |) cos(ωτw + φ)]
+ j[Im(Ae− jψ)+ (|B|−|C |) sin(ωτw + φ)],

(6.19)

where

φ = � B − � C

2
.

If |B| �= |C |, the Eq. (6.19) means that F(τw) traces out
an ellipse as τw increases by 2π/ω. This ellipse is centered
at A, its major semi-axis is (|B| + |C |) oriented in the e jψ

direction, and its minor semi-axis is |(|B| − |C |)| oriented
in the perpendicular direction. Therefore, this ellipse passes
through the origin (i.e., (6.16) is violated) if and only if
� = 1. If � > 1, the origin is outside of this ellipse, and
there is no net increase of � F(τw) as we go through this
ellipse and return to the original position. If � < 1, then
the origin is inside of this ellipse, in which case the rotation
is counterclockwise as τw increases by 2π/ω if |B| > |C |,
resulting in a net increase of � F(τw) by 2π ; the rotation is
clockwise if |B| < |C |, resulting in a net increase by −2π .

If |B| = |C |, then F(τw) traces out a line segment with
e jψ

[
Ae− jψ ± (|B| + |C |)] as its two end points. The origin

is on this line segment if and only if both (6.17) and (6.18) are
violated. If the origin is not on the line segment, then there
is no net increase of � F(τw) as F(τw) returns to the original
value. ��

Using the rotation index in Definition 6.5, the constant
frequency curve corresponding to a maximal τw-interval of
infinite length may be described below.

Proposition 6.7 Let ω ∈ � be given such that (ω, τw) ∈
�(w) for all τw ∈ R. Then the corresponding constant fre-
quency set T (w)

ω,(−∞,+∞) can be expressed as

T (w)
ω,(−∞,+∞) =

⋃
ku ,kv integers

(
T (w)kukv+
ω,(−∞,+∞)

⋃
T (w)kukv−
ω,(−∞,+∞)

)
,

where T (w)kukv±
ω,(−∞,+∞) are spirals defined as

T (w)kukv±
ω,(−∞,+∞) =

⎧⎨
⎩(τ1, τ2, τ3)

∣∣∣∣∣∣

τw ∈ (−∞,+∞)

τu = τ
ku±
u (ω, τw)

τv = τ
kv±
v (ω, τw)

⎫⎬
⎭ ,

and τ ku±
u (ω, τw) and τ kv±

v (ω, τw) are defined in (3.15) and
(3.16), respectively. Each T (w)kukv+

ω,(−∞,+∞) or T (w)kukv−
ω,(−∞,+∞) is a

spiral with axis

τ = δτw (P
(w)
u (ω, ·))τ 0

u + δτw (P
(w)
v (ω, ·))τ 0

v + τ 0
w. (6.20)

T (w)kukv+
ω,(−∞,+∞) is identical in shape for different ku and kv .

Given any one, all the others may be obtained by moving a
multiple of 2π/ω distance in the τ 0

u direction then moving a
multiple of 2π/ω distance in the τ 0

v direction. The same can

be said about T (w)kukv−
ω,(−∞,+∞).

Proof From Proposition 4.3, the condition (6.16) is satis-
fied for F = P(w)u (ω, ·) or P(w)v (ω, ·) in Definition 6.5.
Therefore, δτw (P

(w)
u (ω, ·)) and δτw (P

(w)
v (ω, ·)) in (6.20)

are well defined. In order to show the spirals and their
axes, let τw increase 2π/ω. Because both P(w)u (ω, τw)

and P(w)v (ω, τw) may be written in the form of (6.15)
for a given ω, � P(w)u (ω, τw) and � P(w)v (ω, τw) increase
2πδτw(P

(w)
u (ω, ·)) and 2πδτw(P

(w)
v (ω, ·)), respectively. The

remaing terms in (3.15) and (3.16) return to the original val-
ues. Therefore, τu and τv increase by 2πδτw(P

(w)
u (ω, ·))/ω

and 2πδτw(P
(w)
v (ω, ·))/ω, respectively. This shows that

T (w)kukv±
ω,(−∞,+∞) for each given ku , kv and + or − may be com-

pletely determined by one segment parameterized by τw in an
interval of length 2π/ω. The other segments may be obtained
by moving this segment in the direction τ given in (6.20).
Therefore, they are indeed spirals with the common axis τ .
The other conclusions can be seen directly from (3.15) and
(3.16). ��

7 Crossing frequency set and its partition

Consider again the Eq. (5.15), or (5.16) after the variable
transformation (5.14). For a fixed ω, recall that there may
be zero, two, or four solutions to (5.16) for z on the unit
circle, which corresponds to zero, two, or four real solutions
to (5.15) for τw in a 2π/ω range. When the number of such
solutions change, it is necessary that

∂φ(w)(ω, τw)

∂τw
= 0. (7.1)

Using (5.13) and (5.14), the Eq. (7.1) becomes

2C2(ω)z
4 + C1(ω)z

3 − C∗
1 (ω)z − 2C∗

2 = 0. (7.2)

Unlike (5.16), the structure of the Eq. (7.2) means that there
are at least two solutions to (7.2) for z on the unit circle for a
fixedω. These two solutions correspond to the maximum and
minimum of φ(w)(ω, τw) as a function of τw. When (7.2) has
four solutions on the unit circle, the remaining two solutions
correspond to a local maximum and a local minimum of
φ(w)(ω, τw).

For a fixed ω, the four solutions to (7.2) on the unit circle
correspond to four real τw within a 2π/ω range. We denote
these solutons as τG M

w , τ L M
w , τ LV

w and τGV
w such that,
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φ(w)(ω, τG M
w ) ≥ φ(w)(ω, τ L M

w ) ≥ φ(w)(ω, τ LV
w )

≥ φ(w)(ω, τGV
w ). (7.3)

Let

Mg = φ(w)(ω, τG M
w ),

Vg = φ(w)(ω, τGV
w ),

Ml = φ(w)(ω, τ L M
w ),

Vl = φ(w)(ω, τ LV
w ).

Then Mg is the global maximum, Vg is the global minimum,
Ml is the local maximum, and Vl is the local minimum. When
(7.2 ) has only two unit circle solutions, τ L M

w and τ LV
w do not

exist. The continuity of solutions with respect to the poly-
nomial coefficients implies that we may always find four
solutions to (7.1 ), say, τw1, τw2, τw3 and τw4, as continu-
ous functions of ω as long as C2(ω) �= 0. In general, some
of them may not be real. Even when they are all real, τG M

w ,
τ L M
w , τ LV

w and τGV
w may not be continuous functions of ω

when Mg , Vg , Ml and Vl are not all distinct. For example, it
is possible that

φ(w)(ω, τw1) = Mg(ω),

φ(w)(ω, τw2) = Ml(ω),

for ω ∈ [ω∗ − ε, ω∗] and

φ(w)(ω, τw2) = Mg(ω),

φ(w)(ω, τw1) = Ml(ω),

for ω ∈ (ω∗, ω∗ + ε]. In this case, τG M
w and τ L M

w may be
discontinous atω∗ as they switch between τw1 and τw2 atω∗.
This discontinuity is caused by

Mg(ω
∗) = Ml(ω

∗).

On the other hand, Mg and Vg are still continuous functions
of ω, and so are Ml(ω) and Vl(ω) where they are defined.
In addition, Ml(ω

∗) = Vl(ω
∗) if Ml(ω) and Vl(ω) exist in

(ω∗ − ε, ω∗] and do not exist in (ω∗, ω∗ + ε), or vice versa.
For the convenience of further development, we introduce

the following concept.

Definition 7.1 For a given set �′ ⊂ R
o+, an interval I is

known as a maximal interval of �′ if I ⊂�′, and for any
interval I ′ ⊃ I, I ′ �= I, there exists an ω ∈ I ′ such that
ω �∈ �′.

We may plot Mg , Ml , Vl and Vg against ω to obtain
four curves. Then according to Assumptions V to VII, no
two curves may intersect with the ω-axis at the same point,
no curve may be tangent to the ω-axis, and no curve may
pass through the origin. It can be shown that Assumption III
implies that there exists a ωub such that

Mg(ω) < 0 for all ω > ωub.

This, together with Assumptions V to VII, implies that each
of these four curves intersect with the ω-axis a finite number
of times. Using this for Mg(ω) alone, we may arrive at the
following proposition.

Proposition 7.2 The crossing frequency set � may be
obtained from the function Mg(ω):

� = {ω > 0 | Mg(ω) ≥ 0}.

The set � may be decomposed into a finite number of its
maximal intervals �i of finite length,

� =
K⋃

i=1

�i ,

where�i is ordered from the left to the right with increasing
i . All �i are closed

�i = [ωl
i , ω

r
i ],

with the possible exception of i = 1 when Mg(0) > 0, in
which case

�1 = (ωl
1, ω

r
1] = (0, ωr

1].

An ω is an end point of some �i , i.e., ω = ωl
i or ω = ωr

i , if
and only if

Mg(ω) = 0,

with the possible exception of ω = ωl
1 = 0, in which case

Mg(ω) = Mg(0) > 0.

Using the remaining functions Ml , Vl and Vg in additional
to Mg , we may define the following subsets of �,

�G1 = {
ω ∈ R

+
o | Vg(ω) > 0

}
,

�G2M = {
ω ∈ R

+
o | Vl(ω) < 0 < Ml(ω)

}
,

and

�N1 = {
ω ∈ R

+
o | Ml(ω) ≤ 0 ≤ Mg(ω)

}
,

�N2 = {
ω ∈ R

+
o | Vg(ω) ≤ 0 ≤ Vl (ω)

}
,

�N3 = {
ω ∈ R

+
o

| Vl (ω) and Ml (ω) do not exist, Vg(ω) ≤ 0 ≤ Mg(ω)
}
.

Furthermore, we define

�G M = �G1 ∪�G2M ,

�N = �N1 ∪�N2 ∪�N3.

We may state the following proposition.
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Stability crossing set for systems with three scalar delay channels 179

Fig. 4 Mg(ω), Ml (ω), Vl (ω)

and Vg(ω) for the system given
in Example 7.4. More detailed
views are given in Fig. 5 and
Fig. 6

Proposition 7.3 The sets�G1 ,�G2M ,�N1,�N2 and�N3

are disjoint, and

� = �G M ∪�N .

Each maximal interval �i of � may be further partitioned
as

�i =
Ki⋃

h=1

�h
i , (7.4)

where each �h
i is a maximal interval of either �G M or �N ,

and �h
i are ordered from left to right with increasing h. If

�h
i ⊂ �G M , then it is an open interval

�h
i = (ωhl

i , ω
hr
i ).

If �h
i ⊂ �N , then it is a closed interval

�h
i = [ωhl

i , ω
hr
i ],

with the possible exception of i = 1, h = 1 and ω1l
1 = 0, in

which case it is a semi-open interval

�1
1 = (ω1l

1 , ω
1r
1 ] = (0, ω1r

1 ].

The right most interval must be a maximal interval of�N , i.e.,
�

Ki
i ⊂ �N . The remaing �h

i within �i alternates between

maximal intervals of �G M and those of �N , i.e., �Ki −1
i ⊂

�G M (if it exists),�Ki −2
i ⊂ �N (if it exists),�Ki −3

i ⊂ �G M

(if it exists) and so on. If the left most interval�1
i is such that

ω1l
i �= 0, then �1

i ⊂ �N .

Proof This is obvious from the definitions. ��
Obviously, the curves Mg(ω), Ml(ω), Vl(ω) and Vg(ω)

depend on which τw is used withω to parameterize T . On the
other hand, it will become clear later on that the sets�N and

�G M are independent of the choice ofw. This also means that
the partition of � to �i and �h

i are intrinsic property of the
system, and is independent of the choice of parameterization.

It should be pointed out that if �h
i ⊂ �G M , then �h

i
must also be a maximal interval of either �G1 or �G2M .
However, if �h

i ⊂ �N , �h
i does not have to be a maximal

interval of�N1 or�N2 or�N3, as illustrated in Example 7.4
next.

Example 7.4 Consider �(s) in the form of (1.1) with

p0(s) = (−s2 + 4)(s2 + 2s + 0.5)(s2 + s + 5),

p1(s) = 0.5(s2 + 2s + 0.5)(s2 + 5s + 6),

p2(s) = 7(s2 + 4)(s2 + 5s + 6),

p3(s) = 4(s2 + 4)(s2 + 2s + 0.5),

p12(s) = (s2 + 1)(s + 0.4)(s + 0.7),

p23(s) = (s + 0.4)(s + 0.7)(s + 0.3),

p13(s) = (s2 + 1)(s + 0.6)(s + 0.4),

p123(s) = (s2 + 4)(s + 1)(s + 2)(s + 4).

The functions Mg(ω), Ml(ω), Vl(ω) and Vg(ω) for this sys-
tem are plotted in Fig. 4, with more detailed view given in
Fig. 5 and Fig. 6. The approximate numerical values of ωi

are:

ω1 = 1.3873, ω2 = 1.4174, ω3 = 1.4695,

ω4 = 1.4955, ω5 = 1.5607, ω6 = 1.6017,

ω7 = 1.6619, ω8 = 1.8537, ω9 = 2.1879,

ω10 = 2.5516, ω11 = 3.1286, ω12 = 3.6937.

In this case,

� = �1 ∪�2 = [ω1, ω8] ∪ [ω9, ω12].

The maximal intervals�1 and�2 of� are further partitioned
into maximal intervals�h

i of either�N or�G M . Specifically,
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Fig. 5 Detailed view of Fig. 4
for ω in the range of [1.3, 2.6]

Fig. 6 Detailed view of Fig. 4
for ω in the range of [3, 3.8]

�1 =
5⋃

h=1

�h
1,

�2 =
3⋃

h=1

�h
2,

where

�1
1 = [ω1, ω3] ⊂ �N , �2

1 = (ω3, ω4) ⊂ �G2M ,

�3
1 = [ω4, ω5] ⊂ �N , �4

1 = (ω5, ω6) ⊂ �G1,

�5
1 = [ω6, ω8] ⊂ �N ;

�1
2 = [ω9, ω10] ⊂ �N , �2

2 = (ω10, ω11) ⊂ �G1,

�3
2 = [ω11, ω12] ⊂ �N .

It should be noted that �1
1 and �5

1 are not maximal intervals
of �N1 or �N2 or �N3. Indeed, �1

1 = [ω1, ω2) ∪ [ω2, ω3],
where [ω1, ω2) ⊂ �N3, [ω2, ω3] ⊂ �N1. Similarly, �5

1 =
[ω6, ω7]∪(ω7, ω8] where [ω6, ω7] ⊂ �N2, (ω7, ω8] ⊂ �N3.

If �h
i ⊂ �G1, then for any given ω ∈ �h

i , φ(ω, τw) as
a function of τw can be illustrated as in Fig. 7. In this case,
(ω, τw) ∈ �(w)o for all τw ∈ R, and Ml(ω) and Vl(ω) may
or may not exist for any given ω ∈ �h

i .
If �h

i ⊂ �G2M , then for any given ω ∈ �h
i , φ(ω, τw)

as a function of τw can be illustrated as in Fig. 8. In this

0 5 10 15
0

2

4

6

8

10

12

14

τ3

φ
0

00
1/

ω = 1.06

Fig. 7 A typical φ(ω, τw) vs. τw forω ∈ �G1. This figure is generated
from the system given in Example 5.3 with ω = 1.06

case, an appropriate 2π/ω range contains two maximal τw
-intervals. Let these two intervals be denoted as [τ a

w, τ
b
w] and

[τ c
w, τ

d
w]. Then, τ a

w, τ b
w, τ c

w and τ d
w may be chosen as con-

tinuous functions of ω within �h
i . Furthermore, the types of

(ω, τ a
w), (ω, τ

b
w), (ω, τ

c
w) and (ω, τ d

w) remain unchanged as
ω varies within �h

i in view of Corallary 5.2.
If �h

i ⊂ �N , then for any given ω ∈ �ho
i = (ωhl

i , ω
hr
i )

(i.e., ω in the interior of �h
i ), φ(ω, τw) as a function of τw

may be either as shown in Fig. 9 (whenω ∈�N1), or as shown
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Fig. 8 A typical φ(ω, τw) vs. τw for ω ∈ �G2M . This figure is gener-
ated from the system given in Example 5.3 with ω = 0.66
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Fig. 9 A typical φ(ω, τw) vs. τw forω ∈ �N1. This figure is generated
from the system given in Example 7.4. with ω = 1.46

in Fig. 10 (when ω ∈ �N2), or as shown in Fig. 11 (when
ω ∈ �N3). In this case, an appropriate 2π/ω range contains
one maximal τw-interval. Let this interval be [τa, τb]. Then
τa and τb may be chosen as continuous functions of ω within
�ho

i , and the types of (ω, τ a
w) and (ω, τ b

w) remain unchanged
as ω varies within �ho

i in view of Corallary 5.2.
It should be pointed out that if ω ∈ �N , and [τ a

w, τ
b
w] is

a maximal τw-interval, then any maximal τw-interval can be
expressed as [τ a

w + 2πk/ω, τ b
w + 2πk/ω] for an appropri-

ate integer k. Similarly, for an ω ∈ �G2M , let [τ a
w, τ

b
w] and

[τ c
w, τ

d
w] be two maximal τw-intervals within a 2π/ω range,

then any maximal τw-interval can be expressed as either
[τ a
w + 2πk/ω, τ b

w + 2πk/ω] or [τ c
w + 2πk/ω, τ d

w + 2πk/ω].
Furthermore, the type invariance in a continuous piece of
boundary (Corollary 5.2) imposes some constraints between
the types of the end points of these maximal τw-intervals as
specified in thefollowing proposition.

0 5 10 15
-15

-10

-5

0

5

10

τ
3

φ
01/ 

7

ω = 0.9

Fig. 10 A typical φ(ω, τw) vs. τw for ω ∈ �N2. This figure is gener-
ated from the system given in Example 5.3 with ω = 0.9
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Fig. 11 A typical φ(ω, τw) vs. τw for ω ∈ �N3. This figure is gener-
ated from the system given in Example 5.3 with ω = 0.36

Proposition 7.5 If ω ∈ �ho
i ⊂ �N , and [τ a

w, τ
b
w] is a maxi-

mal τw -interval, then

Type(ω, τ a
w) = Type(ω, τ b

w). (7.5)

If ω ∈ �G2M , and [τ a
w, τ

b
w] and [τ c

w, τ
d
w] are two maximal

τw-intervals such that

τ a
w < τ b

w < τ c
w < τ d

w < τ a
w + 2π/ω, (7.6)

then either

Type(ω, τ a
w) = Type(ω, τ d

w), (7.7)

Type(ω, τ b
w) = Type(ω, τ c

w), (7.8)

or

Type(ω, τ a
w) = Type(ω, τ b

w), (7.9)

Type(ω, τ c
w) = Type(ω, τ d

w). (7.10)
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Proof For ω ∈ �ho
i , if �h

i ⊂ �N , let Type(ω, τ a
w) = a,

Type(ω, τ b
w) = b. If�h

i ⊂ �G2M , let also Type(ω, τ c
w) = c,

Type(ω, τ d
w) = d. The invariance of boundary type means

that a, b, c and d do not change within �ho
i . Similarly,

if h �= Ki let ω+ ∈ �h+1
i . Then if �h+1

i ⊂ �N , let
[τ a+
w , τ b+

w ] be a maximal τw-interval, and Type(ω+, τ a+
w ) =

a+, Type(ω+, τ b+
w ) = b+, and if �h+1

i ⊂ �G2M let
[τ c+
w , τ d+

w ] be another maximal τw -interval such that

τ a+
w < τ b+

w < τ c+
w < τ d+

w < τ a+
w + 2π/ω, (7.11)

and Type(ω+, τ c+
w ) = c+, Type(ω+, τ d+

w ) = d+. We will
use induction to prove the proposition as h decreases from
Ki : first show that the conclusion is true for h = Ki , then
show that it is true for h under the assumption that it is true
for h + 1. These two conclusions imply that the conclusion
is true for all 1 ≤ h ≤ Ki .

For h = Ki , then �h
i ⊂ �N (Proposition 7.3), and

Mg(ω
hr
i ) = 0. In this case, τ b

w − τ a
w ↓ 0 as ω ↑ ωhr

i . This
implies a = b according to type invariance (Corollary 5.2).
Therefore, the proposition is true for h = Ki . It remains
to be shown that the conclusion is true for �h

i under the
assumption that it is true for �h+1

i . There are three cases to
prove.

i) �h+1
i ⊂ �N . In this case, the inductive assumption is

a+ = b+, and Proposition 7.3 requires either�h
i ⊂ �G1,

or �h
i ⊂ �G2M .

a) �h
i ⊂ �G1. Then there is nothing to prove, and the

proposition is vacuously true.
b) �h

i ⊂ �G2M . Then, either Ml(ω
hr
i ) = 0 or

Vl(ω
hr
i ) = 0.

1) If Ml(ω
hr
i ) = 0, then as ω ↑ ωhr

i , one of the two
intervals [τ a

w, τ
b
w] and [τ c

w, τ
d
w], say [τ c

w, τ
d
w], is

reduced to one point, and the other, say [τ a
w, τ

b
w],

continues to become [τ a+
w + 2πk/ω, τ b+

w +
2πk/ω] for some integer k. We may thus con-
clude (7.9) and (7.10) from type invariance
(Corollary 5.2) and the inductive assumption.

2) If Vl(ω
hr
i ) = 0, then as ω ↑ ωhr

i = ω
h+1,l
i ,

either [τ a
w, τ

b
w] and [τ c

w, τ
d
w] merge into one inter-

val [τ a+
w + 2πk/ω, τ b+

w + 2πk/ω] for some k,
or [τ c

w, τ
d
w] and [τ a

w + 2π/ω, τ b
w + 2π/ω] merge

into one interval. In the first case,

lim
ω↑ωhr

i

τ b
w = lim

ω↑ωhr
i

τ c
w,

lim
ω↑ωhr

i

τ a
w = lim

ω↓ωh+1,l
i

(
τ a+
w + 2πk/ω

)
,

lim
ω↑ωhr

i

τ d
w = lim

ω↓ωh+1,l
i

(
τ b+
w + 2πk/ω

)
,

which imply (Corollary 5.2)

b = c,

a = a+,
d = b+.
The above and the inductive assumption a+ =
b+ imply (7.7) and (7.8). In the second case,

lim
ω↑ωhr

i

τ d
w = lim

ω↑ωhr
i

(
τ a
w + 2π/ω

)
,

lim
ω↑ωhr

i

τ c
w= lim

ω↓ωh+1,l
i

(
τ a+
w + 2πk/ω

)
,

lim
ω↑ωhr

i

(
τ b
w + 2π/ω

)
= lim
ω↓ωh+1,l

i

(
τ b+
w +2πk/ω

)
.

Similar to the first case, we may conclude (7.7)
and (7.8) from inductive assumption and the type
invariance.

ii) �h+1
i ⊂ �G1. In this case, Proposition 7.3 requires

�h
i ⊂ �N , and Vg(ω

hr
l ) = 0. As ω ↑ ωhr

i , all maximal
τw-intervals merge together. Especially, [τ a

w, τ
b
w] merges

with [τ a
w + 2π/ω, τ b

w + 2π/ω], i.e., τ b
w − τ a

w ↑ 2π/ω.
As the functions defining boundary types on the left hand
side of (5.5) to (5.8) are all periodic functions, we may
conclude (7.5).

iii) �h+1
i ⊂ �G2M . In this case, Proposition 7.3 requires

�h
i ⊂ �N . Then, either Ml(ω

hr
i ) = 0 or Vl(ω

hr
i ) = 0.

The inductive assumptions are either

a+ = d+, (7.12)

b+ = c+, (7.13)

or

a+ = b+, (7.14)

c+ = d+. (7.15)

We need to show

a = b. (7.16)

a) Ml(ω
hr
i ) = 0. Then as ω ↓ ωhr

i , one of the two
maximal τw-intervals, say [τ a+

w , τ b+
w ], reduces to one

point, the other, say [τ c+
w , τ d+

w ], continues to become
[τ a
w + 2πk/ω, τ b

w + 2πk/ω] for some integer k. This
means

a+ = b+, (7.17)

which, together with the inductive assumptions,
imply c+ = d+, which in turn means (7.16) in view
of type invariance (Corollary 5.2).
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b) Vl(ω
hr
i ) = 0. Then as ω ↓ ωhr

i , two maximal τw-
intervals [τ a+

w , τ b+
w ] and [τ c+

w , τ d+
w ] or [τ c+

w , τ d+
w ]

and [τ a+
w +2π/ω, τ b+

w +2π/ω] merge into one inter-
val [τ a

w + 2πk/ω, τ b
w + 2πk/ω]. In the first case,

c+ = b+, (7.18)

which together with the inductive assumptions,
implies a+ = d+. As

lim
ω↓ωh+1,l

i

τ a+
w = lim

ω↑ωhr
i

(
τ a
w + 2πk/ω

)
,

lim
ω↓ωh+1,l

i

τ d+
w = lim

ω↑ωhr
i

(
τ b
w + 2πk/ω

)
,

we conclude (7.16) by type invariance (Corollary
5.2). For the second case,

a+ = d+,

which together with the inductive assumptions
implies c+ = b+, from which we can again conclude
a = b from type invariance (Corollary 5.2).

All the possibilities have now been exhausted, and the
proof is complete. ��

8 Maximal interval classification

In this section, we will classify all�h
i . It turns out that some

critical geometric characteristics of the corresponding stabil-
ity crossing set is completely determined by the type of the
interval, as will be shown in the next section.

First, we need to divide �G2M into two separate sets.
Recall that for a givenω ∈ �G2M , we may find two maximal
τw -intervals [τ a

w, τ
b
w] and [τ c

w, τ
d
w] such that

τ a
w < τ b

w < τ c
w < τ d

w < τ a
w + 2π/ω.

The division of �G2M is according to the types of the end
points of the maximal τw-intervals,

�G2 =
{
ω ∈ �G2M | Type(ω, τ a

w) �= Type(ω, τ b
w)

}
,

�M =
{
ω ∈ �G2M | Type(ω, τ a

w) = Type(ω, τ b
w)

}
.

Define also

�G = �G1 ∪�G2.

Then

� = �G ∪�N ∪�M .

It is not difficult to see that any maximal interval�h
i defined

in Proposition 7.2 is also a maximal interval of either �G ,
or �N , or �M . We will call �G the Grashof set, �N the
non-Grashof set of the first kind, and �M the non-Grashof
set of the second kind. These terms are adapted from the
case without the cross terms discussed in [22] although they
no longer have any direct correspondence with the four-bar
linkage theory discussed in [29].

From the discussions in Sect. 6, for an ω ∈ �G , the corre-
sponding constant frequency curves are spirals. For a given

τ = δ1τ
0
1 + δ2τ

0
2 + δ3τ

0
3, (8.1)

where

δi ∈ {−1, 0, 1}, i = 1, 2, 3, and at least one δi �= 0, (8.2)

we define �τ
G as those ω ∈ �G that has constant frequency

curves with axis τ . From the discussions in Sect. 6, we have
δ3 = 1 for all ω ∈ �G1, and δ3 = 0 for all ω ∈ �G2.
Obviously

�G =
⋃
τ

�τ
G,

where the union includes all τ with the expression (8.1) with
δi , i = 1, 2, 3 going through the set described by (8.2). We
also consider�−τ

G the same set as�τ
G as −τ and τ represent

the same axis.

Proposition 8.1 A maximal interval �h
i of �G1 or �G2 is

also a maximal interval of �τ
G for some τ .

Proof For a maximal interval �h
i of �G1 or �G2 , it is suf-

ficient to show that τ is independent of ω within �h
i .

Consider first the case of �h
i ⊂ �G1. Recall for each

ω ∈ �h
i ,

τ = δtw(P
(w)
u (ω, ·))τ 0

u + δtw(P
(w)
v (ω, ·))τ 0

v + τ 0
w.

From Proposition 6.6, as ω changes continuously, the rota-
tion index δtw(P

(w)
u (ω, ·)) or δtw(P

(w)
v (ω, ·))may change its

value only at those values of ω such that

P(w)u (ω, τw) = 0, or

P(w)v (ω, τw) = 0

for some τw. However, this is not possible forω ∈ �h
i in view

of Proposition 4.3 because (ω, τw) ∈ �(w) for all ω ∈ �h
i

and τw ∈ R. Therefore, τ is indeed identical for all ω ∈ �h
i .

We now consider the other case, �h
i ⊂ �G2. Since the

types of (ω, τa) and (ω, τb) do not change with ω within�h
i ,

according to discussion of Case ii) after Proposition 6.4, the
axes of spirals (which are the constant frequency curves) do
not change with ω, either. ��

123



184 K. Gu, X. Zheng

For an ω ∈ �ho
i ⊂ �N , let [τ a

w, τ
b
w] be a maximal τw-

interval. Recall

Type(ω, τ a
w) = Type(ω, τ b

w).

For a given k ∈ {1, 2, 3, 4}, we define �ko
N as the set of such

ω with Type(ω, τ a
w) = k, and

�k
N = �ko

N .

Obviously,

�N =
4⋃

k=1

�k
N ,

and a maximal interval of �N is also a maximal interval of
�k

N for some k. The process of defining�ko
N first then taking

the closure is necessary because some ω = ωhl
i or ωhr

i may
satisfy Vl(ω) = 0 or Ml(ω) = 0, and there are two maximal
τw-intervals within a 2π/ω range in such cases.

For an ω ∈ �M , let [τ a
w, τ

b
w] and [τ c

w, τ
d
w] be two max-

imal τw-intervals within a 2π/ω range. For given k, l ∈
{1, 2, 3, 4}, we define

�kl
M = {

ω ∈ �M | Type(ω, τ a
w) = k,Type(ω, τ c

w) = l
}
.

According to the definition of �M , we also have

Type(ω, τ b
w) = k,

Type(ω, τ d
w) = l.

As [τ c
w, τ

d
w] and [τ a

w + 2π/ω, τ b
w + 2π/ω] are also within a

2π/ω range,

�kl
M = �lk

M .

Obviously,

�M =
4⋃

k=1

k⋃
l=1

�kl
M ,

and a maximal interval of �M is also a maximal interval of
�kl

M for some k and l.
Again, any maximal interval �h

i of �G M or �N is also a
maximal interval of�τ

G for some τ , or�k
N for some k, or�kl

M
for some k and l. Next, we will classify these �h

i according
to which subsets �h

i and its neighbors belong. The subset
that �h

i belongs to is represented by the letter G, N or M
with appropriate supercript. The two subscripts represent the
subsets that �h−1

i and �h+1
i belong to, or if �h

i is the left
most or the right most subinterval in �i . Specifically:

For an �h
i ⊂ �τ

G , if �h−1
i ⊂ �k

N , �h+1
i ⊂ �l

N , then we
say �h

i is of type Gτ
kl . If ωhl

i = 0 instead, then its type is
Gτ
<l .
For an�h

i ⊂ �mn
M , if�h−1

i ⊂ �k
N ,�h+1

i ⊂ �l
N , then�h

i
is said to be of type Mmn

kl . If ωhl
i = 0 instead, then its type is

Mmn
<l .
For an �h

i ⊂ �k
N , if �h−1

i ⊂ �G , �h+1
i ⊂ �G , then

we say �h
i is of type N k

GG . If �h+1
i ⊂ �M instead, then

�h
i is of type N k

G M . We may define type N k
MG and N k

M M

analogously. If ωhl
i = 0 and �h+1

i ⊂ �G , then �h
i is of

type N k
<G . If ωhl

i = ωl
i �= 0 instead, then �h

i is of type

N k
∗G . If �h−1,o

i ⊂ �G and ωhr
i = ωr

i , then �h
i is of type

N k
G∗. The types N k

<M , N k
<∗, N k

∗M , N k∗∗, and N k
M∗ are defined

analogously.
The above list is exhaustive according to Proposition 7.3.

9 Geometric Characterization

Define

T ho
i =

⋃

ω∈�ho
i

Tω,

T h
i = T ho

i .

Then

T =
K⋃

i=1

Ki⋃
h=1

T h
i

⋂
R

3+ =
K⋃

i=1

Ti

⋂
R

3+,

where

Ti =
Ki⋃

h=1

T h
i .

The key to understanding the geometric characteristics of the
stability crossing set T lies in the understanding of T h

i and
how it is connected with the remaining part of Ti . It turns
out that the most important geometric characteristics of T h

i
are completely determined by the type of�h

i as stated in the
next theorem.

Theorem 9.1 If �h
i is of type Gτ

kk , then T h
i consists of an

array of pipes with axis τ and variable cross sections, each
of them also contains two series of holes. If �h

i is of type
Gτ

kl , k �= l, then T h
i is a series of wavy sheets, each of them

contains an array of holes. If �h
i is of type Gτ

<k , then T h
i

consists of an array of open surfaces, each of them extends
to infinity and contains a series of holes. If �h

i is of type
N k

GG, N k
G M , N k

MG, or N k
M M , then T h

i consists of a lattice of

connectors, each of them connects a hole in T h−1
i and a hole

in T h+1
i . If �h

i is of type N k
∗G, N k

G∗, N k
∗M or N k

M∗, then T h
i
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consists of a lattice of caps, each fits a hole in either T h−1
i

or T h+1
i . If �h

i is of type N k∗∗, then T h
i consists of a lattice

of closed surfaces. If �h
i is of type N k

<∗, then T h
i consists of

a lattice of open caps that extend to infinity. If �h
i is of type

N k
<G or N k

<M , then T h
i consists of a lattice of semi-open

pipes, each fits a hole of T h+1
i at one end, and extends to

infinity at the other end. If �h
i is of type Mmn

kk with m �= n,
then T h

i consists of a lattice of closed surfaces and a lattice

of connectors, each connector connectes a hole in T h−1
i and

a hole in T h+1
i . If�h

i is of type Mmn
kl with m �= n, k �= l, then

T h
i consists of two lattices of caps, one lattice of caps fit the

holes of T h−1
i , the others fit the holes of T h+1

i . If �h
i is of

type Mmn
<l , m �= n, then T h

i consists of a lattice of open caps
and a lattice of semi-open pipes; each open cap extends to
infinity, and each semi-open pipe contains a hole at one end
that fits a hole in T h+1

i and the other end extends to infinity.

The above theorem may be summarized in the following
table

�h
i �h−1

i �h+1
i Type T h

i

�τ
G �k

N �l
N Gτ

kl Pipes if k = l
Wavy sheets if

k �= l
0 �k

N Gτ
<k Open surfaces

�k
N �G M �G M N k

GG , N k
G M ,

N k
MG , or N k

M M

Connectors

ωl
i �G M N k

∗G or N k
∗M Caps

�G M ωr
i N k

G∗ or N k
M∗ Caps

ωl
i ωr

i N k∗∗ Closed surfaces
0 ωr

i N k
<∗ Open caps

0 �G M N k
<G or N k

<M Semi-open pipes
�mn

M m �= n �k
N �l

N Mmn
kl Closed surfaces

& connectors
if k = l

Two caps if k �= l
0 �l

N Mmn
<l Open caps &

semi-open
pipes

Note that the case �h
i ⊂ �kk

M has not been addressed in
the above theorem. This case is rather special as the geome-
try of such a case may not be completely determined by its
neighbors. We will discuss this case in the appendix.

In the remaining part of this section, we will provide spe-
cific details of all the cases given in Theorem 9.1. These
details also serve as a proof of the theorem.

Corresponding to each maximal interval �h
i of various

types covered in Theorem 9.1, the stability crossing set T h
i

consists of different pieces of surfaces that can be easily
parameterized by (ω, τw) based on the constant frequency
curves discussed in Sect. 6. A close observation of these sur-
faces indicates that some of them are connected to form a

larger surface of certain geometric shapes mentioned in The-
orem 9.1. While these are derived using parameters (ω, τw),
the geometric characteristics are instrinsic in nature, and are
independent of parameterization. Indeed, in some cases, it is
more convenient to describe these surfaces using parameters
(ω, τu) or (ω, τv) rather than (ω, τw), similar to the descrip-
tion of constant frequency curves in Case ii) in Proposition
6.4. In the following, we will carry out these descriptions
for all the cases covered in Theorem 9.1. The description is
divided in three cases: Case i) is for �h

i ⊂ �k
N , Case ii) is

for�h
i ⊂ �mn

M , and Case iii) is for�h
i ⊂ �τ

G . Each case also
contains several subcases.

Case i) �h
i ⊂ �k

N ,
From (6.1) and (6.2) in Sect. 6, a curve corresponding to

an ω ∈ �ho
i and a maximal τw -iinterval [τ a

w, τ
b
w] is

T (w)kukv±
ω,[τa

w,τ
b
w] =

⋃

τa
w≤τw≤τ b

w

{(τ1, τ2, τ3) | τu

= τ ku±
u (ω, τw), τv = τ kv±

v (ω, τw)}, (9.1)

for a given ku , kv and + or −. In the above, τ a
w and τ b

w also
depends on ω. Recognizing [τ a

w + 2kwπ/ω, τ b
w + 2kwπ/ω]

is also a maximal τw-interval, we define

T (w)kukvkw±
ω,[τa

w,τ
b
w] = T (w)kukv±

ω,[τa
w+2kwπ/ω,τ b

w+2kwπ/ω]. (9.2)

From

τ ku±
u (ω, τw + 2kwπ/ω) = τ ku±

u (ω, τw),

τ kv±
v (ω, τw + 2kwπ/ω) = τ kv±

v (ω, τw),

we see that T (w)kukvkw±
ω,[τa

w,τ
b
w] can be obtained from T (w)kukv±

ω,[τa
w,τ

b
w] by

moving 2kwπ/ω along the τ 0
w-direction. We can define a

patch of surface

T h(w)kukvkw±
i =

⋃

ω∈�ho
i

T (w)kukvkw±
ω,[τa

w,τ
b
w] , (9.3)

where we agree that τ a
w and τ b

w are chosen such that they
are continuous functions of ω within �h

i . Due to the differ-

ence of ω within �h
i , T h(w)kukvkw±

i for different ku , kv and
kw have similar shapes but are not identical. Furthermore,

T h(w)kukvkw+
i and T h(w)k′

uk′
vkw−

i may be connected to form
a larger surface for some k′

u and k′
v depending on the value

of k in a way very similar to the constant frequency curves
discussed in Case i) after Proposition 6.4. We will call this
larger surface T h(w)kukvkw

i . Specifically,

T h(w)kukvkw
i

= T h(w)kukvkw+
i

⋃
T h(w)ku ,kv−1,kw−

i for �h
i ⊂ �1

N ,

T h(w)kukvkw
i

= T h(w)kukvkw+
i

⋃
T h(w)ku+1,kv,kw−

i for �h
i ⊂ �2

N ,
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Fig. 12 Connector
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T h(w)kukvkw
i

= T h(w)kukvkw+
i

⋃
T h(w)ku+1,kv−1,kw−

i for �h
i ⊂ �3

N ,

T h(w)kukvkw
i

= T h(w)kukvkw+
i

⋃
T h(w)kukv,kw−

i for �h
i ⊂ �4

N .

This surface can also be defined from the constant frequency
curves

T h(w)kukvkw
i =

⋃

ω∈�ho
i

T (w)kukv
ω,[τa

w+2kwπ/ω,τ b
w+2kwπ/ω],

where T (w)kukv
ω,[τa

w,τ
b
w] is a closed curve defined in (6.3), (6.5), (6.6)

or (6.7) depending on k. Obviously,

T h
i =

+∞⋃
kw=−∞

+∞⋃
kv=−∞

+∞⋃
ku=−∞

T h(w)kukvkw
i .

In other words, T h
i consists of a lattice of surfaces

T h(w)kukvkw
i . We can therefore conclude the following from

the situation at the two ends of �h
i .

Case i.a) �h−1
i ⊂ �G M , �h+1

i ⊂ �G M .

In this case, T (w)kukvkw
ω,[τa

w,τ
b
w] remains as a closed curve as ω ↑

ωhr
i or ↓ ωhl

i . Therefore, T h(w)kukvkw
i is a connector with two

ends fitting holes in T h−1
i and T h+1

i .

Example 9.2 Consider�3
1 = [ω4, ω5] in the system given in

Example 7.4. For u = 1, v = 2 andw = 3, it can be verified
that �3

1 is of type N 1
MG . Therefore, the corresponding T 3

1
consists of a lattice of connectors. One of these connectors
is shown in Fig. 12. An interesting observation is that the
closed curves for any ω ∈ (ω4, ω5] are all simple curves, but
the curve at ω4 evolve into two closed curves. This is natural
if we consider the left neighbor of �3

1. Indeed �2
1 ∈ �11

M
with Ml(ω

2l
1 ) = 0, Vl(ω

2r
1 ) = 0. As will be shown in the

next section, the corresponding T 2
1 consists of an array of

connectors and an array of caps. A connector and a cap fit
the two closed curves at ω4.

Case i.b) ωhl
i = ωl

i , �
h+1
i ⊂ �G M

In this case, T (w)kukvkw
ω,[τa

w,τ
b
w] remains as a closed curve as ω ↑

ωhr
i . On the other hand, from

Mg(ω
hl
i ) = φ(ωhl

i , τ
G M
w ) = 0,

we conclude that as ω ↓ ωhl
i , τ a

w → τG M
w + 2πk′/ω

and τ b
w → τG M

w + 2πk′/ω for some integer k′, and the
curve T (w)kukvkw

ω,[τa
w,τ

b
w] is reduced to one point, i.e. the surface

T h(w)kukvkw
i is closed on this end. Therefore, T h(w)kukvkw

i is
a cap, with one end closed and the other end fits a hole of
T h+1

i .

Example 9.3 Consider �1
2 = [ω9, ω10] in the system given

in Example 7.4. For u = 1, v = 2 and w = 3, it can be
verified that�1

2 is of type N 3∗G . Therefore, the corresponding
T 1

2 consists of a lattice of caps. One of such caps is shown
in Fig. 13

Case i.c) �h−1
i ⊂ �G M , ωhr

i = ωr
i

This is very similar to case i.b), T h(w)kukvkw
i is again a cap,

except the cap fits a hole of T h−1
i .

Case i.d) ωhl
i = ωl

i , ω
hr
i = ωr

i

In this case, T (w)kukvkw
ω,[τa

w,τ
b
w] is reduced to a point as ω ↑ ωhr

i

or ↓ ωhl
i . This means that T h(w)kukvkw

i is a closed surface.
Case i.e) ωhl

i = 0, �h+1
i ⊂ �G M

In this case, T (w)kukvkw
ω,[τa

w,τ
b
w] remains as a closed curve as ω ↑

ωhr
i . However, asω ↓ ωhl

i = 0, T (w)kukvkw
ω,[τa

w,τ
b
w] → ∞. Therefore,

T h(w)kukvkw
i is a semi-open pipe, with one end fits a hole of

T h+1
i , the other end is “open” , i.e., approaches ∞.
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Fig. 13 A cap
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Fig. 14 Mg(ω), Ml (ω), Vl (ω), and Vg(ω) for the system given in
Example 9.4

Example 9.4 Consider the system (1.1) with

p0(s) = s3 + 10s2 + 31s + 16,

p1(s) = s2 + 11s + 28,

p2(s) = s2 + 5s − 10, p3(s) = 1,

p12(s) = 2s + 1, p23(s) = 3s + 4,

p31(s) = s + 5, p123(s) = 1.

With For u = 1, v = 2 andw = 3, Fig. 14 can be plotted, and
it can be seen that�1

1 = (0, 0.8723]. It can be verified that�1
1

is of type N 2
<G . Therefore, the corresponding T 1

1 consists of
a lattice of semi-open pipes, one of which is shown in Fig. 15.

Case i.f) ωhl
i = 0, ωhr

i = ωr
i

In this case, T (w)kukvkw
ω,[τa

w,τ
b
w] reduces to one point as ω ↑ ωhr

i ,

and it approaches ∞ asω ↓ ωhl
i = 0. Therefore, T h(w)kukvkw

i
is an open cap, which is closed on one end, and approaches
∞ at the other end.

Example 9.5 Consider the system (1.1) with

p0(s) = s3 + 10s2 + 31s + 30,

p1(s) = s2 + 11s + 28,

p2(s) = s2 + 5s + 7, p3(s) = 1,

p12(s) = 2s + 1, p23(s) = 3s + 4,

p31(s) = s + 5, p123(s) = 1.

For u = 1, v = 2 and w = 3, Fig. 16 can be plotted, and
� = �1

1 = (0, ω1r
1 ], where ω1r

1 = ωr
1 ≈ 1.8606. It can

be seen that �1
1 is of type N 3

<∗, and the corresponding T h
i

consists of a lattice of open caps, one of which is shown in
Fig. 17.

Case ii) �h
i ⊂ �mn

M , m �= n
In this case, for each ω ∈ �h

i , there are two τw-maximal
intervals [τ a

w, τ
b
w] and [τ c

w, τ
d
w], τ a

w < τ b
w < τ c

w < τ d
w <

τ a
w + 2π/ω, and

Type(ω, τ a
w) = Type(ω, τ b

w) = m,

Type(ω, τ c
w) = Type(ω, τ d

w) = n.

Similar to (9.1), (9.2) and (9.3), we may define

T (w)kukv±
ω,[τa

w,τ
b
w] =

⋃

τa
w≤τw≤τ b

w

{(τ1, τ2, τ3) | τu

= τ ku±
u (ω, τw), τv = τ kv±

v (ω, τw)}, (9.4)

T (w)kukv±
ω,[τ c

w,τ
d
w] =

⋃

τ c
w≤τw≤τ d

w

{(τ1, τ2, τ3) | τu = τ ku±
u (ω, τw), τv

= τ kv±
v (ω, τw)}, (9.5)

T (w)kukvkw±
ω,[τa

w,τ
b
w] = T (w)kukv±

ω,[τa
w+2kwπ/ω,τ b

w+2kwπ/ω], (9.6)

T (w)kukvkw±
ω,[τ c

w,τ
d
w] = T (w)kukv±

ω,[τ c
w+2kwπ/ω,τ d

w+2kwπ/ω], (9.7)
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Fig. 15 A semi-open pipe for
the system given in Example 9.4
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Fig. 16 Mg(ω), Ml (ω), Vl (ω), and Vg(ω) for the system given in
Example 9.5. In the range shown, Ml(ω) and Vl (ω) do not exist

and

T h(w)kukvkw±
iab =

⋃

ω∈�h
i

T (w)kukvkw±
ω,[τa

w,τ
b
w] , (9.8)

T h(w)kukvkw±
icd =

⋃

ω∈�h
i

T (w)kukvkw±
ω,[τ c

w,τ
d
w] . (9.9)

Larger patches are formed from two patches depending on
the types m and n,

T h(w)ku kvkw
iab = T h(w)kukvkw+

iab

⋃
T h(w)ku ,kv−1,kw−

iab for m = 1,

T h(w)ku kvkw
iab = T h(w)kukvkw+

iab

⋃
T h(w)ku+1,kv,kw−

iab for m = 2,

T h(w)ku kvkw
iab = T h(w)kukvkw+

iab

⋃
T h(w)ku+1,kv−1,kw−

iab for m = 3,

T h(w)ku kvkw
iab = T h(w)kukvkw+

iab

⋃
T h(w)ku kv,kw−

iab for m = 4;
and

T h(w)ku kvkw
icd = T h(w)kukvkw+

icd

⋃
T h(w)ku ,kv−1,kw−

icd for n = 1,

T h(w)ku kvkw
icd = T h(w)kukvkw+

icd

⋃
T h(w)ku+1,kv,kw−

icd for n = 2,

T h(w)ku kvkw
icd = T h(w)kukvkw+

icd

⋃
T h(w)ku+1,kv−1,kw−

icd for n = 3,

T h(w)ku kvkw
icd = T h(w)kukvkw+

icd

⋃
T h(w)ku kv,kw−

icd for n = 4.

Then

T h
i =

+∞⋃
kw=−∞

+∞⋃
kv=−∞

+∞⋃
ku=−∞

(
T h(w)kukvkw

iab

⋃
T h(w)kukvkw

icd

)
,

and therefore, T h
i consists of a lattice of surfaces T h(w)kukvkw

iab

and a lattice of surfaces T h(w)kukvkw
icd , each of which may be

considered as formed from the constant frequency curves

Fig. 17 An open cap for the
system given in Example 9.5
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T h(w)kukvkw
iab =

⋃

ω∈�h
i

T (w)kukv
ω,[τa

w+2kwπ/ω,τ b
w+2kwπ/ω],

T h(w)kukvkw
icd =

⋃

ω∈�h
i

T (w)kukv
ω,[τ c

w+2kwπ/ω,τ d
w+2kwπ/ω],

where T (w)kukv
ω,[τa

w,τ
b
w] and T (w)kukv

ω,[τ c
w,τ

d
w] are defined by (6.3), (6.5),

(6.6) or (6.7) depending on m and n. The specific geometry
may be decided with the additional information on the left
and right neighbors. The left neighbor is either ωhl

i = 0, or
�h−1

i ⊂ �k
N , k ∈ {m, n}, and the right neighbor is �h+1

i ⊂
�l

N , l ∈ {m, n}.
Case ii.a) �h−1

i ⊂ �k
N , �h+1

i ⊂ �k
N .

Type invariance (Corollary 5.2) requires k ∈ {m, n}.
Without loss of generality, assume k = n (recall �mn

M =
�nm

M ). Then as ω ↑ ωhr
i or ↓ ωhl

i , Ml(ω) → 0, τ a
w →

τ L M
w + k′2π/ω, τ b

w → τ L M
w + k′2π/ω, and each curve

T (w)kukvkw
ω,[τa

w,τ
b
w] reduces to one point. Therefore, T h(w)kukvkw

iab is

a closed surface. On the other hand, T h(w)kukvkw
icd is a connec-

tor as T (w)kukvkw
ω,[τ c

w,τ
d
w] remains a closed curve asω ↑ ωhr

i or ↓ ωhl
i .

Indeed, the maximal τw-interval [τ c
w, τ

d
w] for ω ∈ �h

i may
be considered as continuation of of [τ a

w + k′′2π/ω, τ b
w +

k′′2π/ω] for ω ∈ �h−1
i as ω passes through ωhl

i , and the
situation is similar as ω passes through ωhr

i . Therefore, the

connector T h(w)kukvkw
icd fits a hole in T h−1

i and another hole
in T h+1

i .
Case ii.b) �h−1

i ⊂ �k
N , �h+1

i ⊂ �l
N , k �= l.

Type invariance (Corollary 5.2) requires k, l ∈ {m, n}.
Without loss of generality, assume k = m, l = n. Then,
as ω ↓ ωhl

i , Ml(ω) → 0, τ c
w → τ L M

w + k′2π/ω, τ d
w →

τ L M
w + k′2π/ω, and T (w)kukvkw

ω,[τ c
w,τ

d
w] reduces to one point, while

T (w)kukvkw
ω,[τa

w,τ
b
w] remains a closed curve, and [τ a

w, τ
b
w] in�h

i may be

considered as a continuation of [τ a
w+k′′2π/ω, τ b

w+k′′2π/ω]
in �h−1

i . Similarly, as ω ↑ ωhr
i , Ml(ω) → 0, τ a

w →
τ L M
w + k′2π/ω, τ b

w → τ L M
w + k′2π/ω, and T (w)kukvkw

ω,[τa
w,τ

b
w]

reduces to one point, while T (w)kukvkw
ω,[τ c

w,τ
d
w] remains a closed

curve, and [τ c
w, τ

d
w] in �h

i may be considered as a contin-
uation of [τ a

w + k′′2π/ω, τ b
w + k′′2π/ω] in�h+1

i . Therefore,

T h(w)kukvkw
iab is a cap with one end closed, and the other end

fits a hole in T h−1
i , and T h(w)kukvkw

icd is a cap with one end
closed, and the other end fits a hole in T h+1

i .
Case ii.c) ωhl

i = 0, �h+1
i ⊂ �l

N .
Type invariance (Corollary 5.2) requires l ∈ {m, n}. With-

out loss of generality, assume l = m. Then as ω ↑ ωhr
i ,

Ml(ω) → 0, τ c
w → τ L M

w + k′2π/ω, τ d
w → τ L M

w + k′2π/ω,
and T (w)kukvkw

ω,[τ c
w,τ

d
w] reduces to one point, and T (w)kukvkw

ω,[τa
w,τ

b
w] remains

a closed curve. As ω ↓ ωhl
i = 0, both T (w)kukvkw

ω,[τa
w,τ

b
w] and

T (w)kukvkw
ω,[τ c

w,τ
d
w] approach ∞. Therefore, T h(w)kukvkw

iab is a semi-

open pipe with one end fits a hole of T h+1
i and the other end

approaches ∞, and T h(w)kukvkw
icd is an open cap with one end

closed and the other end approaches ∞.
Case iii) �h

i ⊂ �τ
G .

In this case, each piece of T h
i consists of spirals with

continuously varying pitch and a common axis. Such a piece
of surface is known as a spiral-like strip as defined below.

Definition 9.6 Let C : R × R+ → R
3 be continuous, and

C(·, ω) is a spiral with a common axis τ for anyω ∈ [ωa, ωb].
Then

T[ωa ,ωb] = {C(τ, ω) | τ ∈ R, ω ∈ [ωa, ωb]}

is known as a spiral-like strip with axis τ .

Intrinsically, whether �h
i ⊂ �G1 or �h

i ⊂ �G2, there is
no difference in terms of the geometric characteristics of the
corresponding T h

i . Similar to the case of constant frequency
curves in the form of spirals, such T h

i is most conveniently
parameterized by (ω, τw) with τ 0

w · τ �= 0, in which case,
�h

i ⊂ �G1. When τ 0
w · τ = 0, �h

i ⊂ �G2. In the following,
both cases will be discussed.

Case iii.1) �h
i ⊂ �G1

Recall in Sect. 6, that a constant frequency curve corre-
sponding to ω with τw-maximal interval (−∞,+∞) can be
described as

T (w)kukv±
ω,(−∞,+∞) =

⎧⎨
⎩(τ1, τ2, τ3)

∣∣∣∣∣∣

τw ∈ (−∞,+∞)

τu = τ
ku±
u (ω, τw)

τv = τ
kv±
v (ω, τw)

⎫⎬
⎭ .

This is a spiral with axis

τ = δtw(P
(w)
u (ω, ·))τ 0

u + δtw(P
(w)
v (ω, ·))τ 0

v + τ 0
w.

According to Proposition 8.1, τ remains constant for for ω ∈
�h

i although the pitch varies continuously withω. Therefore,
the surface

T h(w)kukv±
i =

⋃

ω∈�h
i

T (w)kukv±
ω,(−∞,+∞), (9.10)

for a given ku , kv and + or − sign is a spiral-like strip with
axis τ . These spiral-like strips are connected in various ways
to form larger surfaces according to the neighbors of �h

i to
be described below.

Case iii.1.a). �h
i ⊂ �τ

G1, �h−1
i ⊂ �k

N , �h+1
i ⊂ �k

N .
In this case, for given ku , kv and kw the two patches

T h(w)kukv+
i (corresponding to�h

i ) and T h+1,(w)kukvkw+
i (cor-

responding to �h+1
i ) is a continuous piece of surface para-

meterized by
{
(ω, τw)

∣∣∣∣
τw ∈ (−∞,+∞) for ω ∈ �h

i
τw ∈ [τ a

w(ω), τ
b
w(ω)] for ω ∈ �h+1

i

}
.

123



190 K. Gu, X. Zheng

Fig. 18 A pipe
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Same can be said about T h(w)kukv−
i and T h+1,(w)kukvkw−

i .
Consider the case of k = 1. Then from the discussion

about case ia) after Proposition 6.4, it can be easily seen
that T h+1,(w)kukvkw+

i and T h+1,(w)ku ,kv−1,kw−
i form a single

surface. As ω ↓ ω
h+1,l
i = ωhr

i , the maximal τw -intervals
[τ a
w(ω), τ

b
w(ω)] and [τ a

w(ω)+ 2π/ω, τ b
w(ω)+ 2π/ω] merge,

i.e., τ b
w(ω)− τ a

w(ω) ↑ 2π/ωhr
i . Define

τ a
w(ω

hr
i ) = lim

ω↓ωhr
i

τ a
w(ω).

Then, from continuity and periodicity, we may conclude
easily that T h(w)kukv+

i and T h(w)ku ,kv−1,−
i are connected

at (ωhr
i , τ

a
w(ω

hr
i ) + 2πkw/ωhr

i ) for kw = 0,±1,±2, . . ..
Between the connecting points are a series of holes formed
by

T (w)ku kv+
ωhr

i ,[τa
w+2πkw/ωhr

i ,τ
a
w2π(kw+1)/ωhr

i ] ∪ T (w)ku ,kv−1,−
ωhr

i ,[τa
w+2πkw/ωhr

i ,τ
a
w2π(kw+1)/ωhr

i ]
kw = 0,±1,±2, . . . (9.11)

Similarly, we can conclude that T h(w)kukv+
i and

T h(w)ku ,kv−1,−
i are also connected at (ωhl

i , τ
a
w(ω

hl
i )+2πkw/

ωhl
i ), and a series of holes are formed

T (w)ku kv+
ωhl

i ,[τa
w+2πkw/ωhl

i ,τ
a
w2π(kw+1)/ωhl

i ] ∪ T (w)ku ,kv−1,−
ωhl

i ,[τa
w+2πkw/ωhl

i ,τ
a
w2π(kw+1)/ωhl

i ]
kw = 0,±1,±2, . . . (9.12)

where

τ a
w = τ a

w(ω
hl
i ) = lim

ω↑ωhl
i

τ a
w(ω).

Therefore, in this case, the two patches T h(w)kukv+
i and

T h(w)ku ,kv−1,−
i form a pipe

T h(w)kukv
i = T h(w)kukv+

i ∪ T h(w)ku ,kv−1,−
i , if k = 1

with axis along the τ direction and two series of holes rep-
resented by (9.11) and (9.12).

Analogous analysis allows us to conclude the following:

T h(w)kukv
i = T h(w)kukv+

i ∪ T h(w)ku+1,kv,−
i , If k = 2,

T h(w)kukv
i = T h(w)kukv+

i ∪ T h(w)ku+1,kv−1,−
i , if k = 3,

T h(w)kukv
i = T h(w)kukv+

i ∪ T h(w)kukv−
i , if k = 4.

In all case, T h(w)kukv
i is a pipe that contains two series of

holes with axis τ , and T h
i consists an array of such pipes

T h
i =

+∞⋃
ku=−∞

+∞⋃
kv=−∞

T h(w)kukv
i .

Example 9.7 Consider�2
2 = (ω10, ω11) in the system given

in Example 7.4 with For u = 1, v = 2 and w = 3. It
can be verified that �2

2 is of type Gτ
33, where τ = τ 3 as

δτ3(P
(3)
1 (ω, ·) = 0, δτ3(P

(3)
2 (ω, ·) = 0. Therefore, T 2

2 con-
sists of an array of pipes with axes all along τ 3, one of these
types is shown in Fig. 18.

Case iii.1.b). �h
i ⊂ �τ

G1, �h−1
i ⊂ �k

N , �h+1
i ⊂ �l

N ,
k �= l.

Using the same approach as Case iii.1.a), we can obtain
the connection patterns, and conclude that they form a wavy
sheets with holes. The list of possibilities are listed below.

k = 1, l = 2. In this case, T h(w)kukv+
i is connected with

T h(w)ku ,kv−1,−
i at ω ↓ ωhl

i , which in turns is connected with

T h(w),ku−1,kv−1,+
i at ω ↑ ωhr

i , and so on. Therefore,

T h(w)kuv
i =

+∞⋃
k=−∞

(
T h(w),kuv+k,k,+

i ∪ T h(w),kuv+k,k−1,−
i

)

are connected with a series of holes between two neighboring
patches. This forms a wavy sheet, which roughly parallels
a plane with the normal τ × (τ 0

u + τ 0
v). Each wavy sheet

contains a series of holes.
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k = 1, l = 3. In this case, T h(w)kukv+
i connects

with T h(w)ku ,kv−1,−
i at ωhl

i , which in turn connects with

T h(w),ku−1,kv,+
i at ωhr

i , and so on. This forms the wavy sheet

T h(w)kuv
i =

+∞⋃
k=−∞

(
T h(w)kkuv+

i ∪ T h(w),k,,kuv−1,−
i

)
,

which roughly parallels the plane with the normal τ × τ 0
u

and contains an array of holes.
k = 1, l = 4. In this case, the connection is T h(w)kukv+

i

to T h(w)ku ,kv−1,−
i , and then to T h(w)ku ,kv−1,+

i , and so on.
Therefore, the wavy sheet expression is

T h(w)kuv
i =

+∞⋃
k=−∞

(
T h(w)kuv,k+

i ∪ T h(w),kuv,k−1,−
i

)
,

which roughly parallels with the plane with normal τ × τ 0
v

and contains an array of holes.
k = 2, l = 3. In this case, the connection is T h(w)kukv+

i

to T h(w)ku+1,kv,−
i , and then to T h(w)ku ,kv+1,+

i , and so on.
Therefore, the wavy sheet expression is

T h(w)kuv
i =

+∞⋃
k=−∞

(
T h(w)kuvk+

i ∪ T h(w),kuv+1,k,−
i

)
,

which roughly parallels to the plane with normal τ × τ 0
v and

contains an array of holes.
k = 2, l = 4. In this case, the connection is T h(w)kukv+

i

to T h(w)ku+1,kv,−
i , and then to T h(w)ku+1,kv,+

i , and so on.
Therefore, the wavy sheet expression is

T h(w)kuv
i =

+∞⋃
k=−∞

(
T h(w)k,kuv+

i ∪ T h(w),k+1,kuv,−
i

)
,

which roughly parallels to the plane with normal τ × τ 0
u and

contains an array of holes.
k = 3, l = 4. In this case, the connection is T h(w)kukv+

i to

T h(w)ku+1,kv−1,−
i , then to T h(w)ku+1,kv−1,+

i , and so on. This
gives the wavy sheet expression

T h(w)kuv
i =

+∞⋃
k=−∞

×
(
T h(w),kuv+k,kuv−k,+

i ∪ T h(w),kuv+k+1,kuv−k−1,−
i

)
,

which roughly parallels to plane with normal τ × (τ 0
u − τ 0

v)

and contains an array of holes.

In all these cases, T h
i consists of a series of wavy sheets

T h
i =

+∞⋃
kuv=−∞

T h(w)kuv
i .

Case iii.1.c) �h
i ⊂ �τ

G1 , ωhl
i = 0, �h+1

i ⊂ �l
N

For l = 1,

T h(w)kukv
i = T h(w)kukv+

i ∪ T h(w)ku ,kv−1,−
i ,

form an open surface. These two surfaces are connected at
a series of points corresponding to ω ↑ ωhr

i , and contains

a series of holes. As ω ↓ ωhl
i = 0, both T h(w)kukv+

i and

T h(w)ku ,kv−1,−
i approache ∞. If l = 2,

T h(w)kukv
i = T h(w)kukv+

i ∪ T h(w)ku+1,kv,−
i

form an open surface with holes. If l = 3,

T h(w)kukv
i = T h(w)kukv+

i ∪ T h(w)ku+1,kv−1,−
i

form an open surface with holes. If l = 4,

T h(w)kukv
i = T h(w)kukv+

i ∪ T h(w)kukv−
i

form an open surface with holes. In all cases, T h
i consists an

array of such open surfaces

T h
i =

+∞⋃
ku=−∞

+∞⋃
kv=−∞

T h(w)kukv
i .

Case iii.2) �h
i ⊂ �τ

G2
In this case, for each ω ∈ �h

i , there are two τw-maximal
intervals [τ a

w, τ
b
w] and [τ c

w, τ
d
w], τ a

w < τ b
w < τ c

w < τ d
w <

τ a
w + 2π/ω, and

Type(ω, τ a
w) = Type(ω, τ d

w) = m,

Type(ω, τ b
w) = Type(ω, τ c

w) = n,

for some m �= n.
Similar to Case ii) with �h

i ⊂ �M , we may define the

curves T (w)kukvkw±
ω,[τa

w,τ
b
w] and T (w)kukvkw±

ω,[τ c
w,τ

d
w] by (9.4), (9.5), (9.6)

and (9.7), from which we can define the patches of surface
T h(w)kukvkw±

iab and T h(w)kukvkw±
icd by (9.8) and (9.9). Similar

to the constant frequency curves discussed in case ii) after
Proposition 6.4, the patches T h(w)kukvkw±

iab and T h(w)kukvkw±
icd

are connected to form two arrays of larger patches T h(w)kuvkw
iab

and T h(w)kuvkw
icd that extend infinitely in the τ direction and

are confined to certain finite range in other directions. The
connection pattern and direction τ are determined by the
types m and n. In the following, all possible combinations
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of m and n are listed. Without loss of generality, we list only
the case of m < n. The case of m > n may be deduced
by replacing [τ a

w, τ
b
w] and [τ c

w, τ
d
w] with [τ c

w, τ
d
w] and [τ a

w +
2π/ω, τ b

w + 2π/ω].

a) If m = 1, n = 2, then T h(w)kukvkw+
iab is connected

with T h(w)ku ,kv−1,kw−
iab , which in turn connects with

T h(w)ku−1,kv−1,kw+
iab , and so on, which gives the expres-

sion

T h(w)kuvkw
iab =

+∞⋃
k=−∞

(
T h(w)kuv+k,kvkw+

iab ∪ T h(w)kuv+k,k−1vkw−
iab

)
.

Similarly, we can write

T h(w)kuvkw
icd =

+∞⋃
k=−∞

(
T h(w)kuv+k,kvkw+

icd ∪ T h(w)kuv+k,k−1vkw−
icd

)
.

As will be seen later on, T h(w)kuvkw
iab and T h(w)kuvkw

icd are
spiral-like strips with axis

τ = τ 0
u + τ 0

v.

b) If m = 1, n = 2, then the two spiral-like strips are

T h(w)kuvkw
iab =

+∞⋃
k=−∞

(
T h(w)k,kuv,kw+

iab ∪ T h(w)k,kuv−1,kw−
iab

)
,

T h(w)kuvkw
icd =

+∞⋃
k=−∞

(
T h(w)k,kuv,kw+

icd ∪ T h(w)k,kuv−1,kw−
icd

)
,

and the axis is

τ = τ 0
u .

c) If m = 1, n = 3, then the two spiral-like strips are

T h(w)kuvkw
iab =

+∞⋃
k=−∞

(
T h(w)kuvkkw+

iab ∪ T h(w)kuv,k−1,kw−
iab

)
,

T h(w)kuvkw
icd =

+∞⋃
k=−∞

(
T h(w)kuvkkw+

icd ∪ T h(w)kuv,k−1,kw−
icd

)
,

and the axis is

τ = τ 0
v.

d) If m = 1, n = 4, then the two spiral-like strips are

T h(w)kuvkw
iab =

+∞⋃
k=−∞

(
T h(w)kuvkkw+

iab ∪ T h(w)kuv+1,k,kw−
iab

)
,

T h(w)kuvkw
icd =

+∞⋃
k=−∞

(
T h(w)kuvkkw+

icd ∪ T h(w)kuv+1,k,kw−
icd

)
,

and the axis is

τ = τ 0
v.

e) If m = 2, n = 3, then

T h(w)kuvkw
iab =

+∞⋃
k=−∞

(
T h(w)kkuvkw+

iab ∪ T h(w)k+1,kuv,kw−
iab

)
,

T h(w)kuvkw
icd =

+∞⋃
k=−∞

(
T h(w)kkuvkw+

icd ∪ T h(w)k+1,kuv,kw−
icd

)
,

τ = τ 0
u .

f) If m = 3, n = 4, then the two spiral-like strips are

T h(w)kuvkw
iab =

+∞⋃
k=−∞

×
(
T h(w)k,kuv−k,kw+

iab ∪ T h(w)k+1,kuv−k−1,kw−
iab

)
,

T h(w)kuvkw
icd =

+∞⋃
k=−∞

×
(
T h(w)k,kuv−k,kw+

icd ∪ T h(w)k+1,kuv−k−1,kw−
icd

)
,

and the axis is

τ = τ 0
u − τ 0

v.

To see that T h(w)kuvkw
iab and T h(w)kuvkw

icd are indeed spiral-
like strips, it can be seen that they can equivalently consid-
ered as formed from the spirals (constant frequency curves)
discussed in Case ii) after Proposition 6.4,

T h(w)kuvkw
iab =

⋃

ω∈�h
i

T (w)kuv
ω,[τa

w+2πkw/ω,τ b
w+2πkw/ω],

T h(w)kuvkw
icd =

⋃

ω∈�h
i

T (w)kuv
ω,[τ c

w+2πkw/ω,τ d
w+2πkw/ω].

The spiral-like strips T h(w)kuvkw
iab and T h(w)k′

uvk′
w

icd for some
k′

uv and k′
w are further connected. The connection pattern

depends on the neighbors of �h
i . There are three possible

cases.
Case iii.2.a) �h

i ⊂ �τ
G2 , �h−1

i ⊂ �k
N , �h+1

i ⊂ �k
N .

Type invariance (Corollary 5.2) requires k ∈ {m, n}. If
k = m, then as ω ↑ ωhr

i or ↓ ωhl
i , Vl → 0, and τ b

w → τ LV
w ,

τ c
w → τ LV

w , and the two maximal τw-intervals [τ a
w, τ

b
w] and

[τ c
w, τ

d
w] merge to become one interval in �h−1

i or �h+1
i . As
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a result, the two spiral strips T h(w)kuvkw
iab and T h(w)kuvkw

icd form
a surface

T h(w)kuvkw
i = T h(w)kuvkw

iab ∪ T h(w)kuvkw
icd .

This surface has the shape of a pipe with two series of holes
corresponding to ω = ωhl

i and ωhr
i . At ω = ωhl

i , the holes
are defined by the two spirals

lim
ω↓ωhl

i

T (w)kuv
ω,[τa

w+2πkw/ω,τ b
w+2πkw/ω]

and

lim
ω↓ωhl

i

T (w)kuv
ω,[τ c

w+2πkw/ω,τ d
w+2πkw/ω]

in view of the fact that these two spirals touch each other at
the parameter τ b

w = τ c
w. The holes corresponding toω = ωhr

i
are similarly formed from two spirals.

Similarly, if k = m, then as ω ↑ ωhr
i or ↓ ωhl

i , Vl → 0,
and τ d

w → τ LV
w , τ a

w + 2π/ω → τ LV
w , and the two maximal

τw-intervals [τ c
w, τ

d
w] and [τ a

w+2π/ω, τ b
w+2π/ω] merge to

become one interval in�h−1
i or�h+1

i . Therefore, T h(w)kuvkw
icd

and T h(w),kuv,kw+1
iab forms a pipe

T h(w)kuvkw
i = T h(w)kuvkw

icd ∪ T h(w),kuv,kw+1
iab ,

with two series of holes formed by the spirals expressed
as T (w)kuv

ω,[τ c
w+2πkw/ω,τ d

w+2πkw/ω] and

T (w)kuv
ω,[τa

w+2π(kw+1)/ω,τ b
w+2π(kw+1)/ω] as ω ↓ ωhl

i and ↑ ωhr
i .

Obviously, T h
i consists an array of such pipes,

T h
i =

+∞⋃
kuv=−∞

+∞⋃
kw=−∞

T h(w)kuvkw
i .

Case iii.2.b) �h
i ⊂ �τ

G2 , �h−1
i ⊂ �k

N , �h+1
i ⊂ �l

N ,
k �= l.

Type invariance (Corollary 5.2) requires either k = m,
l = n or k = n, l = m.

First consider k = m, l = n. In this case, as ω ↓ ωhl
i ,

Vl → 0, and τ b
w → τ LV

w , τ c
w → τ LV

w , and the two max-
imal τw-intervals [τ a

w, τ
b
w] and [τ c

w, τ
d
w] merge to become

one interval in �h−1
i . Therefore, T h(w)kuvkw

iab is connected

with T h(w)kuvkw
icd with a series of holes formed by the two

spirals corresponding to ωhl
i . As ω ↑ ωhr

i , Vl → 0, and
τ d
w → τ LV

w , τ a
w + 2π/ω → τ LV

w , and the two maximal
τw-intervals [τ c

w, τ
d
w] and [τ a

w + 2π/ω, τ b
w + 2π/ω] merge

to become one interval in �h+1
i , and T h(w)kuvkw

icd is con-

nected with T h(w),kuv,kw+1
iab with a series of holes formed

by two spirals corresponding to ωhr
i . Considering ω ↓ ωhl

i

again, we may conclude that T h(w),kuv,kw+1
iab is connected with

T h(w),kuv,kw+1
icd . Continue this process, we realize that

T h(w)kuv
i =

+∞⋃
kw=−∞

(
T h(w)kuvkw

iab ∪ T h(w)kuvkw
icd

)
(9.13)

is a wavy sheet. This sheet is roughly parallel to the plane
with normal of τ 0

w × τ .
For k = n and l = m, we may similarly conclude that

(9.13) is a wavy sheet. In both cases, T h
i consists of a series

of such wavy sheets

T h
i =

+∞⋃
kuv=−∞

T h(w)kuv
i .

Case iii.2.c) ωhl
i = 0, �h+1

i ⊂ �l
N .

Consider ω ↑ ωhr
i . Then for l = n, we see that T h(w)kuvkw

icd

and T h(w),kuv,kw+1
iab are connected to form a surface

T h(w)kuvkw
i = T h(w)kuvkw

icd ∪ T h(w),kuv,kw+1
iab

that contains a series of holes. Otherwise, i.e., l = m, then
T h(w)kuvkw

iab and T h(w)kuvkw
icd are connected to form a surface

T h(w)kuvkw
i = T h(w)kuvkw

iab ∪ T h(w)kuvkw
icd

that contains a series of holes. In either case, asω ↓ ωhl
i = 0,

T h(w)kuvkw
i approaches ∞. Therefore, T h(w)kuvkw

i is an open
surface that contains a series of holes. Obviously, T h

i consists
of an array of such open surfaces

T h
i =

+∞⋃
kuv=−∞

+∞⋃
kw=−∞

T h(w)kuvkw
i .

10 The remaining case

In this section, we will consider the case �h
i ⊂ �kk

M , which
has not been covered in Theorem 9.1.

In this case, Type invariance (Corollary 5.2) requires the
right neighbor must be�h+1

i ⊂ �k
N , and the left neighbor be

either�h−1
i ⊂ �k

N or ωhl
i = 0. Similar to Case ii) of Sect. 9,

we may form the patches T h(w)kukvkw
iab according to k,

T h(w)ku kvkw
iab = T h(w)ku kvkw+

iab

⋃
T h(w)ku ,kv−1,kw−

iab for k = 1,

T h(w)ku kvkw
iab = T h(w)ku kvkw+

iab

⋃
T h(w)ku+1,kv,kw−

iab for k = 2,

T h(w)ku kvkw
iab = T h(w)ku kvkw+

iab

⋃
T h(w)ku+1,kv−1,kw−

iab for k = 3,

T h(w)ku kvkw
iab = T h(w)ku kvkw+

iab

⋃
T h(w)ku kv,kw−

iab for k = 4,
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where T h(w)kukvkw±
iab are defined in (9.8). Equivalently,

T h(w)kukvkw
iab may be considered as formed by constant fre-

quency curves

T h(w)kukvkw
iab =

⋃

ω∈�h
i

T (w)kukv
ω,[τa

w+2kwπ/ω,τ b
w+2kwπ/ω].

These constant frequency curves are closed curves. Similarly,
T h(w)kukvkw

icd is also a patch formed by closed curves

T h(w)kukvkw
icd =

⋃

ω∈�h
i

T (w)kukv
ω,[τ c

w+2kwπ/ω,τ d
w+2kwπ/ω].

However, the determination of the geometric form of
T h(w)kukvkw

iab and T h(w)kukvkw
icd may not be completely deter-

mined by its neighbors. The additional information needed is
whether Vl(ω) = 0 or Ml(ω) at ω = ωhr

i , and ωhl
i in the case

of�h−1
i ⊂ �k

N . We will consider each case in the following.
Case i) ωhl

i = 0, Vl(ω
hr
i ) = 0.

In this case, as ω ↑ ωhr
i , either τ c

w − τ b
w −→ 0, and

the two intervals [τ a
w, τ

b
w] and [τ c

w, τ
d
w] merge into a single

interval, or τ a
w + 2π/ω − τ d

w → 0 , and the two inter-
vals [τ c

w, τ
d
w] and [τ a

w + 2π/ω, τ b
w + 2π/ω] merge into a

single interval. In either case, T (w)kukv
ω,[τa

w+2kwπ/ω,τ b
w+2kwπ/ω] and

T (w)kukv
ω,[τ c

w+2kwπ/ω,τ d
w+2kwπ/ω] remain closed curves as ω ↑ ωhr

i ,

although either T (w)kukv
ω,[τa

w+2kwπ/ω,τ b
w+2kwπ/ω] and

T (w)kukv
ω,[τ c

w+2kwπ/ω,τ d
w+2kwπ/ω], or T (w)kukv

ω,[τ c
w+2kwπ/ω,τ d

w+2kwπ/ω] and

T (w)kukv
ω,[τa

w+2(kw+1)π/ω,τ b
w+2(kw+1)π/ω] are on the verge of merg-

ing into one single closed curve. As ω ↓ ωhl
i = 0,

T (w)kukv
ω,[τa

w+2kwπ/ω,τ b
w+2kwπ/ω] and T (w)kukv

ω,[τ c
w+2kwπ/ω,τ d

w+2kwπ/ω]
both approach ∞. Therefore, T h(w)kukvkw

iab and T h(w)kukvkw
icd

are semi-open pipes. As a result,

T h
i =

+∞⋃
ku=−∞

+∞⋃
kv=−∞

+∞⋃
kw=−∞

(
T h(w)kukvkw

iab

⋃
T h(w)kukvkw

icd

)

is two lattices of semi-open pipes, and pairs of such semi-
open pipes are on the verge of merging together on one end.

Case ii) ωhl
i = 0, Ml(ω

hr
i ) = 0.

In this case, as ω ↑ ωhr
i , either τ b

w − τ a
w → 0 and

T (w)kukv
ω,[τa

w+2kwπ/ω,τ b
w+2kwπ/ω] reduces to one point, or τ d

w −
τ c
w → 0 and T (w)kukv

ω,[τ c
w+2kwπ/ω,τ d

w+2kwπ/ω] reduces to one

point. As ω ↓ ωhl
i = 0, T (w)kukv

ω,[τa
w+2kwπ/ω,τ b

w+2kwπ/ω] and

T (w)kukv
ω,[τ c

w+2kwπ/ω,τ d
w+2kwπ/ω] both approach ∞. Therefore, one

among T h(w)kukvkw
iab and T h(w)kukvkw

icd is an open cap, the other
is semi-open pipe.

Case iii) Vl(ω
hl
i ) = 0, Vl(ω

hr
i ) = 0.

In this case, T (w)kukv
ω,[τa

w+2kwπ/ω,τ b
w+2kwπ/ω] and

T (w)kukv
ω,[τ c

w+2kwπ/ω,τ d
w+2kwπ/ω] remain as closed curves as ω ↑

ωhr
i and ↓ ωhl

i . Therefore, both T h(w)kukvkw
iab and T h(w)kukvkw

icd
are connectors, although they are on the verge of merging on
both ends. The merging could be the same two connectors or
two different connectors on the two ends.

Case iv) Vl(ω
hl
i ) = 0, Ml(ω

hr
i ) = 0.

In this case, as ω ↑ ωhr
i , one of the two closed curves

T (w)kukv
ω,[τa

w+2kwπ/ω,τ b
w+2kwπ/ω] and T (w)kukv

ω,[τ c
w+2kwπ/ω,τ d

w+2kwπ/ω]
reduces to one point, and the other remains closed curve.
As ω ↓ ωhl

i , two closed curves are on the verge of merging

together. Therefore, T h(w)kukvkw
iab and T h(w)kukvkw

icd consist of
one cap and one connector. Pairs of cap and connectors are
on the verge of merging.

Case v) Ml(ω
hl
i ) = 0, Vl(ω

hr
i ) = 0.

This is very similar to Case iv) except on the opposite
sides.

Case vi) Ml(ω
hl
i ) = 0, Ml(ω

hr
i ) = 0.

Using the similar analysis, we may easily conclude
that T (w)kukv

ω,[τa
w+2kwπ/ω,τ b

w+2kwπ/ω] and T (w)kukv
ω,[τ c

w+2kwπ/ω,τ d
w+2kwπ/ω]

either consist of two caps or one connector one closed sur-
face.

Example 10.1 Consider �2
1 = (ω3, ω4) in the system given

in Example 7.4. For u = 1, v = 2 and w = 3, it can be
verified that�2

1 is of type M11
11 , and Ml(ω3) = 0, Vl(ω4) = 0,

which is case v) above. Therefore, T 2
1 consists of one cap and

one connector, and they touch each other at ω4 as shown in
Fig. 19. Asω increases beyondω4, the two curves merge into
one. The surfaces in this figure matches the one in Figure 12
without seam.

11 Stability analysis example

To illustrate how the above results can be used to conduct sta-
bility analysis, we will analyze the system with characteristic
equation

�(s) = 0, (11.1)

where �(s) is given in (1.1) with

p0(s) = s3 + 3s + 7, (11.2)

p1(s) = s2 + 3s + 1, (11.3)

p2(s) = 4s + 3, (11.4)

p3(s) = s2 + s + 0.1, (11.5)

p12(s) = 1, (11.6)

p23(s) = 0.5s + 0.5, (11.7)

p31(s) = s + 1, (11.8)

p123(s) = 0.5. (11.9)
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Fig. 19 Cap-connector
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Fig. 20 Vg , Vl , Mg and Ml vs
ω for the system with
coefficients (11.2–11.9)

The idea is very similar to Section VII of [22]. Specifically,
as �(s) depends on s and (τ1, τ2, τ3), (11.1) defines s as an
implicit function of (τ1, τ2, τ3). Let (τ ∗

1 , τ
∗
2 , τ

∗
3 ) be a point

on a surface of the stability crossing set, and let s = jω∗
satisfy

�( jω∗) = 0

when the delays are equal to (τ ∗
1 , τ

∗
2 , τ

∗
3 ). Let ξ = (ξ1, ξ2, ξ3)

be a unit vector in the delay parameter space that is not tan-
gent to the surface. Then, if the real part of the directional
derivative

Re

[
∂s

∂ξ

]
τk=τ∗

k ,k=1,2,3
s= jω∗

= Re

[
3∑

k=1

∂s

∂τk
ξk

]

τk=τ∗
k ,k=1,2,3

s= jω∗

> 0,

(11.10)

then a pair of roots of �(s) cross the imaginary axis from
left to the right, thus increasing the right-half-plane roots by
two, when the delays (τ1, τ2, τ3) crosses the surface along

the direction of ξ . The crossing is in the opposite direction if
the inequality in (11.10) is opposite.

Figure 20 shows Vg , Vl , Mg and Ml vsω, from which it can
be easily identified that [ω1, ω2) ⊂ �N3, [ω2, ω3] ⊂ �N2,
(ω3, ω4) ⊂ �G1, [ω4, ω5] ⊂ �N2, (ω5, ω6] ⊂ �N3. It
can be checked that the boundaries are all type 3. Therefore,
[ω1, ω3] corresponds to caps, (ω3, ω4) corresponds to pipes,
and [ω4, ω6] corresponds to caps, where

ω1 = 0.4642566,

ω3 = 1.5413434,

ω4 = 2.4298395,

ω6 = 3.9809737.

Therefore, the stability crossing set consists of the cap-pipe-
cap combinations.

Using the method developed in this article, the stability
crossing set is parameterized and plotted in Fig. 21. There
are some small structures that are not easily seen from this
diagram. Using the Routh-Hurwitz criterion, it can be easily
calculated that the system is stable when all the delays are set
to zero. By considering the crossing direction, it can be shown
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Fig. 21 Stability crossing set
for the system with coefficients
(11.2–11.9). Only complete
cap-pipe-cap combinations
within the parameter range are
shown

Fig. 22 Cross section of the
stability crossing set with
τ3 = 0 for the system with
coefficients (11.2–11.9)
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Fig. 23 Cross section of the
stability crossing set with
τ3 = 1 for the system with
coefficients ( 11.2–11.9)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5
τ

3
=1

τ 2

τ
1

+4

+4

+6+4+4

+4
+2

123



Stability crossing set for systems with three scalar delay channels 197

that �(s) has two right-half-plane roots when the delays are
outside of the cap-pipe-cap combination.

To see the picture more clearly, we may plot out some
cross sections. Figures 22 and 23 show the cross section of
the stability crossing set with τ3 = 0 and 1, respectively. By
calculating the crossing direction at certain strategic loca-
tions, the number of right-half-plane roots in each region are
calculated, and they are shown in the diagrams. It is seen that
there are three stable regions for τ3 = 0. For τ3 = 1, the
system is unstable for all τ1-τ2 combination.

12 Conclusions and an open problem

A general system with three scalar-delay channels has a
characteristic function that contains cross terms that involve
the sum of different delays in the expoenents. The stabil-
ity cross set of such a system contains elements, such as
pipes and wavy sheets, that are similar to those for systems
without cross terms. However, the elements here are much
more rich in the following sense: 1. There are more possi-
ble orientations of, for example, the pipes and wavy sheets
that are not possible in the systems without cross terms;
2. There is a new type of maximal interval �M that may
correspond to two different elements, such as connector-
cap.

Up to now, we have not found any system that contains
�lk

M with l �= k. It is certainly interesting to either find such
a system or prove such a system does not exist.
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