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Abstract In this paper, a numerical approach is developed
for the stability analysis of linear stochastic delay differ-
ential equations (SDDEs) in the parameter space based on
the Chebyshev Spectral Continuous Time Approximation
(CSCTA) technique. The CSCTA method is used to approx-
imate an infinite-dimensional linear SDDE as a set of lin-
ear stochastic differential equations (SDEs). The mean and
mean-square stability concepts are employed for the stochas-
tic stability analysis of the resulting SDE. For this purpose, a
set of linear deterministic differential equations for both the
first and second moments are obtained using the Ito differ-
ential rule. Two examples are provided: a first order SDDE
with multiplicative stochastic excitation and a second order
SDDE with both additive and multiplicative stochastic exci-
tation. In both examples the stability charts obtained from the
proposed approach match those obtained using the stochas-
tic semi-discretization method as described by Elbeyli et al.
(Commun Nonlinear Sci Numer Simul 10(1):85-94, 2005).
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In the first example the stability results obtained from both
numerical approaches are found to be less conservative than
the Lyapunov-based stability region obtained by Samiei et
al. (Int J Dyn Control 1(1):64-80, 2013).
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1 Introduction

Stochastic phenomena can arise in various physical and engi-
neering processes [3] such as cosmic physics [4], communi-
cation systems [5], traffic control [6], etc. They can change
the behavior of systems and lead them to instability. Thus,
investigating the stability of stochastic differential equations
(SDEs) and modeling such systems are of a great importance.
During recent decades, techniques for stability analysis of
SDEs have been developed. Some background regarding the
theory of stochastic systems can be found in [7-9].
Stochastic time-delayed dynamical systems have attracted
increasing attention due to the instability and poor per-
formance that a time delay can cause, and also due to
possible stochastic resonance between the Kramers rate of
escape from a potential well and the delay [10]. There
have been a number of studies focusing on stability analy-
sis of SDDEs in the literature [11-18]. Stochastic stabil-
ity of the equilibrium solution of SDDEs can be studied
from different notions of stability including asymptotic sta-
bility [11, 12], exponential stability [13,19], moment stability
[14,15], and Lyapunov stability [2, 16,18]. Two methods that
are used to prove stability in the framework of Lyapunov’s
direct method include the Lyapunov—Krasovskii functional
and the Lyapunov—Razumikhin function. Examples of sta-
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bility analysis of SDDEs using the Lyapunov—Krasovskii
functional can be found in [2,16], while examples of the
Lyapunov—Razumikhin function are found in [2,18]. A class
of numerical techniques often used to study the stability
of time-delayed systems are discretization-based methods
in which an extended state vector is used to approximate
the infinite-dimensional state. It is known that discretization
techniques preserve asymptotic stability for delay differen-
tial equations (DDEs) [20,21]. A well-known technique of
this type is the semi-discretization method which was orig-
inally used in solid and fluid mechanics and adopted for
stability analysis of deterministic time-delayed systems in
[22]. The semi-discretization method is adapted for the sta-
bility analysis of linear SDDE:s in [1], where stability bound-
aries and steady state second order moments were stud-
ied using this approach. Rather than using equally-spaced
grid points (which is always assumed in semi-discretization),
however, the essence of pseudospectral differentiation meth-
ods lies in the utilization of unevenly spaced discretiza-
tion points with more points lumped near the boundaries.
As shown and discussed in [23], pseudospectral differenti-
ation has a major advantage over approximation techniques
that use equally-spaced grid points in its spectrally accu-
rate exponential convergence characteristics. The CSCTA
method has been used previously in multiple studies for
stability analysis [24,25] as well as system identification
in deterministic time delay systems [26-28]. Moreover, in
[29,30], the analytical convergence characteristics of the
pseudospectral Chebyshev method has been performed to
investigate the stability of equilibria and periodic solutions
of DDEs.

In this paper, we utilize the CSCTA numerical tech-
nique to approximate a general class of linear SDDEs as
a set of linear SDEs. The mean and mean-square stabil-
ity concepts are then employed for the stability analysis
of the resulting linear SDEs, where a set of linear deter-
ministic differential equations for each moment is obtained
using the Ito differential rule. Finally, stability boundaries
corresponding to the first and second moments are calcu-
lated in the parameter space by using the eigenvalue cri-
teria. The paper is organized as follows: in Sect. 2, linear
SDDE:s and the concept of moment stability is introduced. In
Sect. 3, it is shown how a linear infinite-dimensional SDDE
can be approximated as a set of linear finite-dimensional
SDEs using the CSCTA technique. The numerical stability
analysis of SDDEs using CSCTA along with the theory of
moment stability is discussed in Sect. 4. Finally in Sect. 5,
the proposed numerical approach is applied on first and sec-
ond order SDDE systems. The resulting stability boundaries
in the parameter space are compared with those obtained
using a Lyapunov-based approach shown in [2] as well as
using the stochastic semi-discretization method as presented
in [1].

2 Linear SDDEs and mth moment stability

In this section, we introduce linear SDDEs and review the
concept of mth moment stability for SDDEs. Consider a
physical process modeled as a linear, time-invariant, time-
delayed, system which is excited by a stochastic disturbance
modeled as a continuous Gaussian wide-band process which
appears in both additive and multiplicative form. The math-
ematical model can thus be described by

x(1) = Ax(?) + Ax(t — 1) + (Go + G1x ()¢ (@), t > 1o,
x(0)=9¢(), o —7 <0 <10, ey

where x(t) € R", ¢(t) € RY is the stochastic disturbance, t
is the known discrete time delay, x;(0) = x(t +6) € C([tp —
7,10], R") for tp — t < 6 < 1y is the infinite-dimensional
state residing in a Banach space of continuous functions on
the interval of length , ¢(6) is the history function on the
interval [fg — T, 9], A € R™" and A € R™*" are constant
coefficient matrices, Gg € R"*4 is the additive random exci-
tation coefficient, and G| € R"*"*4 is a third-order tensor
which represents the multiplicative random excitation coef-
ficient, i.e.. (Gx(NC(1); = 1=t S4=! Gryu 6 (@),
wherei =1,2,...,n.

£ (t) can be approximated by a zero-mean Gaussian white
noise process which is defined as a vector of stochastic
processes independent of the state with covariance matrix
Q(t), i.e. w(t) ~ N(, Q(t)). A white noise stochastic
process is formally defined as the derivative of a Brownian
motion (Weiner) process textcolorredS(¢), i.e.,

_ap®)

wi) ==

) @)

where df(t) € RY is a stochastic Brownian motion incre-
ment process with E {dB(t)} = 0, E {d,B(t)d,BT(t)} =
Q(t)dt, and E {.} represents the expectation operator. Note
that B (¢) defined on the complete probability space (£2, F, P),
where 2 is the sample space, F is the o-algebra of subsets
of the sample space, and PP is the probability measure on F.

Using the definition of Brownian motion, the physical
form in Eq. (1) with ¢(#) approximated with w(t) can be
rewritten in the equivalent integral form as

t
x(t) = x(ty) + / [Ax(s) + Ajx(s — 1)]ds
4]

t
+ / [Go + Grx()1dB(s). 3)
0]

Unlike the first integral which is a Riemann integral, the
second integral contains a stochastic integral which may be
interpreted in either the Ito or Stratonovich sense. However,
because Eq. (1) represents a physical form, the Stratonovich
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interpretation is required (see [8,9] for further discussion
on the Ito and Stratonovich interpretations of a stochastic
integral).

In order to discuss stability, however, we first transform
Eq. (3) to the equivalent Ito differential form

dx(t) = [Agx(t) + Aix(t — 1) + Cldt
+[Go + Gix(1)]dB(1), t > 1o,
x(@0) =¢©), to—t <0 <1, “4)

where (Aox(1); + Ci = (Ax(0); + 3 42} 21 St
(Gi) Qi %k, and G(x(1)) = Go + Gix(t). The term
LI ST TG Qi Bk s the Wong—Zakai cor-
rection term which appears in the Ito representation of SDEs.
to is assumed to be zero in the above equation and here-
after. It is worthy to note that the above transformation from
Stratonovich to Ito can be found in [8,9] and is formally
proved in [31].

Note that x(#) = 0 is not an equilibrium solution for Eq.
(4) since there are both constant matrix C and the additive
noise term GodB(¢) in Eq. (4). However, we instead inves-
tigate the stability of a nominal solution x(¢) for Eq. (4)
satisfying

di(t) = [Aox(t) + A x(t — 7) + Cldt
+[Go + G1x(®)]dB(t), t > 0,
x@)=¢@), —1<0=<0. )

We are interested in the stability analysis of this nominal solu-
tion. Note that x(#) = 0 can be considered as an equilibrium
point for Eq. (4) if C = 0 and Go = 0 (no additive noise).
Let x(¢) be any perturbed solution of Eq. (4). To remove
the constants C and G, we define the perturbation y(z) as
y(t) = x(t) — x(t). Thus differentiating the perturbation
using Egs. (4) and (5) yields

dy(t) = [Aoy (1) +A1y(t—D)]dt+G1y(t)dp(1), t = 0,
(6)

for which the trivial solution y(#) = 0 is an equilibrium
point. Now, we analyze the stability of the trivial solution of
Eq. (6) which implies the stability of x(¢). In addition, for
any ¢(0) € C([—7,0], R"), —t < 0 < 0, the initial value
problem of Eq. (6) (with the transformation above to y(¢) has
the solution y(¢; ¢) when it satisfies, with probability 1, the
following integral equation:

t
() = y(0) + / [Aoy(s) + A1y(s — T)lds
0
t
+ / [G1y()1dB(s) 1= 0, )
0

@ Springer

where in this equation the stochastic integral is understood
in the Ito sense. This solution is unique over the interval of
[0, t], i.e., the finite escape time is zero, since the constant
coefficient matrices of Ag, A1, G are assumed to be norm
bounded. Note that since Eq. (4) is a linear, time-invariant
SDDE over [0, #] and the coefficient matrices are bounded
the uniqueness of the solution of Eq. (4) is trivial. Existence
and uniqueness of solution of SDDEs appear in [15,32,33].

Several different modes of stochastic stability can be
defined. Lyapunov stability, stability in probability, almost
sure stability, and stability in the mth moment are various
definitions of stochastic stability. In this paper, we are inter-
ested in mth moment stability analysis of linear SDDESs, and
specifically the first and second moments stability analy-
sis. The second moment stability analysis implies stability
in probability and for linear stochastic systems, as is the case
for this paper, it implies almost sure stability. More details
about the modes of the stochastic stability and their relations
can be found in [8,34].

The following Definition describes the mth moment sta-
bility concept for Eq. (6) [8,35].

Definition 1 The trivial solution y = 0 of Eq. (6) is said to
be stable in the mth moment if for every 7o > 0 and € > O,
there exists a §(¢p, €) > O for Eq. (6) such that

sup |E{p@} <8 — |E{yt:9)"}| <e.

—7<6<0

vt >0, m >0, ®)
S1,,52 Sn

where y(1; $)" = y}' 323w’y 5 = [51, 52, s sulT s D)
1
si = m, and ||()| = (Zs(.)z)i. The nominal solution of

Eq. (5) is said to be asymptotically stable in the mth moment
if Eq. (8) holds and

Jim [ E {y@: )" }] = 0. ©)

These two concepts can be changed to the uniform stabil-
ity and uniform asymptotic stability in the mth moment if
the function § is independent of fg, i.e., 6(¢). It is worth
mentioning that the above definition of the moment stability
represents the joint moment of order m for the elements of
vector y, i.e, joint moment of order m for n random variables
Y1, Y2, ..., Yn. Moreover, after the change of variable, Def-
inition 1 still holds and the stability of the trivial solution is
not affected. The stability of the first and second moments
are known as mean and mean square stability.

3 Chebyshev spectral continuous time approximation

In the context of functional analysis, the infinite-dimensional
linear Ito SDDE of Eq. (6) can be lifted to an abstract sto-
chastic Cauchy problem in terms of the evolution of an initial
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function ¢ = Y(0) in a Banach space of continuous functions
C([—7,0],R"),ie.

a9 = (RY0) dr + (GY0)) (o), (10)

where

Aq‘):fl—(g, —-171<6 <0,

(Ae) dr + (Ge) dB(0) = (A0y(0) + A1y(~v)d
+(G1y()dp(O). 6 =0, an

in which Y(¢) is the infinite-dimensional vector, A : C — C
is the generator of the Cp-semigroup in the absence of sto-
chastic excitation and G is an infinite-dimensional stochas-
tic excitation coefficient operator. The main idea behind the
continuous time approximation (CTA) technique is that the
infinite-dimensional vector Y(¢) and operators A and G can
be approximated by finite-dimensional vectors and matrices.
Further information on the relation between the domain and
the spectrum of the solution operator can be found in [36—
38]. More discussions on semigroup approach to DDEs and
SDDEs in Banach space is also presented in [39-42]. This
represents a straight-forward extension of the abstract form of
a deterministic DDE, e.g. see [24,31,38]. As shown and dis-
cussed in [23], spectral differentiation has a major advantage
over finite difference differentiation in its spectrally accurate
exponential convergence characteristics.

A finite-dimensional approximation to Y(¢) is now defined
as

YO =Y @), Y] @)..... Y]y
Yi) = (Y@, i), ..., YL@)"

=yl (t—tio1), ys t—7i1),s .y =TT

12)

where 7,1 = 7/2(1 — t;—1) and t;—1 = cos(%) are
the unevenly spaced points corresponding to the extremum
points of the Chebyshev polynomial of the first kind [43]
of degree N defined in the interval [—1, 1]. Thus with the
Chebyshev points being defined so, the number of collocation
points willbe M = N + 1.

We now define a M x M Chebyshev spectral differentia-
tion matrix D associated with the Chebyshev points. Assum-
ing the rows and columns of D matrix are indexed from 0O to
N, the entries of the matrix will be

Dog = 2N*+1)/6, Dyy =—@2N*+1)/6,

Djj = (—tp)/2(1—1}), j=1,....,N—1

Dij = ci(~=1)" jejti — 1), i # j, i, j=0,...,N,
(13)

where ¢; = 2 fori = 0, N, otherwise ¢; = 1. The Mn x
Mn differential operator D (corresponding to n first order

SDDEs) is defined asID = D ® [,, in which I, isan x n
identity matrix and ® denotes Kronecker product. Eq. (10)
can be discretized and approximated by initially replacing
the first n rows of D by Ag and A to form a finite matrix
A which approximates the operator A. Also, G is formed by
inserting G in the top n rows of the coefficient matrix of
dpB(t) with the remaining rows equal to zero to approximate
the coefficient matrix G of dp(t),i.e.,

dyY(t) Yi(t)
dY> (1) Ap0...04; ]| 20
: = [%[D(n+1:nM,:)]:| . dt
dYy (1) Yy (1)
GY1(1)
Onxq
+ : dp(t). (14)
On;<q

Note that the superscript (n + 1 : Mn, :) on DD refers to the
fact that only rows of D lying between n+ 1 and M n are writ-
ten into the remaining n(M — 1) x Mn elements of the matrix
A . The % factor in front of D in Eq. (14) is a normalization
factor which accounts for the rescaling of the standard collo-
cation expansion interval [—1, 1] to the interval [0, t]. There-
fore, the infinite-dimensional linear SDDE of Eq. (4) can be
converted into a large system of finite-dimensional linear
SDEs using the CSCTA technique, in which the dimension
of Eq. (14) depends on the order of the Chebyshev grid used.
As the estimate of the error bounds for the collocation poly-
nomial and characteristic roots of constant-coefficient DDEs
using Chebyshev collocation points studied in [29] show that
the accuracy exponentially increases with the degree N of the
collocation polynomial. Thus, a larger grid results in better
accuracy of the SDE approximation of the original SDDE.

4 Stability analysis of CSCTA SDE approximation

The purpose of this section is in establishing a framework for
the stability analysis of Eq. (14) for the mth moment stability
concept presented in Definition 1. The Mn-dimensional lin-
ear Ito SDE of Eq. (14) with an initial condition of Y (fy) = Yo
can be rewritten as

dYi(t) = A Y (0)dt + {GLin{Y () }1dBe (1), t > to,

(15)

where A;;Y;(t) are the drift coefficients and {G};;x {Y (¢)};
are the diffusion coefficients.

The moment stability of Eq. (15) can be concluded if the
moments of all orders are stable. However, there is an ambi-
guity in determining the stability of all moments since there
are an infinite number of moments. For example, for a cer-
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tain values of the system parameters, a system can be stable
for the first p moments, where p > 0 represents the pth
moment stability, while the higher order moments, can be
still unstable (see [8] for a more detailed example). Thus, we
will only focus our attention on the study of the mean and
mean-square stability of SDDEs. The other justification is
that the mean-square stability condition implies almost sure
stability condition for the special case of linear SDDEs as
in Eq. (15) [8,34,35]. Thus, we can conclude that the mean-
square stability can provide an acceptable measure for the
stability analysis of Eq. (15). On the other hand, Eq. (15)
is assumed to be excited by the Brownian motion increment
process df(t) with the properties discussed in Sect. 2. There-
fore, the moment equations, which will be obtained in this
section, are deterministic which makes the stability analysis
of Eq. (16) more tractable.

As discussed in [8], mean stability conditions are weak
criteria since they do not yield any information about the
sample stability. However, they can be considered as a nec-
essary condition for the mean-square stability analysis. The
mean-square stability analysis, on the other hand, can provide
sufficient conditions for the stability of SDDEs. It is worth
mentioning that determining the mean and mean-square sta-
bility conditions of Eq. (15) by using Definition 1 is also a
challenging task. To analyze the stability of the system in the
time domain, we employ the Ito differential rule to a scalar
function.

Assume F(Y) is a scalar function which is twice differen-
tiable with respect to the components of Y (¢). By applying
the Ito differential rule to F(Y') along Eq. (15) and assuming
that the correlation matrix Q is a constant matrix, we can
obtain

oF
dF(Y) = (LyF)dr + W({G}ilk{y(t)}l)dﬁk(t)’ (16)

where L is the generating differential operator of Y defined
as

32

3Y,9Y.)’ a7

0 1
Ly = (Aijyj(t))a_)’i + 5 0ikOzk
where ojro.x = Gk QxrGy, r = 1,2,...,q and G =
{G}ik{Y (¢)};. Taking the expected value of Eq. (16) yields

dETM} _

ar {LyF(M)}. (18)

Note that since obtaining the stability conditions of linear
SDDEs either analytically or numerically using Definition 1
is a challenging task, the scalar function F and the operator
L are employed to investigate the stability of the system.

Now as in [34], let us consider F to be

YoM (19)

F) =Y\ YY ... Yy

@ Springer

where s;, i = 1,2,..., (Mn) are nonnegative integers and
m = ng s; 1s a positive integer. Keeping m fixed and
trying different compositions of s; powers, yields a set of
deterministic equations for various mth moments. Placing
this set in a vector form, results in a new vector F(Y) of
various mth moment equations for Eq. (15) as

FY)=1[3F1,3,...,3Fp], (20)

whereJ;, i=1,2,...,P,P = an are components
of the vector F and obtained by trying different compositions
of s; powers in Eq. (19). Differentiating the elements of Eq.
(20) using the Ito differential rule defined in Eq. (16), we can
obtain a system of P first order linear ordinary differential
equations in a vector form for the various mth moments which
in general can be expressed as

dE{F(Y)}

ar =AE{F(Y)}, 2n

where A is a constant matrix of the elements of A;;, and Gy
Then we can conclude that Eq. (15) is mth moment asymptot-
ically stable if the eigenvalues of A in Eq. (21) are in the left
half plane. It should be noted that the mth moment asymp-
totic stability of Eq. (15) can be also investigated using other
stability methods such as the Lyapunov method or Routh-
Hurwitz criteria.

Since in this paper we are interested in the mean and mean-
square stability analysis of Eq. (15), the following two sub-
sections devoted to stability analysis of the mean and mean-
square in more detail.

4.1 Mean stability condition

To obtain the mean stability condition of Eq. (15), we set
m = 1 and F from Eq. (20) is defined as

FXY)=[Y1,Y2, ..., Yl (22)

Differentiating elements of Eq. (22) using the Ito differen-
tial rule expressed in Eq. (16) by considering the fact that
#;Yz) = 0 and the taking the expected value of the result-
ing equation, we can obtain

E{Y|(1)} E{Y (1)}
d | E{r2(0)} Ap0...0 A E{Y>(1)}
E = %[]D)(n+l:nM,:)] : ’
E{Ypy(6)} E{Yp (1)}
(23)
which can be rewritten as
@ = AE{F(Y)}. 24)



Numerical stability of linear stochastic delay differential equations

215

where

_|:A00...0A]:| 05)

%[D(n-i-l:nM,:)]

Thus the mean stability condition of the SDEs is guaranteed
if the eigenvalues of .A are in the left half plane.

As we discussed in this section, the mean stability is a
weak criterion for the stability analysis of SDDEs. How-
ever, it can provide a necessary condition for the mean-square
asymptotic stability. The following subsection discusses the
mean-square asymptotic stability in more detail.

4.2 Mean square stability

The mean square stability condition can be obtained if we
choose m = 2 and the vector of mean-square moments F
from Eq. (20) as

FY) =[Y3, Y1 Y2, ... Y1 Yy, Y3, Y2 Y3, ...,
Yo Y (atnys - -+ Ypum)- (26)

For applying Eq. (16) to the elements of Eq. (26), the follow-
ing terms need to be obtained in advance:

r aY?
fﬂ:ﬁ
AY, Y
0FY) _ | 2= 5
Y, :
av?,,
LTp =0
[2Y; 000 ... O
Y, Y00 ... O
= . , . (27)
L0 000 ... 2Y0m g
[[20...07]
00 O
|00 0|
2Y? [01...07]
aY;0Y, 10 0
Y Y,
IF(Y) 3Y;0Y, oL
= = Lo (28)
aY;0Y, :
- (00 0]
av?, .
aY; Y, :
[00...07]
00 O
L _OO 2— < (PMn)x(Mn)

Substituting the above derivatives into Eq. (16) and after
some manipulation, we can obtain a set of first order lin-
ear differential equations grouped in a vector as in Eq. (21),
and then the mean-square stability of the system can be con-
cluded if the eigenvalues of A expressed in Eq. (21) are in
the left half plane.

5 Examples
5.1 First order linear stochastic time-delayed system

Consider a scalar version of Eq. (1) with only multiplicative
stochastic excitation as

XxX=ax({t)+bx(t—1)+ox()w(),t >0
x(@0)=¢0),—-1<6=<0 (29)

where x(t) € R, t = 1 is a positive constant discrete delay,
the parameters a, b, o} are deterministic constant scalars, and
where the wide-band stochastic excitation process is approxi-
mated with a white noise process w(t) ~ N (0, 5. Equation
(29) can be expressed in the Ito differential form as

dx = (ax(t) + bx(t — v))dt + o1x(t)dB(t), t > 0,
x(0) =¢®), -t <6 <0, (30)

where a = a + %62012 and dB(t) € R is a stochastic
Brownian motion increment process with E {d8(¢)} = 0 and
E {dﬁz(z‘)} = o2dt. In addition, we set o = 5 07. Equation
(30) can be approximated by a finite dimensional stochas-
tic system using an adequate number of collocation points
(which here is N = 5 for the chosen tolerance as will be
shown) as shown in Eq. (14). Then as in Sect. 4, the stability
of the resulting finite-dimensional stochastic system reduces
to the stability conditions for the first and second moments.

The differential equation for the mean-square stability is
obtained by using F(Y) = Y in Eq. (16) or simply by taking
the expected value of the finite-dimensional representation of
the system as given by Eq. (14). Therefore, since we assumed
the Brownian increment motion to be zero mean, the first
moment stability condition reduces to the stability condition
of the deterministic finite-dimensional system as in Eq. (21).

In this example for N = 5 collocation points the differen-
tial equation for the second moments can be obtained from
Eq. (16) by letting

FO) =Y VP .. Y 31)

where s1 + 52 + - - - + s¢ = 2. The moment stability of the
system can be studied by means of the eigenvalues of the
second moment differential equation.

A convergence study shows that the sufficient number of
collocation points for the mean square stability boundaries
to converge with visually indistinguishable results is N = 5
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Fig. 1 The convergence of the 5 T T T T T T T T T |
mean square stability 1 i . .
boundaries for the stochastic 4r
DDE of Eq. (30) with 7 = 1 (s) N=
shows 5 Chebyshev collocation 3t N=4
points is sufficient for visually ok
indistinguishable results 2t
1 -
o _3F
= O
-1
4f
-2
-3
-5
4 3
-5 L 1 L L 1
5 4 -3 2 -1 0} 1 2 3 4 5
a
5 5 . . . : .
4t \\\ First moment 1 4 First moment |
\\\ _____ Second moment | | N~ = Second moment
3 ~ 1 3
\\\ — Lyapunov-based
ot RN Unstable . 9l _
1r \\\ 1 1 J
Stabl L Stable
< g able \\ | o 0 |
! 3
-1r ’// b -1 b i
2r ’,// B 9 i
d/"
-3r P U 1 3 4
o nstable
4l - ] " Unstable
r"/” ’/
-5 = p ] l . . . 5 P 1 1 1 L 1
s 4 4| 4 ¢ L 2 % 4 3 2 1 0 1 2
a

Fig. 2 The mean and mean square stability boundaries for the stochas-
tic DDE system of Eq. (30) with T = 1 (s) obtained from both CSCTA
(N = 5 points used) and the stochastic semi-discretization method
(N = 10 points used), visually indistinguishable from CSCTA result

(Fig. 1). This is in fact owing to the exponential conver-
gence characteristics of CSCTA. The mean and mean square
stability boundaries for the SDDE of Eq. (30) obtained from
CSCTA and the stochastic semi-discretization method [1]
with 10 points used for equivalent accuracy are depicted in
Fig. 2.

The above results are now compared with the stability
charts obtained using a Lyapunov-based approach in [2].
This comparison is depicted in Fig. 3. As is expected, the
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Fig. 3 The mean and mean square stability boundaries for stochastic
DDE of Eq. (30) compared with the Lyapunov-based stability result of
(2]

stability boundaries from the current numerical approach
are less conservative than those from the Lyapunov-based
approach. This observation is in agreement with the com-
parison made in [2] between the Lyapunov-based stability
chart for the first order system of Eq. (30) with the numerical
stability chart for this system obtained using the stochas-
tic semi-discretization approach with n = 10 discretization
points, which yields identical stability results with the pro-
posed CSCTA-based approach for this particular example. It
should be noted that more discretization points are required
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for convergence using stochastic semi-discretization than are
required using CSCTA.

5.2 Second order linear stochastic time-delayed system

In this section, we consider the second order linear time-
delayed system in [1] with both additive and multiplicative
stochastic excitations expressed in the physical form as

o X
0= [—alxz(f) —apx1(t) —kpx1(t —7) — kgxa(t — T)]

0 0 0
+ [xla) 0(0) 1] w(), 32)

where a; and a; are constant parameters, k, and k; can
be considered as delay feedback control gains, and w(¢) is
the white noise process which approximates the wide-band
process ¢ (t) withw(t) ~ (0, Q(¢)) and Q(¢) isa3 x 3 covari-
ance matrix. Eq. (32) can be converted to the Ito differential
form of Eq. (4) by adding the Wong—Zakai correction term
as

x2
—a1xa(t) — apx1(t) + w(Qnx2(t) + Qrox1(1) | dt
+023) —kpx1(t — 1) — kgxo(t — 7)

0 0 0
* |:x1(t) X (t) 1 ] ap®). (33)

dx(t) =

In order to be able to compare the stability in the k,, —k, para-
meter space with that from the stochastic semi-discretization

a = 04, a0 = 1, O = 0.5v27, 011 = /27 and
033=012=013=023=0.

The procedure described in Sect. 4 is applied for numerical
stability analysis of the time-delayed system of Eq. (33). The
convergence of the stability boundaries are visually depicted
in Fig. 4. For a numerical convergence study of the stabil-
ity boundaries, one arbitrary point inside the boundary and
one outside is picked and the percentage relative difference
of Anax (A) as N increases is calculated, where A4y (A) is
the maximum eigen-values for matrix A. For each of those
points the number of collocation points are increased until
it converges to within the tolerance of £0.01 (Table 1). The
numerical convergence study confirms the conclusion from
Fig. 4 that the stability boundaries are converged by using
only 7 collocation points. The resulting stability boundary is
depicted in Fig. 5. Also in this figure, the stability bound-
ary obtained from the current approach is compared with the
one obtained from the stochastic semi-discretization method.
As it can be seen from Fig. 5, the second moment stability
boundaries for the system of Eq. (32) obtained from the cur-
rent approach almost match the stability boundaries obtained
from semi-discretization approach described in [1] (Table 2).

It is worthy of noting that when applying the semi-
discretization method for the system of Eq. (33) we noticed
that the number of discretization points required for the sta-
bility boundaries to converge to within a tolerance of £0.01%
is 25. Therefore, the CSCTA approach has better conver-
gence properties for this example as it converges to the same
accuracy with 7 collocation points (Fig. 4). Also, as was dis-
cussed for the first order example, the stability results based
on CSCTA approach converge with 5 collocation points (Fig.

method in [1], we consider the case where T = 0.16,
Fig. 4 Mean square stability 10
boundaries versus the number of

collocation points used in ol

CSCTA, N = 7 is sufficient for
visually indistinguishable
results

Unstable |

Stable

2 4 6 8 10 12 14 16
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Table 1 Numerical
convergence study of two
arbitrary points on the stability

boundaries of the system of Eq.

(33) using CSCTA method

Fig. 5 The mean and mean
square stability boundaries of
the SDDE of Eq. (33) with
t=0.16,a =04,a =1,
02 =0.5,011 =1and
033=012=013=023=0
obtained from both CSCTA

(N = 17) and the stochastic
semi-discretization method

(N = 25) see Tables 1 and 2

Table 2 Numerical
convergence study of two
arbitrary points on the stability

boundaries of the system of Eq.

(33) using semi-discretization
method

1), while at least 10 discretization points are required for

N kp =14.5,kg =5.5 kp =15.0,kg = 5.5
Amax (A) Relative difference (%) Amax (A) Relative difference (%)
2 0.05597092 0.15790497
3 0.01005142 —82.042 0.11921425 —24.503
4 —0.00680159 —167.668 0.10269691 —13.855
5 —0.00672475 —1.130 0.10274626 0.048
6 —0.00667274 —0.773 0.10279688 0.049
7 —0.00666808 —0.070 0.10280144 0.004
8 —0.00666518 —0.043 0.10280422 0.003
10 T T T T T T T T T T T
S Unstable T
Y AL
' ==~a.
8- s s~ il
g .
T+ . Nt\\ -
o Stable : \\) i
S - / o
e 5 ’///’
4r g -
i PG
[ P
3 I > =° .
\ ~
2 \ — - . Al
\ o First Moment (current approach)
\ -
1k = === Second Moment (current approach)
Second Moment (semi—discretization)
1 1 1 1 1 1 1 1 1 1 1
E)2 0 2 4 6 8 10 12 14 16 18 20 22
kP
N kp =14.0,k; =5.5 kp =14.5,k; =5.5
Amax (A) Relative difference (%) Amax (A) Relative difference (%)
5 1.01939731 1.02284033
10 1.00425748 —1.485 1.00602919 —1.644
15 1.00152256 —0.272 1.00271846 —0.329
20 1.00063108 —0.089 1.00153411 —0.118
25 1.0002549 —0.038 1.00098043 —0.055
30 1.00007184 —0.018 1.00067822 —0.030
35 0.99997477 —-0.010 1.00049564 —0.018
36 0.99996135 —0.001 1.00046793 —0.003

an equivalent accuracy using semi-discretization approach.

This signifies the advantage of exponential convergence of
the current approach over the stochastic semi-discretization

method.

@ Springer

6 Conclusion

A numerical approach was developed for stability analy-
sis of linear SDDEs based on the CSCTA technique. Using

CSCTA, the infinite-dimensional linear SDDE was approxi-
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mated by a set of linear SDEs. Then, the mth moment stability
concept was utilized and a set of first order linear differential
equations for both the mean and mean-square stability condi-
tions were obtained. Two examples were studied and the sta-
bility charts obtained from the proposed approach were com-
pared with those produced by both Lyapunov-based method
in [2] and the stochastic semi-discretization method in [1].
As expected, the numerical stability regions using the pro-
posed approach were found to be less conservative compared
with those obtained from the Lyapunov-based approach,
while they agreed with results obtained using the stochas-
tic semi-discretization method. In the case of the second
order SDDE, the second moment stability region obtained
using CSCTA was found to give almost identical results com-
pared to the semi-discretization approach described in [1].
The advantage of this proposed method over the stochastic
semi-discretization method is the exponential convergence
characteristic of the spectral approximation technique used
in this paper. This fact is clearly shown in both examples
in which less Chebyshev collocation points are required for
convergence compared to the number of points used for con-
vergence of the stochastic semi-discretization approach.
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