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Abstract This paper focuses on the problem of design-
ing the rightmost eigenvalues of linear scalar distributed
delay systems. We consider two different but complemen-
tary methods: generalized stability charts and matrix Lam-
bert W functions. The generalized stability charts are based
on the intersection of Hopf and fold surfaces that provide
important insight into the problem, but the geometry of the
surfaces may become complicated for certain delay distrib-
utions. The Lambert W function approach can be applied to
general delay distributions, but requires numerical solutions
which can suffer from convergence problems. We present
some examples using both approaches.
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1 Introduction

In many engineering applications one tries to achieve a
desired dynamic behavior, e.g., settling time in the vicin-
ity of an equilibrium, by designing the eigenvalues of the
corresponding linear systems. Applications include vibration
absorbers [1,2], machining processes [3,4], vehicle steering
[5,6], and connected vehicles [7,8]. Of special interest are
the rightmost eigenvalues that are also called dominant or
leading eigenvalues. These determine the linear stability of
the equilibrium and, for a stable system, they correspond to
solutions with the slowest decay [9]. Thus, at the linear level,
the desired dynamic behavior may be achieved by selecting
the system parameters (including control gains) so that the
rightmost eigenvalues are placed appropriately.

However, systems with time delay exhibit an infinite spec-
trum, which makes eigenvalue placement very challenging,
even though the dynamic response is still dominated by the
rightmost eigenvalues [10–12]. Here, apart from designing
the system parameters, one may also tune the delays in order
to place the eigenvalues appropriately [13,14], though limi-
tations may arise due to the achievable minimal value of the
delay. Such limitations may be compensated for in systems
with distributed delays where apart from system parame-
ters one may design the delay distribution [15,16]. Practical
examples include the design of the cutting profile of helical
milling tools in machining [3,4], where the delay distribu-
tions originate from spatial force distributions. Similar ideas
may also be used when designing transmission protocols for
vehicle-to-vehicle communication in connected vehicle sys-
tems [7,8]. Here the delay distributions originate from sto-
chastic delay variations.

In this paper, for the first time, we investigate the problem
of spectrum design for the rightmost eigenvalues of a linear
scalar system with distributed delay. We apply two comple-
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Spectrum design using distributed delay 235

mentary approaches: the bifurcation theory approach and the
Lambert W function approach. Most of this paper concen-
trates on the special case when we have a constant delay
distribution function. For this case, the methods and results
of both approaches are illustrated. In the bifurcation theory
approach, we extend the idea of a stability chart [17,18] for
a general case when the leading eigenvalues have non-zero
real part. That is we translate the design problem to find-
ing the locations of generalized Hopf and fold bifurcations
in parameter space. Design limitations are also investigated
using numerical continuation and multi-dimensional bisec-
tion method. As for the Lambert W function approach, we
reformulate the problem as a special case of a delayed sys-
tem with a single constant delay and then apply the matrix
Lambert W function method [12]. Here, by exploiting the
structure of the arising system matrices, we accelerate the
numerical computation. We also address some numerical
issues arising due to multiple eigenvalues associated with
this problem.

Finally, we mention that we present scenarios where the
real part of the leading eigenvalues is negative (stable sys-
tems) and also when it is positive (unstable systems). The
former case is related to robust stability [17], that is impor-
tant in many engineering applications. The latter case may
not look relevant but, as a matter of fact, unstable systems can
exhibit high performance when operated by skilled operators
or regulated by well-designed controllers. Examples include,
nuclear reactors, steering systems, and aircrafts with forward
swept wings [19].

2 Problem formulation

Consider the following scalar linear differential equation
with distributed delay:

d

dτ
x(τ ) = α x(τ ) + β

0∫

−h

w(ξ) x(τ + ξ) dξ, (1)

where the initial condition is given by x(τ ) = φ(τ), −h ≤
τ ≤ 0, and the delay distribution satisfies

∫ 0
−h w(ξ)dξ = 1.

We know that the eigenvalues give an infinite spectrum
{λi }∞i=1 and that the solution of (1) can be written as x(τ ) =∑∞

i=1 Ci eλi τ , where the coefficients Ci depend on the initial
condition φ(τ) (often called preshape function) [12,18]. The
rightmost eigenvalues with the largest real part dominate the
system dynamics, that is, placing these appropriately and cre-
ating a spectral gap between these and the rest of the eigen-
values allows us to design a system with desired temporal
behavior.

To place the rightmost p eigenvalues of (1) at λ1, . . . , λp,
we need to select the appropriate parameter values α, β and

M

Re λ

λIm

Fig. 1 An illustration of the spectrum design where the five rightmost
eigenvalues are placed and a spectral gap of size M is created

the weight function w(ξ). If we want the rightmost p eigen-
values to dominate the dynamics, we also need to create a
spectral gap so that Re(λ j ) ≤ Re(λi ) − M, 1 ≤ i ≤ p < j ,
where M is a positive real number. Such a setup is illustrated
in Fig. 1, where we specified the rightmost five eigenvalues
as well as the spectral gap of size M in the complex plane,
i.e., all other eigenvalues are located in the shaded region.
We remark that it is equivalent to design the rightmost p + 1
or p + 2 eigenvalues so that the difference between the real
parts of the left-most designed eigenvalues provides the spec-
tral gap; see Fig. 1. In some applications, we only care about
the real part of the eigenvalues, and may formulate a less
restrictive problem where only Re(λi ), i = 1, . . . , p + 1 are
assigned.

Rescaling time as τ = h t, ξ = hθ allows us to write (1)
into the form

ẋ(t) = a x(t) + b

0∫

−1

w(θ) x(t + θ) dθ, (2)

where the dot stands for differentiation with respect to the
rescaled time t and we have the design parameters

a = hα , b = h2β. (3)

Moreover, we use polynomials to construct the weight func-
tion

w(θ) =
n∑

i=0

ciθ
i , (4)

where the coefficients ci , i = 0, 1, . . . , n can be varied to
achieve desired dynamic behavior. Note that only n of these
coefficients can be chosen independently as we require the
weight function to be normalized, i.e.,

∫ 0
−1 w(θ)dθ = 1.
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236 F. Wei et al.

Substituting the trial solution x(t) = eλt into (2) and con-
sidering the distribution (4) results in the characteristic equa-
tion

D(λ) = λ − a − b

λn+1

n∑
i=0

⎛
⎝i !(−1)i ci λn−i

×
(

1 − e−λ
i∑

j=0

λ j

j !
)⎞

⎠ = 0. (5)

which has infinitely many solutions for the eigenvalues λ.
Note that one may define an operator which possesses these
eigenvalues and serves as the infinitesimal generator for (2)
in the infinite dimensional space of continuous functions on
[−1, 0]; see [17,18].

3 Bifurcation theory approach

We recall that when varying parameters the trivial solution
x(t) ≡ 0 of a linear system may lose stability in two possi-
ble ways. Either a real eigenvalue moves through zero to the
right half complex plane (leading to non-oscillatory stability
loss), or a pair of complex conjugate eigenvalues crosses the
imaginary axis from left to right (leading to oscillatory sta-
bility loss where the frequency is given by the imaginary part
of the crossing eigenvalues). In the corresponding nonlinear
system, fold and Hopf bifurcations may occur. In parame-
ter space the corresponding stability boundaries are hyper-
surfaces of co-dimension one. That is, when restricting our-
selves to a plane of two parameters, the boundaries are given
by curves, often referred as stability curves. Referring to the
corresponding bifurcations, these are often categorized as
fold and Hopf curves. We adopt this terminology here even
though we do not investigate nonlinear effects. Moreover,
we define generalized stability curves (i.e., generalized fold
and Hopf curves) that correspond to eigenvalues that cross
a given vertical line in the complex plane. Note that these
are not related to bifurcations in the corresponding nonlin-
ear system and only make sense at the linear level. These
generalized curves allow us to locate parameter values that
correspond to given eigenvalue configurations for the leading
eigenvalues.

3.1 Generalized stability charts for constant weight function

In this section, we focus on the special case of w(θ) ≡ c0 =1,
i.e., n =s0 in Eq. 4, which means that (2) simplifies to

ẋ(t) = a x(t) + b

0∫

−1

x(t + θ)dθ, (6)

while the characteristic equation (5) simplifies to

D(λ) = λ − a − b
1 − e−λ

λ
= 0. (7)

Substituting λ = γ ± iω into (7), separating real, and
imaginary parts and assuming ω > 0, we obtain

a = γ + γ − e−γ (γ cos ω − ω sin ω)

1 − e−γ (ω cos ω + γ sin ω)/ω
,

b = − γ 2 + ω2

1 − e−γ (ω cos ω + γ sin ω)/ω
,

(8)

which describe the generalized Hopf curves in the (a, b)-
plane in parameterized form. For ω = 0, Eq. 7 results in

b = γ

1 − e−γ
(γ − a), (9)

and the corresponding straight line is the generalized fold
curve in the (a, b)-plane. Indeed, the curves given by (8)
and (9) change with γ . For γ = 0 they are the stability
boundaries, while for γ �= 0 they produce diagrams which
we refer as generalized stability charts. We remark that γ < 0
corresponds to robust stability [17], while γ > 0 corresponds
to unstable design.

Figure 2 shows the generalized stability charts for different
values of γ . Again, straight lines and curves correspond to
generalized fold and Hopf curves, respectively. The numbers
indicate how many eigenvalues with real part larger than γ

are in that region and the shadowed regions (bounded by solid
curves) are the generalized stability regions. The arrows show
how the frequency ω increases along the Hopf curves and the
values of ω corresponding to a, b → ±∞ are also indicated.
The left panel in Fig. 2 shows the case where γ = 0, which
is the stability chart. When ω → 2kπ, k = 1, 2, . . . the
parameters a, b go to infinity because the denominator

d(γ, ω) = 1 − e−γ (ω cos ω − γ sin ω)/ω, (10)

in (8) goes to zero. In the middle panel of Fig. 2 we have
γ = −0.5. The diagram looks similar to theγ = 0 case, since
a, b still go to infinity at some finite values of ω. However,
some Hopf curves appear in the upper half plane and generate
regions with odd numbers of “unstable” eigenvalues. Also,
the Hopf curves show asymptotic behavior when ω → ωk ,
k = 1, 2, . . . (but ωk �= kπ ), and the curves are hyperbolic
(while for γ = 0 they were parabolic). The right panel in
Fig. 2 depicts the generalized stability chart for γ = 0.5
which looks very different from the other panels: the Hopf
curve does not go to infinity at finite values of ω, but intersect
itself and creates loops.

To better understand the difference between the three
cases above, we plot the denominator (10) as a function
of the frequency ω for different values of γ in Fig. 3. For
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Spectrum design using distributed delay 237

Fig. 2 Generalized stability charts for different values of the real part γ as indicated above. In the blue shaded regions (bounded by solid curves)
all eigenvalues have real part smaller than γ . In each region the number of “unstable” eigenvalues (with real part larger than γ ) are indicated.
(Color figure online)

Fig. 3 The denominator (10) for different values of the real part: γ = 0
(red dashed), γ = −0.5 (blue solid), γ = 0.5 (green dotted)

γ = 0 (red dashed curve) the denominator becomes zero
at ω = 2kπ, k = 1, 2, . . .; cf. the left panel of Fig. 2. For
γ = −0.5 the blue solid curve intersects the horizontal axis
at ω = ωk , k = 1, 2, . . .. Along the intervals ω ∈ [ωk, ωk+1]
where k is odd, the curve is negative and this correspond
to the generalized Hopf curves above the horizontal axis in
the middle panel of Fig. 2. Finally, for γ = 0.5 (green dot-
ted curve) the denominator is positive for all ω values and
the corresponding generalized stability curve does not go to
infinity for finite values of ω; cf. the right panel of Fig. 2.

The concept of generalized stability charts can also be
extended to higher-order weight functions when consider-
ing more terms in (4) that yield more design parameters.

In this case, the generalized Hopf and fold stability bound-
aries become co-dimension one hyper-surfaces in parameter
space.

3.2 Spectrum design with generalized stability charts using
a constant weight function

For the constant weight function w(θ) ≡ c0 = 1, we have
two parameters a, b that can be tuned. Thus, there are several
leading eigenvalue configurations that can be designed:

1. Two real eigenvalues (e.g., λ1 = −1 and λ2 = −3);
2. One real eigenvalue and real part of a pair of two complex

conjugate eigenvalues (e.g., λ1 = −1 and λ2,3 = −3 ±
iω);

3. Real parts of two pairs of complex conjugate eigenvalues
(e.g., λ1,2 = −1 ± iω and λ2,3 = −3 ± iω̃);

4. One pair of complex conjugate eigenvalues (e.g., λ1,2 =
−0.5 ± i3);

We will show below an example for each case.

3.2.1 Designing two real eigenvalues

One way to design a spectral gap is to design two real eigen-
values. To illustrate this, Fig. 4 shows the generalized stabil-
ity boundaries for γ1 = −1 (blue curves) and γ2 = −3 (red
curves). The blue and red shadowed regions correspond to
eigenvalues that have real part less than γ1 and γ2, respec-
tively. The number of “unstable” eigenvalues are indicated in
each region for both cases: the first element of the pair gives
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Fig. 4 Generalized stability charts for γ1 = −1 (blue) and γ2 = −3
(red). The f irst and second elements of the number pairs indicate how
many eigenvalues have real part larger than −1 and −3, respectively.
The intersections marked as D1, D2, D3 correspond to the designed
eigenvalue configurations shown at the bottom where the frequencies
ω and ω̃ are not specified. (Color figure online)

how many eigenvalues have real part larger then γ1 while the
second element shows this for γ2. By substituting γ1 and γ2

into (9) one may find that the corresponding generalized fold
curves intersect at

aff = γ1 + M(1 − eγ1)(γ1 − M)

M(1 − eγ1) − γ1(1 − eM )
,

bff = γ1 Meγ1(γ1 − M)

M(1 − eγ1) − γ1(1 − eM )
,

(11)

where M = γ1 − γ2 is the size of the spectral gap. In par-
ticular, for γ1 = −1 and γ2 = −3 we obtain (a, b) ≈
(−0.26,−0.43), which is denoted by D1 in Fig. 4 and the cor-
responding eigenvalue configuration is shown at the bottom.
Since D1 is at the boundary of regions (1, ·), (0, ·), the right
most eigenvalue is λ1 = γ1. Similarly, the second eigenvalue
is λ2 = γ2, since D1 is at the boundary of regions (·, 1), (·, 2).

A question that naturally arises is whether there is a lim-
itation on the design for two real eigenvalues. Due to (9),
the two fold curves with different γ are not parallel, so they
always intersect at (11). Moreover, the intersection always
produces the desired eigenvalue configuration γ1 > γ2, i.e.,
the solid segment of the γ1 line intersects dashed segment of
the γ2, because other cases contradict the fact that γ1 corre-
sponds to the leading eigenvalue followed by the eigenvalue
at γ2.

3.2.2 Designing one real eigenvalue and the real part of a
pair of complex conjugate eigenvalues

Alternatively, we can design one real eigenvalue and a pair of
complex conjugate eigenvalues with a fixed real part, that is,
consider the rightmost three eigenvalues to be λ1 = γ1 and
λ2,3 = γ2 ± iω where ω is arbitrary. As shown in Fig. 4, the
fold curve for γ1 = −1 and a Hopf curve for γ2 = −3 inter-
sect at (a, b) ≈ (−4.97, 2.31) which is denoted by D2 and
corresponds to the eigenvalue configuration displayed at the
bottom. Since D2 is at the boundary of regions (1, ·), (0, ·),
the rightmost eigenvalue is at λ1 = γ1. The second and third
eigenvalues are at λ2,3 = γ2 ± iω, since D2 is also at the
boundary of regions (·, 1), (·, 3).

We are interested in the limitations of this design. Substi-
tuting γ1 into (9) and γ2 into (8) and eliminating a and b one
may derive

−ω
(
(γ1 − γ2)

2 + ω2) + e−γ1ω (γ 2
2 + ω2) + e−γ2γ1

×
((

γ2(γ1 − γ2) + ω2) sin ω + (γ1 − 2γ2)ω cos ω
)

= 0.

(12)

By plotting the corresponding surface in the three dimen-
sional space (γ1, γ2, ω), one can show that it is contained in
the domain γ2 < 0, γ2 < γ1. This indicates that it is not pos-
sible to place the complex conjugate eigenvalues to the right
of the real eigenvalue. This can also be observed in Fig. 4
as the fold curve that belongs to γ2 = −3 does not intersect
Hopf curves belonging to γ1 = −1.

3.2.3 Designing the real parts of two pairs of complex
conjugate eigenvalues

Based on the argument above, when the rightmost eigenval-
ues are given by a complex conjugate pair, a spectral gap
can only be provided if these are followed by another pair of
complex conjugate eigenvalues. Suppose our desired right-
most four eigenvalues are λ1,2 = γ1 ± iω, λ3,4 = γ2 ± iω̃,
where ω, ω̃ are arbitrary. In Fig. 4, a blue Hopf curve for
γ1 = −1 and a red Hopf curve for γ2 = −3 intersect at
(a, b) ≈ (−3.20,−4.16) which is denoted by D3 and the
corresponding eigenvalue configuration is shown at the bot-
tom. Thus, the right most eigenvalues are λ1,2 = γ1 ± iω,
since D3 is at the boundary of regions (2, ·), (0, ·). Similarly,
the second pair of eigenvalues is λ3,4 = γ2 ± iω̃, since D3 is
at the boundary of regions (·, 2), (·, 4). One may also inves-
tigate the limitation of spectrum design for this case, which
remains a problem for future research.

3.2.4 Designing a pair of complex conjugate eigenvalues

Finally, we can design the rightmost complex conjugate pair
λ1,2 = γ ± iω without specifying a spectral gap to the others,
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Spectrum design using distributed delay 239

which is equivalent to saying that there is a generalized Hopf
type of stability loss at γ with given frequency ω. This corre-
sponds to a point on a “primary” generalized Hopf curve, i.e.,
on a solid curve in Fig. 2 constituting a boundary between
regions with 0 and 2 “unstable” eigenvalues. (Dashed curves
separate regions with higher numbers of eigenvalues.)

In this case, we are interested in the limitations in γ and
ω. For γ ≤ 0 the primary Hopf curve corresponds to the
frequency domain ω ∈ [0, ω1] where ω1 is the minimum
positive frequency for which d(γ, ω) = 0, cf. (10) and Fig. 3.
However, the limitations for γ > 0 are harder to determine
due to the self intersections of the Hopf curve that correspond
to having two different frequencies ω1 �= ω2 for fixed γ ;
cf. the right panel of Fig. 2. We consider (8) and solve the
system

0 = a(ω1, γ ) − a(ω2, γ ),

0 = b(ω1, γ ) − b(ω2, γ ),
(13)

for ω1, ω2 which is equivalent to finding the equilibria of the
related mock differential equation

ω̇1 = a(ω1, γ ) − a(ω2, γ ),

ω̇2 = b(ω1, γ ) − b(ω2, γ ),
(14)

where γ is considered as a parameter. Indeed, when γ is
varied, the equilibrium changes. We use numerical continua-
tion [20], in particular the package DDE-BIFTOOL [21], to
continue the solution while changing γ and the boundary is
shown in the complex plane in Fig. 5a. Here shading denotes
the region in the complex plane where eigenvalues can be
placed.

Finally, we discuss the special case when ω = 0 which
yields the leading eigenvalue λ1,2 = γ with multiplicity two.
This can also be obtained by setting γ1 = γ2 = γ when
considering two real leading eigenvalues that was discussed
in Sec. 3.2.1. To obtain the corresponding parameter values
one needs to solve D(γ ) = 0 and ∂ D(γ )/∂γ = 0 for a and b.
Thus, the characteristic equation (7) leads to the parametric
curve

a = γ

(
2 + γ

eγ − 1 − γ

)
,

b = − γ 2eγ

eγ − 1 − γ
,

(15)

that is shown as a green curve in Fig. 7. The green dot indi-
cates where γ = 0 and γ increases from left to right along
the curve as indicated by arrows. On one hand, one may use
the left section of the curve to design systems with “criti-
cal damping”. On the other hand, multiplicity may lead to
convergence problems for numerical methods as will be dis-
cussed in Sec. 4.2.
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Fig. 5 Available region for the real and imaginary parts of the designed
eigenvalues when considering linear weight function of gradient d1
as indicated. Panel (a) corresponds to constant weight function while
panels (b, c) are for negative gradients. Panel (d) shows the union of
regions for a range of gradients so that the color changes from blue to
yellow as the gradient decreases and each point is colored according
to the minimum value of the gradient that makes the point available for
design. (Color figure online)

3.3 Spectrum design with generalized stability charts using
a linear weight function

The concept of generalized stability charts can also be applied
when using higher–order weight functions. These can lead
to larger designable regions in the complex plane and so the
limitations obtained for the constant weight function can be
extended. In this section, we discuss the case with a pair of
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complex conjugate leading eigenvalues while using the lin-
ear weight function w(θ) = c0 + c1θ ; cf. (4). In this case
the normalization condition

∫ 0
−1 w(θ)dθ = 1 yields the con-

straint c0 − 1
2 c1 = 1. In order to take this into account, we

define a, d0 := bc0, d1 := bc1 as our free parameters. Thus,
(2) yields the distributed delay system

ẋ(t) = a x(t) + d0

0∫

−1

x(t + θ) dθ + d1

0∫

−1

θ x(t + θ) dθ.

(16)

For d1 = 0 this is equivalent to (6), while for d1 �= 0 the
parameter d0 plays the same role as b in (6).

The corresponding characteristic equation becomes

D(λ) = λ − a − d0
1 − e−λ

λ
− d1

−1 + (λ + 1)e−λ

λ2 = 0,

(17)

cf. (5) and (7). Substituting λ = γ ± iω and separating the
real and imaginary parts, for ω > 0 we obtain

a = γ + γ − e−γ (γ cos ω − ω sin ω)

1 − e−γ (ω cos ω + γ sin ω)/ω
− d1

γ 2 + ω2

×1 + e−2γ − e−γ (2ω cos ω + (γ 2 + ω2) sin ω)/ω

1 − e−γ (ω cos ω + γ sin ω)/ω
,

d0 = − γ 2 + ω2

1 − e−γ (ω cos ω − γ sin ω)/ω

+ d1

γ 2 + ω2

2γ − e−γ (p cos ω + q sin ω
)
/ω

1 − e−γ (ω cos ω + γ sin ω)/ω
, (18)

where

p = ω(γ 2 + ω2 + 2γ ),

q = γ (γ 2 + ω2) + γ 2 − ω2,
(19)

that describe the generalized Hopf curves in the (a, d0) para-
meter plane for a fixed value of d1. For ω = 0, we obtain the
generalized fold curves

d0 = γ

1 − e−γ

(
γ − a − d1

−1 + (γ + 1)e−γ

γ 2

)
, (20)

that appear as straight lines in the (a, d0)-plane when d1 is
fixed. Note that for d1 = 0 (18,20) reproduces (8,9).

In order to investigate how the design limitations change
in the complex plane we again compute where the Hopf
curves (self-)intersect, resulting in two independent frequen-
cies ω1, ω2. Here we solve the equations

0 = a(ω1, γ, d1) − a(ω2, γ, d1),

0 = d0(ω1, γ, d1) − d0(ω2, γ, d1),
(21)

for ω1, ω2 while varying the parameter γ using numerical
continuation. Fig. 5b and c show the corresponding curves

in the complex plane for d1 = −30 and d1 = −100, respec-
tively, where the regions available for design are shaded.
Comparing panels a, b and c in Fig. 5 one may notice that as
d1 decreases additional regions become available for design
while others become unavailable. We remark that for d1 > 0
the available regime shrinks and that is why we do not show
such cases.

In general, we are interested in the union of available
regimes obtained for different values of d1. This may be
found by overlapping the obtained regions. However, in each
case the boundary consists of multiple branches that meet at
cusp-type singularities. Each of these branches has to be com-
puted by using a feasible initial guess at a chosen value of
γ (from which the branch can be continued until reaching a
cusp point). Moreover, for negative values of γ the chart may
become intricate with many nearby boundaries that require
separate initial guesses; cf. Fig. 5b, c. To overcome such dif-
ficulties a more efficient numerical method is needed that is
presented below.

3.4 Finding design limitations by multi-dimensional
bisection method (MDBM)

Here we present an effective way of finding design limita-
tions. The fundamental idea is to calculate intersections of
hyper-surfaces in the space spun by the real and imaginary
parts of the designed eigenvalues and the design parameters.
We utilize the multi-dimensional bisection method (MDBM)
developed in [22] that allows us to find all solutions. Here
we apply this to find the design limitations for linear weight
function that was discussed in the previous section. However,
as explained below, the range of applicability of MDBM goes
beyond this example.

In (17), we can consider the real and the imaginary parts of
the eigenvalue as additional parameters, i.e., write the char-
acteristic equation into the form

D̃(ω, γ, a, d0, d1) = 0, (22)

where both the real and imaginary parts of D̃ must be zero.
MDBM can be used to determine all the possible solution
of this co-dimension two problem in the five dimensional
“parameter” space. In order to ensure that the eigenvalues
are the rightmost ones, we also need to monitor the value of
the counter

N (γ̃ , a, d0, d1) = 1

2π i

∞∫

−∞

1

D̃(ω, γ̃ , a, d0, d1)

×∂ D̃(ω, γ̃ , a, d0, d1)

∂ω
dω, (23)

where γ̃ = γ −ε and ε is a small positive number. As shown
in [18], the Cauchy argument principle implies that if the

123



Spectrum design using distributed delay 241

value of the counter is two, then there are two eigenvalues at
the right of γ̃ in the complex plane. This indeed corresponds
to the complex conjugate pair of eigenvalues with real part γ .
Instead of computing the integral in (23) directly, we use
Stépán’s formulae [18] that are more stable numerically.

Figure 5d shows the region available for design in the com-
plex plane for different values of parameter d1 ∈ [−100, 0]
that is obtained by computing the region for every d1 = −�5,
� = 0, . . . , 20. Each point is colored according to the min-
imal value of d1 that makes the point available for design
an the color goes from blue to yellow as d1 decreases. Fig-
ure 5 shows that including a third design parameter signifi-
cantly increases the domain available for design. The regions
gained for negative real part are important in many engineer-
ing applications.

Note that MDBM can also be used to obtain the boundaries
of the available region, if we augment (22) with the additional
constraint

N (γ, a, d0, d1) = m, (24)

which leads to a co-dimension three problem. The number
m must be chosen between 0 and 2 in order to make sure that
we compute boundaries corresponding to generalized Hopf
bifurcations.

4 Lambert W function method

The scalar distributed delay system (2) with an n-th order
polynomial weight function (4), can be converted into a sys-
tem of n + 2 scalar variables with discrete delay. Then the
assignment of its eigenvalues can readily be handled by the
matrix Lambert W function method [11], using the Lam-
bert W toolbox [23]. The advantage of the Lambert W func-
tion approach is that the real part of the eigenvalues fol-
lows the order of the branch number [12]. This allows one
to focus on a few rightmost eigenvalues which is our goal
here.

Recall (5) from Sec. 2. Multiplying it with λn+1 and col-
lecting terms of the same power in λ yields

D(λ) = λn+2 − a λn+1

−
n∑

i=0

(
ãi λn−i + e− λλi

i∑
j=0

ãi j

)
= 0, (25)

where

ãi = b (−1)i i ! ci ,

ãi j = b (−1)n+ j−i+1 (n + j − i)!
j ! cn+ j−i , (26)

for i, j = 0, . . . , n. Note that multiplying (5) by λn+1, we
introduce n + 1 zero eigenvalues into the spectrum. We refer
to these as “intrinsic” zero eigenvalues.

Notice that (25) is the characteristic equation of the (n +
2)nd order system

x (n+2)(t) = a x (n+1)(t) +
n∑

i=0

ãi x (i)(t)

+
n∑

i=0

⎛
⎝x (i)(t − 1)

i∑
j=0

ãi j

⎞
⎠ . (27)

Let us define the vector

x(t) =

⎡
⎢⎢⎢⎣

x(t)
ẋ(t)

...

x (n+1)(t)

⎤
⎥⎥⎥⎦ , (28)

then (27) is equivalent to the system

ẋ(t) = A x(t) + Ad x(t − 1), (29)

where the matrices A, Ad ∈ R
(n+2)×(n+2) are defined as

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 1
ãn ãn−1 · · · ã0 a

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (30)

and

Ad =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
0 0 · · · 0 0

ã00 ã10 + ã11 · · · ∑n
j=0 ãn j 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (31)

To compute the eigenvalues of (29) using the Lambert W
function approach [11,12], we need to solve the following
equations

Ad = Wk(AdQk) eWk(AdQk)+A,

Sk = Wk(AdQk) + A,
(32)

where Wk is the matrix Lambert W function and the vector
k = [k1, k2, . . . , kn+2] is the (vector-valued) branch num-
ber so that ki ∈ {0,±1,±2, . . .}. Solving the first equation
for Qk, one can use the second equation to obtain Sk and
the eigenvalues of Sk give the eigenvalues of (25). In gen-
eral, when considering k = [0, . . . , 0] the corresponding Sk
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possesses the n + 2 leading eigenvalues, while considering
k = [+1, . . . ,+1] and k = [−1, . . . ,−1] we can cover the
following n + 2 eigenvalues and so on. However, when one
or more eigenvalues of the matrix AdQk are zero, it is nec-
essary to use hybrid branches where ki �= k j . In this case
one needs to consider 2(n + 2) + 1 different k vectors that
include all ki ∈ {0,±1, . . . ,±(n + 2)} in order to cover the
n + 2 leading eigenvalues [12].

Here we combine the eigenvalue calculations [23] with
a root finding algorithm. This way the iterations converge
to the parameter values that ensure the required eigenvalue
configuration. However, these numerical iterations may be
time consuming and the speed of convergence can depend
on the selected initial value of Qk.

Define a general Qk ∈ R
(n+2)×(n+2)

Qk =
⎡
⎢⎣

qk
11 · · · qk

1,n+2
...

. . .
...

qk
n+2,1 · · · qk

n+2,n+2

⎤
⎥⎦ , (33)

where the vector-values index k is switched to a super-
script to simplify the notation. Notice that if we define
Q′

k ∈ R
(n+2)×(n+2) to be

Q′
k =

⎡
⎢⎢⎢⎣

1
ã00

∑n
i=0 qk

i+1,1

( ∑i
j=0 ãi j

) · · · 1
ã00

∑n
i=0 qk

i+1,n+2

(∑i
j=0 ãi j

)
0 · · · 0
...

. . .
...

0 · · · 0

⎤
⎥⎥⎥⎦ , (34)

then, due to the sparse structure of Ad in (31), we have
AdQk ≡ AdQ′

k. This implies that there always exists a solu-
tion of Qk in the form of (34), i.e., we can assume an initial
matrix Qk with the above sparse structure which reduces the
computational time significantly. The following theorem is
proven in the Appendix:

Theorem 1 For the matrix argument

AdQk =

⎡
⎢⎢⎢⎣

0 0 · · · 0
0 0 · · · 0
...

...
. . .

...

α1 α2 · · · αn+2

⎤
⎥⎥⎥⎦ , (35)

where αn+2 �= 0, using the branch number k = [0, 0, . . . , 0
, k] we have the following form of the matrix Lambert W
function:

Wk(AdQk) =

⎡
⎢⎢⎢⎣

0 0 · · · 0
0 0 · · · 0
...

...
. . .

...

β1 β2 · · · βn+2

⎤
⎥⎥⎥⎦ , (36)

where βi = Wk(αn+2)αi/αn+2 and Wk is the scalar Lambert
W function for scalar branch number k.

This result implies that we only need to consider the first
row of Qk (i.e., last row of AdQk). The analysis above shows
that for any polynomial weight function (4), system (2) can
be transformed into a sparse form and the Lambert W com-
putations can be simplified. However, the convergence of the
computation may still be sensitive to the initial value of Qk

as will be discussed below.

4.1 Lambert W approach with constant weight function

Here we apply the general setup discussed above while con-
sidering the weight function w(θ) ≡ c0 = 1. Recall the
characteristic equation (7). Multiplying both sides by λ, we
obtain

D(λ) = λ2 − aλ − b(1 − e−λ), (37)

cf. (25,26), which is the characteristic equation of

ẍ(t) = aẋ(t) + b
(
x(t) − x(t − 1)

)
. (38)

Defining x(t) = [x(t), ẋ(t)]T this can be rewritten as

ẋ(t) = Ax(t) + Adx(t − 1), (39)

where

A =
[

0 1
b a

]
, Ad =

[
0 0

−b 0

]
. (40)

This system has one intrinsic zero eigenvalue in addition
to the spectrum of (7). We need to select the parameters a, b
in the matrices A, Ad to get the desired spectrum (plus one
zero eigenvalue). Considering the general argument above
(cf. (33,34,35,36)), using hybrid branches with branch num-
bers k = [ 0, k ] and the definition (40), we obtain

Qk =
[

qk
11 qk

12
0 0

]
,

AdQk =
[

0 0
−bqk

11 −bqk
12

]
, (41)

Wk(AdQk) =
[

0 0
Wk

(−bqk
12

)
qk

11/qk
12 Wk

(−bqk
12

)
]

.
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Fig. 6 Eigenvalue configurations designed using the Lambert W
approach. Panels (a), (b) and (c) correspond to the points D1, D2
and D3 in Fig. 4. For panels (d) and e the real and imaginary parts of

the leading eigenvalues are designed using two and three design para-
meters, respectively. The corresponding numerical values are shown in
Table 1

Table 1 Numerical values
corresponding to the panels of
Fig. 6. Note that in cases (b) and
(c) only the real parts of the
eigenvalues are designed

Eigenvalues Parameters

(a) λ1 = −1, λ2 = −3 (a, b) = (−0.26,−0.43)

(b) λ1 = −1, λ2,3 = −3 ± i 6.15 (a, b) = (−4.97, 2.31)

(c) λ1,2 = −1 ± i 3.53, λ3,4 = −3 ± i 9.11 (a, b) = (−3.20,−4.16)

(d) λ1,2 = −0.5 ± i 3 (a, b) = (−0.73,−3.46)

(e) λ1,2 = −0.5 ± i 8 (a, d0, d1) = (−1.56,−87.00,−100.00)

Substituting these into the first equation of (32) results in

[
0 0

−b 0

]
=

[
0 0

Wk
(−bqk

12

)
qk

11/qk
12 Wk

(−bqk
12

)
]

×exp

([
0 1

Wk
(−bqk

12

)
qk

11/qk
12 + b Wk

(−bqk
12

) + a

])
.

(42)

After calculating the matrix exponential on the right hand
side we obtain two coupled scalar equations that can be
solved for qk

11 and qk
12 using numerical tools. This way the

computational demand can be reduced significantly com-
pared to using the standard matrix Lambert W approach. For
example, if we select a ∈ [−2, 0] and b = 1 in (39,40) it
takes approximately 100 s (on a standard desktop computer)
to compute the eigenvalues for branches 0,±1,±2 using the

standard matrix Lambert W approach. Once we exploit the
presence of zeros in Qk, it only takes about 1–2 s. Note that
in order to reproduce the two leading eigenvalues it is ade-
quate to consider the hybrid branches with branch numbers
[ 0, 0 ], [ 0,+1 ], [ 0,−1 ] but we will show a more complete
eigenvalue picture when presenting the results. We remark
that each hybrid branch also reproduces the intrinsic zero
eigenvalue but since this does not have physical meaning we
do not show this on the figures.

Figure 6a–c show the eigenvalues corresponding to the
cases D1, D2 and D3 in Fig. 4, respectively. The numerical
values of the designed eigenvalues and the corresponding
parameters are given in Table 1. We remark that in cases b
and c, only the real parts of the eigenvalues are given while the
imaginary parts are obtained through the design procedure.
Figure 6d and e show the cases when the leading complex
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Fig. 7 Convergence regions and multiplicities in the parameter plane.
The gray area indicates where Lambert W function approach con-
verges. The blue curves correspond to stability boundaries given by
(8,9) for γ = 0 where the arrow indicates the increase of ω along the
Hop f curve. The green curve is given by (15) and it shows the loca-
tion where the systems has a leading eigenvalue of multiplicity two.
The arrows show increase of γ and the green dot indicates γ = 0.
(Color figure online)

conjugate pair is designed so that both the real and imagi-
nary parts are prescribed; see Table 1 for the numerical val-
ues of eigenvalues and parameters. In case d, the design can
be achieved using only two parameters (a, b) (i.e., constant
weight function) as the desired eigenvalues are contained in
the shaded domain in Fig. 5a. However, this does not hold in
case (e) and here one needs to use three parameters (i.e., lin-
ear weight function) in order to design the eigenvalues shown
in Table 1. To simplify the matter, here we fix d1 = −100 as
for this case the eigenvalues can be designed by varying the
remaining two parameters (a, d0); cf. Fig. 5c.

4.2 Numerical issues

Although the Lambert W function is useful for computing
the spectrum of a distributed delay system, there are cer-
tain values of parameters for which we run into numerical
convergence problems. To characterize these areas (for the
case of constant weight function) in the parameter plane we
randomly select parameters in the range (a, b) ∈ (−10, 10)

and then randomly select the initial values for qk
11 and qk

12 in
(42) with real and imaginary parts contained by the interval
(−10, 10). If the iterations converge, we plot a gray asterisk
in the (a, b)-plane as shown in Fig. 7. Notice that no con-
vergence can be achieved in a strip and in the left part of the
selected regime.

Note that the hybrid branch approach can only be applied
when the Jordan form of AdQk is diagonal (cf. Appendix)
which may lead to convergence problems when the leading

eigenvalues have multiplicity greater than one. To illustrate
this we added the stability curves (8,9) for γ = 0 to Fig. 7
(cf. the left panel of Fig. 2). Along the straight fold line
the eigenvalue 0 has multiplicity two due to the intrinsic
zero eigenvalue generated when rewriting the system into
vectorial form. Moreover, the green curve, given by (15),
corresponds to the case where the lead eigenvalue is real
and has multiplicity two (while the intrinsic zero eigenvalue
still exists). At the intersection of the curves (indicated by
green dot) we have a zero eigenvalue of multiplicity three.
Figure 7 demonstrates that sections of these curves coin-
cide with the strip where the Lambert W approach does not
converge. However, it is not a one-to-one correspondence.
Understanding further details of convergence problems is left
for future research.

5 Concluding remarks

In this paper, we studied the problem of designing the right-
most eigenvalues of a linear scalar system with distributed
delay. Our main methodological contributions to spectrum
design were the introduction of generalized stability charts
and the extension of the Lambert W method to distributed
delay systems. Using generalized stability charts we reduced
the problem to finding intersections of curves and surfaces
in parameter space. In order to characterize design limita-
tions we used two different numerical approaches. We found
that numerical continuation can be used in cases involving
two design parameters, while MDBM can be applied when
using three or more parameters. In order to make the matrix
Lambert W approach applicable we reformulated the scalar
distributed delay system using multiple variables and dis-
crete time delays. By exploiting the sparse structure of the
appearing matrixes we reduced the computation time sig-
nificantly. We also identified regions in the parameter space
where numerical convergence is slow.

There are still some interesting problems that remain to
be studied. Our future work will focus on several extensions.
One is to determine design limitations in higher dimensions
using MDBM. Also, finding more efficient numerical algo-
rithms for the Lambert W method is an open question. Finally,
we want to better understand the connection between these
two approaches that may be achieved by expanding the infin-
itesimal generators of distributed delay systems using matri-
ces.
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Appendix: proof of theorem 1

Consider the matrix Hk = AdQk defined in (35). The eigen-
values of Hk can be obtained from the characteristic equation

det(λI − Hk) = λn+1(λ − αn+2) = 0, (43)

where I is the n + 2 dimensional identity matrix. For
αn+2 �= 0 the zero eigenvalue has algebraic and geometric
multiplicity n +1 as one can find n +1 orthogonal eigenvec-
tors v1, . . . , vn+1 for this eigenvalue. Moreover, the eigen-
value αn+2 yields the eigenvector vn+2 = [0, . . . , 0, 1]T.
Then defining

T = [v1, . . . , vn+2], (44)

we obtain the Jordan form

Jk = T−1HkT = diag [0, . . . , 0, αn+2]. (45)

The matrix Lambert W function Wk for the (vector valued)
branch number k = [k1, k2, . . . , kn+2] can be written as

Wk(Hk) = Wk(T Jk T−1)

= T Wk(Jk) T−1

= T diag[Wk1(0), . . . , Wkn+1(0),×Wkn+2 (αn+2)] T−1,

(46)

where the last equality holds for hybrid branches because
Jk is diagonal [12,24]. Here Wki is the scalar Lambert W
function and it has the property

{
Wki (0) = 0 if ki = 0,

Wki (0) → ∞ if ki = ±1,±2, . . . .
(47)

To avoid singularities we consider the hybrid branches with
branch number k = [0, . . . , 0, k] for k = 0,±1,±2, . . . in
which case considering k up to ±(n + 2) ensures that we
cover the first n + 2 eigenvalues [12]. Then, we have

Wk(Hk) = T diag [W0(0), . . . , W0(0), Wk(αn+2)] T−1

= T diag [0, . . . , 0, Wk(αn+2)] T−1

= Wk(αn+2)

αn+2
T diag [0, . . . , 0, αn+2] T−1

= Wk(αn+2)

αn+2
Hk

=

⎡
⎢⎢⎢⎢⎣

0 0 · · · 0 0
0 0 · · · 0 0
.
.
.

.

.

.
. . .

.

.

.
.
.
.

Wk (αn+2)
αn+2

α1
Wk (αn+2)

αn+2
α2 · · · Wk (αn+2)

αn+2
αn+1 Wk(αn+2)

⎤
⎥⎥⎥⎥⎦ .

(48)

This proves the result in (36).
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