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Abstract The aim of this paper is to investigate the sta-
bility of a simply supported laminated composite piezoelec-
tric rectangular plate under combined excitations. Analysis
of the amplitude and phase modulation equations with the
associated nonlinear interaction coefficients, as provided by
the multiple scale analyses of various 1:1 internal resonance
conditions and primary resonance case, where ω2 ∼= ω1

and �3 ∼= ω1 is considered. The method of multiple time
scale is applied to solve the non-linear differential equations
describing the system up to the second-order approximation.
All possible resonance cases at this approximation order are
extracted. The stable/unstable periodic solutions are deter-
mined and are presented through frequency response plots.
The analytical results are verified by comparing them with
those of numerical integration of the modal equations. The
influence of different parameters on the dynamic behavior
of the composite laminated piezoelectric rectangular plate
is studied. Variation of the some parameters leads to multi-
valued amplitudes and hence to jump phenomena. A com-
parison with the available published work is reported.
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1 Introduction

Today, laminated composite plates have many applications
as advanced engineering materials, primarily as components
in aircrafts, power plants, civil engineering structures, ships,
cars, rail vehicles, robots, prosthetic devices, sports equip-
ment etc. These engineering applications have motivated the
interest of several researchers in introducing new mathemat-
ical models and investigating approaches to expectation of
the nonlinear dynamics of physical systems in the case of
large deformation [1–4].

Bose et al. [5] investigate vibration analysis of a rectan-
gular thin isotropic plate with a part-through surface crack of
arbitrary orientation and position using the Kirchhoff plate
theory. Chang et al. [6] studied the bifurcations and chaos of a
rectangular thin plate with 1:1 internal resonance. Zhang [7]
investigated the local and global bifurcations of a rectangu-
lar thin plate under parametrical excitation by the analytical
and numerical approaches when the averaged equations have
one non-semisimple double zero and a pair of pure imagi-
nary eigenvalues The method of multiple scales is used to
obtain the averaged equations. The case of 1:1 internal res-
onance and primary parametric resonance are considered.
Ikeda and Nakazawa [8] investigated the mechanism of the
complex recursive bifurcation behaviour of a four-side sim-
ply supported rectangular plate. The bifurcation analysis of
the plate was carried out to assess the validity of the rule and
to demonstrate the merit of the block-diagonalization.

Ye et al. [9] investigated the local and global non-linear
dynamics of a parametrically excited symmetric cross-ply
composite laminated rectangular thin plate under parametric
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excitation. This study is focused on the case of 1:1 inter-
nal resonance and primary parametric resonance. Yeh [10]
presents a novel analytical approach utilizing fractal dimen-
sion criteria and the maximum Lyapunov exponent to charac-
terize the conditions, which can potentially lead to the chaotic
motion of a simply supported thermo-mechanically cou-
pled orthotropic rectangular plate undergoing large deflec-
tions. Guo et al. [11] analyzed the nonlinear oscillations and
chaotic dynamics of a four-edge simply supported angle-ply
composite laminated rectangular thin plate subjected to the
in-plane and transverse loads. The asymptotic perturbation
method is used to derive the four averaged equations under
1:1 internal resonance. Tien et al. [12] examined the weakly
non-linear resonance response of a two-degree-of-freedom
shallow arch subjected to simple harmonic excitation for the
case of 1:2 internal resonances. The method of averaging is
used to yield a set of autonomous equations of the first-order
approximations to the response of the system.

Sayed and Mousa [13] investigated the influence of the
quadratic and cubic terms on non-linear dynamic charac-
teristics of the angle-ply composite laminated rectangular
plate with parametric and external excitations. Two cases of
the sub-harmonic resonances cases in the presence of 1:2
internal resonances are considered. The method of multiple
time scale perturbation is applied to solve the nonlinear dif-
ferential equations describing the system up to and includ-
ing the second-order approximation. Sayed and Mousa [14]
studied an analytical investigation of the nonlinear vibration
of a symmetric cross-ply composite laminated piezoelectric
rectangular plate under parametric and external excitations.
Their study focused on the case of 1:1:3 primary resonances
and internal resonance, and they verified the analytical results
calculated by the method of multiple time scale by compar-
ing them with the numerical results of the modal equations.
The obtained result was verified by comparing the results of
the finite difference method (FDM) and Runge-Kutta (RKM)
method. Yeh et al. [15] presents a new approach to charac-
terize the conditions that can possibly lead to chaotic motion
for a simply supported large deflection rectangular plate of
thermo-mechanical coupling by utilizing the criteria of the
fractal dimension and the maximum Lyapunov exponent. Yao
et al. [16] investigated the Shilnikov type multi-pulse orbits
and chaotic dynamics of a four-edge simply supported lami-
nated composite piezoelectric rectangular plate subjected to
the in-plane, transverse and piezoelectric excitations by using
the energy phase method. The method of multiple scales is
utilized to obtain the four-dimensional averaged equation in
the case of primary parametric resonance and 1:3 internal
resonances

Zhang et al. [17] analyzed the Shilnikov type multi-pulse
chaotic dynamics of a six-dimensional nonlinear system,
which represents the averaged equation of a composite lam-
inated piezoelectric rectangular plate subjected to the trans-

verse, in-plane excitations and the excitation loaded by piezo-
electric layers. The case of 1:2:4 internal resonances are con-
sidered. Zhang et al. [18] investigated the nonlinear vibra-
tions and chaotic dynamics of the orthotropic functionally
graded material (FGM) rectangular plate under combined
transverse and in-plane excitations. The considered resonant
case here is 1:2:4 internal resonance, and principal parametric
resonance-subharmonic resonance of order 1/2. Zhang and
Li [19] studied the chaotic motions of a buckled thin plate in
the presence of resonance using exponential dichotomies and
an averaging procedure. Guo and Feng-Ming [20], investi-
gated the nonlinear vibration of a two-dimensional composite
laminated plate in subsonic air flow. They found that the com-
posite laminated plate with smaller ply angle exhibits more
stable dynamic properties than that with larger ply angles.
Feng-Ming and Guo [21] investigated the 1/3 subharmonic
resonance of a composite laminated circular cylindrical shell
with clamped boundary conditions at both ends in subsonic
air flow under radial harmonic excitation. The method of
multiple scales is used to analyzed the 1/3 subharmonic res-
onance of the shell and the sufficient and necessary condi-
tions for the stability of the steady states is obtained by solv-
ing the eigenvalue problem of the linearized equations. Guo
and Feng-Ming [22] investigated the bifurcation and chaotic
motion of a two-dimensional (2D) composite laminated plate
with geometric nonlinearity subjected to incompressible sub-
sonic flow and transverse harmonic excitation. The effects of
the flow velocity and the amplitude and angular frequency of
the external excitation on the chaotic motion of the plate are
analyzed.

Sayed [23] studied the analytical and numerical solutions
of the coupled differential equations describing the response
of an inclined cable subjected to external and parametric
excitation forces. The stability of the system are studied by
using frequency response equations and phase-plane method.
Zhong et al. [24] obtained the analytically solution of non-
dimensional differential equation of the motion, as well as
coupled boundary conditions, are obtained using the method
of multiple time scales. The obtained results of frequen-
cies and mode shapes are compared with the cases of ideal
boundary conditions, and the differences between them are
contrasted on frequency response curves. Varadharajan and
Rajendran [25] presented the closed analytical expressions
for substrate and product concentrations of the coupled sys-
tem of non-linear second-order reaction differential equa-
tion in basic enzyme reaction. The obtained results are com-
pared with simulation results and are found to be in good
agreement. Amer et al. [26] dealt with the dynamical sys-
tem of a twin-tail aircraft under different controllers. They
used two simple active control laws based on the linear neg-
ative velocity and acceleration feedback Sayed and Hamed
[27] obtained the analytical and numerical solutions of cou-
pled nonlinear differential equations describing the motion
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of pitch roll under parametric and harmonic excitations using
multiple scale method. Sayed and Kamel [28,29] investigated
the effects of different controllers on the vibrating system and
the saturation control to reduce vibrations due to rotor blade
flapping motion. The method of multiple scales is used to
obtain the analytical solution of the coupled second order
differential equation. The stability of the obtained numeri-
cal solution is investigated using both phase-plane and fre-
quency, force response curves.

Up to now, a few studies on the bifurcations and chaos
of the composite laminated piezoelectric plate have been
achieved. In this paper, the stability of the composite lami-
nated piezoelectric rectangular plate under transverse and in-
plane excitations simultaneous are investigated. The method
of multiple scales is applied to obtain the second-order
approximations. All possible resonance cases are deduced
at this approximation. The study is focused on the case of
1:1 internal resonance and primary resonance. The stability
of the system and the effects of different parameters on sys-
tem behavior have been studied using frequency response
curves. Variation of some parameters leads to multi-valued
amplitudes and hence to jump phenomena. Some recommen-
dations regarding the different parameters of the system are
reported. A comparison with the available published work is
reported.

2 Problem formulation

We consider a simply supported four edges composite lami-
nated piezoelectric rectangular plate with side lengths a and b
and thickness h, as shown in Fig. 1. The laminated compos-
ite piezoelectric rectangular plate is considered as regular
symmetric cross-ply laminates with n layers. The in-plane
excitations are loaded along the y direction at x = 0 in the
form qx cos �1t and loaded along the x direction at y = 0 in
the form qy cos �2t . The transverse excitation subjected to
the composite laminated piezoelectric rectangular plate rep-
resented by q = q3 cos �3t is out of plane excitation. The

Fig. 1 The model of a laminated composite piezoelectric rectangular
plate

dynamic electrical loading is expressed as Ez = Ez cos �4t .
The nonlinear governing equations of motion for the com-
posite laminated piezoelectric rectangular plate in a dimen-
sionless form can be written as follows [16]:

ü1 + μ1u̇1 + ω2
1u1 + ( f11 cos �1t + f12 cos �2t

+ f14 cos �4t)u1 + α1u2
1u2 + α2u2

2u1 + α3u3
1

+ α4u3
2 = f1 cos �3t, (1)

ü2 + μ2u̇2 + ω2
2u2 + ( f21 cos �1t + f22 cos �2t

+ f24 cos �4t)u2 + β1u2
2u1 + β2u2

1u2 + β3u3
2

+ β4u3
1 = f2 cos �3t, (2)

where the dots indicate differentiation with respect to time,
u1 and u2 are the vibration amplitudes of the composite lam-
inated piezoelectric rectangular plate for the first-order and
second-order modes, respectively, μ1and μ2 are the linear
viscous damping coefficients, ω1 and ω2 are the linear nat-
ural frequencies of the rectangular plate, and �1,�2,�3 and
�4 are the excitations frequencies, αi , βi (i = 1, 2, 3, 4) are
the non-linear coefficients.

fn1, fn2, fn4 and fn(n = 1, 2) are the amplitudes of
parametric and external excitation forces corresponding to
the three non-linear modes. The linear viscous damping and
exciting forces are assumed to be

μn = εμ̂n, fn1 = ε f̂n1, fn2 = ε f̂n2,

fn4 = ε f̂n4, fn = ε2 f̂n n = 1, 2, (3)

where ε is a small perturbation parameter and 0 < ε << 1.
The external excitation forces f̂n are of the order 2 and

the linear viscous damping μ̂n , parametric exciting forces
f̂n1, f̂n2, f̂n4 are of the order 1. To consider the influence of
the cubic terms on non-linear dynamic characteristics of the
composite laminated piezoelectric rectangular plate, we need
to obtain the second-order approximate solution of Eqs. (1)
and (2).

3 Perturbation analysis

The method of multiple scales [30–32] is applied to obtain a
second-order approximation for the system, which is a pow-
erful tool in determining periodic solutions of small ampli-
tude. We seek an approximate solution of Eqs. (1) and (2) in
the form

un(t, ε) = εun1(T0, T1, T2) + ε2un2(T0, T1, T2)

+ ε3un3(T0, T1, T2) + O(ε4), n = 1, 2. (4)

where T0 = t is a fast time scale associated with changes
occurring at the frequencies ωn and �1,�2,�3 and �4 and
T1 = εt, T2 = ε2t are slow time scales associated with mod-
ulations in the amplitudes and phases caused by the non-
linearity, damping, and resonances. In terms of T0, T1, T2
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the time derivatives can be expressed as the following:

d

dt
= ∂

∂T0
+ ε

∂

∂T1
+ ε2 ∂

∂T2
= D0 + εD1 + ε2 D2, (5)

d2

dt2 = D2
0 + 2εD0 D1 + ε2(D2

1 + 2D0 D2), (6)

where Dn = ∂/∂Tn . Substituting Eqs. (3) and (4)–(6) into
Eqs. (1)–(2) and equating the coefficients of like powers of
ε, we obtain the following

O(ε) : (D2
0 + ω2

1)u11 = 0, (7)

(D2
0 + ω2

2)u21 = 0, (8)

O(ε2) : (D2
0 + ω2

1)u12 = −2D0 D1u11 − μ̂1 D0u11

− ( f̂11 cos �1T0 + f̂12 cos �2T0

+ f̂14 cos �4T0)u11 + f̂1 cos �3T0, (9)

(D2
0 + ω2

2)u22 = −2D0 D1u21 − μ̂2 D0u21

−( f̂21 cos �1T0 + f̂22 cos �2T0

+ f̂24 cos �4T0)u21 + f̂2 cos �3T0, (10)

O(ε3) : (D2
0 + ω2

1)u13 = −D2
1u11 − 2D0 D2u11

− 2D0 D1u12 − μ̂1(D0u12 + D1u11)

− ( f̂11 cos �1T0 + f̂12 cos �2T0 + f̂14 cos �4T0)u12

− α1u2
11u21 − α2u2

21u11 − α3u3
11 − α4u3

21, (11)

(D2
0 + ω2

2)u23 = −D2
1u21 − 2D0 D2u21

− 2D0 D1u22 − μ̂2(D0u22 + D1u21)

− ( f̂21 cos �1T0 + f̂22 cos �2T0

+ f̂24 cos �4T0)u22 − β1u2
21u11 − β2u2

11u21

− β3u3
21 − β4u3

11. (12)

The general solutions of Eqs. (7) and (8), can be written as

u11 = A1(T1, T2) exp(iω1T0) + Ā1(T1, T2) exp(−iω1T0),

(13)

u21 = A2(T1, T2) exp(iω2T0) + Ā2(T1, T2) exp(−iω2T0),

(14)

where Ā1, Ā2 are complex conjugates of A1, A2, which are
arbitrary complex functions of T1 and T2 at this level of
approximation. It is determined by imposing the solvability
conditions at the next levels of approximations. Substituting
Eqs. (13) and (14) into Eqs. (9) and (10) and eliminating the
secular terms, then the first-order approximations are given
by

u12(T0, T1, T2) = E1 exp(iω1T0)

+ E2 exp(i�3T0)

+ E3 exp(i(�1 ± ω1)T0)

+ E4 exp(i(�2 ± ω1)T0)

+ E5 exp(i(�4 ± ω1)T0) + cc, (15)

u22(T0, T1, T2) = G1 exp(iω2T0)

+ G2 exp(i�3T0)

+ G3 exp(i(�1 ± ω2)T0)

+ G4 exp(i(�2 ± ω2)T0)

+ G5 exp(i(�4 ± ω2)T0) + cc, (16)

where Ei , Gi (i = 1, 2, . . . , 5) are the complex functions in
T1& T2 and cc are the complex conjugates of the preceding
terms. From Eqs. (13)–(16) into Eqs. (11) and (12) and elim-
inating the secular terms, the second-order approximations
are given by

u13(T0, T1, T2) = E1 exp(iω2T0)

+ E2 exp(iω3T0) + E3 exp(3iω1T0)

+ E4 exp(3iω2T0) + E5 exp(3iω3T0)

+ E6 exp(i(ω2 ± 2ω1)T0)

+ E7 exp(i(ω3 ± 2ω1)T0)

+ E8 exp(i(2ω2 ± ω1)T0)

+ E9 exp(i(2ω3 ± ω1)T0)

+ E10 exp(i(ω2 ± 2ω3)T0)

+ E11 exp(i(ω3 ± 2ω2)T0)

+ E12 exp(i(ω3 ± ω2 ± ω1)T0)

+ E13 exp(i�3T0)

+ E14 exp(i(�3 ± �1)T0)

+ E15 exp(i(�3 ± �2)T0)

+ E16 exp(i(�3 ± �4)T0)

+ E17 exp(i(�1 ± ω1)T0)

+ E18 exp(i(�2 ± ω1)T0)

+ E19 exp(i(�4 ± ω1)T0)

+ E20 exp(i(2�1 ± ω1)T0)

+ E21 exp(i(2�2 ± ω1)T0)

+ E22 exp(i(2�4 ± ω1)T0)

+ E23 exp(i(�2 ± ω1 ± ω1)T0)

+ E24 exp(i(�4 ± �1 ± ω1)T0)

+ E25 exp(i(�4 ± �2 ± ω1)T0) + cc,

(17)

u23(T0, T1, T2) = G1 exp(iω1T0) + G2 exp(iω3T0)

+ G3 exp(3iω1T0) + G4 exp(3iω2T0)

+ G5 exp(3iω3T0)

+ G6 exp(i(ω2 ± 2ω1)T0)
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+ G7 exp(i(2ω2 ± ω1)T0)

+ G8 exp(i(ω3 ± 2ω1)T0)

+ G9 exp(i(2ω3 ± ω1)T0)

+ G10 exp(i(ω2 ± 2ω3)T0)

+ G11 exp(i(2ω2 ± ω3)T0)

+ G12 exp(i(ω3 ± ω2 ± ω1)T0)

+ G13 exp(i�3T0)

+ G14 exp(i(�3 ± �1)T0)

+ G15 exp(i(�3 ± �2)T0)

+ G16 exp(i(�4 ± �3)T0)

+ G17 exp(i(�1 ± ω2)T0)

+ G18 exp(i(�2 ± ω2)T0)

+ G19 exp(i(�4 ± ω2)T0)

+ G20 exp(i(2�1 ± ω2)T0)

+ G21 exp(i(2�2 ± ω2)T0)

+ G22 exp(i(2�4 ± ω2)T0)

+ G23 exp(i(�2 ± ω1 ± ω
2
)T0)

+ G24 exp(i(�4 ± �1 ± ω2)T0)

+ G25 exp(i(�4 ± �2 ± ω2)T0) + cc,

(18)

where Ei , Gi (i = 1, 2, . . . , 25) are the complex functions
in T1 and T2. From the above-derived solutions, the reported
resonance cases are

• Primary resonance: �1 ∼= ωn,�2 ∼= ωn,�3 ∼= ωn,

�4 ∼= ωn, n = 1, 2.
• Sub-harmonic resonance: �1 ∼= 2ωn,�2 ∼= 2ωn,�4 ∼=

2ωn .
• Internal or secondary resonance: ω1 ∼= ω2,ω1 ∼= 3ω2,

ω2 ∼= 3ω1.
• Combined resonance: �3 ± �t ∼= ωn,�4 ± �m ∼=

2ωn,�2 ± �1 ∼= 2ωn, t = 1, 2, 4 and m = 1, 2.
• Simultaneous or incident resonance Any combination

of the above resonance cases is considered as simultaneous
resonance.

3.1 Simultaneous primary and internal resonance

For the simultaneous primary and internal resonance case
�3 ∼= ω1,ω1 ∼= ω2, we can introduce external and internal
detuning parameters σ1 and σ2 such that:

�3 = ω1 + σ1 = ω1 + εσ̂1, ω2 = ω1 + σ2 = ω1 + εσ̂2.

(19)

Substituting Eq. (19) into Eqs. (9)–(12) and eliminating the
secular terms leads to solvability conditions for the first and
second-order expansions as:

2iω1 D1 A1 = −iμ̂1ω1 A1 + f̂1

2
exp(i σ̂1T1), (20)

2iω2 D1 A2 = −iμ̂2ω2 A2 + f̂2

2
exp(i(σ̂1 − σ̂2)T1), (21)

2iω1 D2 A1 = μ̂2
1

4
A1 + iμ̂1 f̂1

8ω1
exp(i σ̂1T1)

− σ̂1 f̂1

4ω1
exp(i σ̂1T1)

−
{

f̂ 2
11

2(�2
1 − 4ω2

1)
+ f̂ 2

12

2(�2
2 − 4ω2

1)

+ f̂ 2
14

2(�2
4 − 4ω2

1)

}
A1

− {
2α1 A1 Ā1 + 3α4 A2 Ā2

}
A2 exp(i σ̂2T1)

− α1 A2
1 Ā2 exp(−i σ̂2T1)

− {
2α2 A2 Ā2 + 3α3 A1 Ā1

}
A1, (22)

2iω2 D2 A2 = μ̂2
2

4
A2 + iμ̂2 f̂2

8ω2
exp(i(σ̂1 − σ̂2)T1)

− σ̂2 f̂2

4ω2
exp(i(σ̂1 − σ̂2)T1) −

{
f̂ 2
21

2(�2
1 − 4ω2

2)

+ f̂ 2
22

2(�2
2 − 4ω2

2)
+ f̂ 2

24

2(�2
4 − 4ω2

2)

}
A2

− {
2β1 A2 Ā2 + 3β4 A1 Ā1

}
A1 exp(−i σ̂2T1)

− β1 A2
2 Ā1 exp(i σ̂2T1) − β2 A2

1 Ā2 exp(−2i σ̂2T1)

− {
2β2 Ā1 A1 + 3β3 A2 Ā2

}
A2. (23)

Letting An(T1, T2) = ân
2 exp(iϕn), an = εân, n = 1, 2

where an and ϕn are real functions, and using d An
dt =

εD1 An + ε2 D2 An and separating real and imaginary parts,
we obtain the autonomous equation of the modulation of the
amplitudes and phases of the response as follows:

ȧ1 = −μ1

2
a1 − α1

8ω1
a2

1a2 sin θ2 − 3α4

8ω1
a3

2 sin θ2

+
{

f1

2ω1
− σ1 f1

4ω2
1

}
sin θ1 + μ1 f1

8ω2
1

cos θ1,

(24)

a1ϕ̇1 =
{

− μ2
1

8ω1
+ �1

2ω1

}
a1 + 3α1

8ω1
a2

1a2 cos θ2

+ 3α4

8ω1
a3

2 cos θ2 + α2

4ω1
a1a2

2 + 3α3

8ω1
a3

1

−
{

f1

2ω1
− σ1 f1

4ω2
1

}
cos θ1 + μ1 f1

8ω2
1

sin θ1,

(25)

ȧ2 = −μ2

2
a2 + β2

8ω2
a2

1a2 sin 2θ2
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+ 3β4

8ω2
a3

1 sin θ2 + β1

8ω2
a2

2a1 sin θ2

+ μ2 f2

8ω2
2

cos(θ1 − θ2)

+
{

f2

2ω2
− (σ1 − σ2) f2

4ω2
2

}
sin(θ1 − θ2),

(26)

a2ϕ̇2 =
{

− μ2
2

8ω2
+ �2

2ω2

}
a2 + β2

8ω2
a2

1a2 cos 2θ2

+ β2

4ω2
a2

1a2 + 3β3

8ω2
a3

2 + 3β4

8ω2
a3

1 cos θ2

+ 3β1

8ω2
a2

2a1 cos θ2

+
{

(σ1 − σ2) f2

4ω2
2

− f2

2ω2

}
cos(θ1 − θ2)

+ μ2 f2

8ω2
2

sin(θ1 − θ2),

(27)

where �n =
{

f 2
n1

2(�2
1−4ω2

n)
+ f 2

n2
2(�2

2−4ω2
n)

+ f 2
n4

2(�2
4−4ω2

n)

}
, n =

1, 2, θ1 = σ̂1T1 − ϕ1 and θ2 = σ̂2T1 + ϕ2 − ϕ1.
Steady-state solutions of the system correspond to the

fixed points of Eqs. (24)–(27), which in turn correspond to

ϕ̇1 = σ1 and ϕ̇2 = σ1 − σ2. (28)

Hence, the fixed points of Eqs. (24)–(27) are given by

−μ1

2
a1 − α1

8ω1
a2

1a2 sin θ2 − 3α4

8ω1
a3

2 sin θ2

+
{

f1

2ω1
− σ1 f1

4ω2
1

}
sin θ1 + μ1 f1

8ω2
1

cos θ1 = 0, (29)

a1σ1 +
{

μ2
1

8ω1
− �1

2ω1

}
a1 − 3α1

8ω1
a2

1a2 cos θ2

− α2

4ω1
a1a2

2 − 3α3

8ω1
a3

1 − 3α4

8ω1
a3

2 cos θ2 − μ1 f1

8ω2
1

sin θ1

+
{

f1

2ω1
− σ1 f1

4ω2
1

}
cos θ1 = 0, (30)

−μ2

2
a2 + β1

8ω2
a2

2a1 sin θ2 + β2

8ω2
a2

1a2 sin 2θ2

+ 3β4

8ω2
a3

1 sin θ2 +
{

f2

2ω2
− (σ1 − σ2) f2

4ω2
2

}
sin(θ1 − θ2)

+μ2 f2

8ω2
2

cos(θ1 − θ2) = 0, (31)

a2(σ2 − σ1) −
{

μ2
2

8ω2
− �2

2ω2

}
a2 + 3β1

8ω2
a2

2a1 cos θ2

+ β2

8ω2
a2

1a2 cos 2θ2 + β2

4ω2
a2

1a2 + 3β3

8ω2
a3

2 + 3β4

8ω2
a3

1 cos θ2

+
{

(σ1 − σ2) f2

4ω2
2

− f2

2ω2

}
cos(θ1 − θ2)

+ μ2 f2

8ω2
2

sin(θ1 − θ2) = 0. (32)

There are three possibilities besides the trivial solution

(1) a1 �= 0, a2 = 0 (Single mode)
(2) a2 �= 0, a1 = 0 (Single mode)
(3) a1 �= 0, a2 �= 0 (Two modes)

Case (1): In this case, where a2 = 0, the frequency
response equation is given by

9α2
3

64ω2
1

a6
1 +

[
R3 + 3α3σ1

4ω1

]
a4

1

+
[

R2 + σ2
1 + μ2

1σ1

4ω1
− �1σ1

ω1

]
a2

1 − μ2
1 f 2

1

64ω4
1

− R2
1 = 0.

(33)

This is a single-mode solution.
Case (2): In this case, where a1 = 0, the frequency
response equation is given by

9β2
3

64ω2
2

a6
2 +

[
Q3 + 3β3(σ2 − σ1)

4ω2

]
a4

2

+
[

Q2 + (σ2 − σ1)
2−μ2

2(σ2 − σ1)

4ω2
+�2(σ2 − σ1)

ω2

]
a2

2

− μ2
2 f 2

2

64ω4
2

− Q2
1 = 0. (34)

This is a single-mode solution.
Case (3): In this case, where a1 �= 0, a2 �= 0, this is
the practical case, the frequency response equations are
given by

9α2
3

64ω2
1

a6
1 +

[
R3 + 3α3σ1

4ω1

]
a4

1

+
[

R2 + σ2
1 + μ2

1σ1

4ω1
− �1σ1

ω1

]
a2

1

− μ2
1 f 2

1

64ω4
1

− R2
1 + 3R1α4

4ω1
a3

2 + 3R1α1

4ω1
a2

1a2

− 9α2
1

64ω2
1

a4
1a2

2 − 9α1α4

32ω2
1

a2
1a4

2 − 9α2
4

64ω2
1

a6
2 = 0, (35)
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9β2
3

64ω2
2

a6
2 +

[
Q3 + 3β3(σ2 − σ1)

4ω2

]
a4

2

[
Q2 + (σ2 − σ1)

2

+ − μ2
2(σ2 − σ1)

4ω2
+ �2(σ2 − σ1)

ω2

]
a2

2

− μ2
2 f 2

2

64ω4
2

− Q2
1 + 3Q1β1

4ω2
a2

2a1 + 3Q1β4

4ω2
a3

1

+ Q1β2

4ω2
a2

1a2 − 3β2β4

32ω2
2

a5
1a2

− 9β2
1

64ω2
2

a4
2a2

1 − Q4a4
1a2

2 − 9β2
4

64ω2
2

a6
1

− 3β2β1

32ω2
2

a3
1a3

2 = 0, (36)

which is a two-mode solution.
where

R1 =
[

1

2ω1
− σ1

4ω2
1

]
f1,

R2 =
[

μ2
1

4
+ μ4

1

64ω2
1

+ �2
1

4ω2
1

− �1μ
2
1

8ω2
1

]
,

R3 = 3

[
μ2

1

32ω2
1

− �1

8ω2
1

]
α3,

Q1 =
[

1

2ω2
− (σ1 − σ2)

4ω2
2

]
f2,

Q2 =
[

μ2
2

4
+ μ4

2

64ω2
2

+ �2
2

4ω2
2

− �2μ
2
2

8ω2
2

]
,

Q3 = 3

[
�2

8ω2
2

− μ2
2

32ω2
2

]
β3, Q4 =

[
β2

2

64ω2
2

+ 9β1β4

32ω2
2

]
.

4 Stability analysis

Here we study the problem of stability in two cases: linear
and non-linear solutions.

4.1 Stability of linear solution

To study the stability of the linear solution, one investigates
the solution of the linearized form of Eqs. (20)–(23) as

2iω1 D1 A1 = −iμ̂1ω1 A1 + f̂1

2
exp(i σ̂1T1), (37)

2iω2 D1 A2 = −iμ̂2ω2 A2 + f̂2

2
exp(i(σ̂1 − σ̂2)T1), (38)

2iω1 D2 A1 = μ̂2
1

4
A1 + iμ̂1 f̂1

8ω1
exp(i σ̂1T1)

− σ̂1 f̂1

4ω1
exp(i σ̂1T1) − �1 A1, (39)

2iω2 D2 A2 = μ̂2
2

4
A2 + iμ̂2 f̂2

8ω2
exp(i(σ̂1 − σ̂2)T1)

− σ̂2 f̂2

4ω2
exp(i(σ̂1 − σ̂2)T1) − �2 A2, (40)

we express An in the form

An = 1

2
( p̂n − i q̂n) exp(ivnT1) pn = ε p̂n, qn

= εq̂n n = 1, 2, (41)

where v1 = σ1, v2 = σ1 −σ2. Separating real and imaginary
parts into expression, d An

dt = εD1 An + ε2 D2 An we obtain
the autonomous equation of the modulation of the amplitudes
and phases of the response

ṗ1 = −
(μ1

2

)
p1 −

(
μ2

1

8ω1
+ σ1 − �1

2ω1

)
q1 + μ1 f1

8ω2
1

,

(42)

q̇1 =
(

μ2
1

8ω1
+ σ1 − �1

2ω1

)
p1 −

(μ1

2

)
q1 − σ1 f1

4ω2
1

, (43)

ṗ2 =
(μ2

2

)
p2 −

(
�2

2ω2
+ σ2 − σ1 − μ2

2

8ω2

)
q2 + μ2 f2

8ω2
2

,

(44)

q̇2 = −
(

�2

2ω2
+ σ2 − σ1 − μ2

2

8ω2

)
p2 +

(μ2

2

)
q2

+ f2

2ω2
− (σ1 − σ2) f2

4ω2
2

. (45)

The stability of a particular equilibrium solution is ascer-
tained by investigating the eigenvalues of the Jacobian matrix
of the right-hand sides of Eqs. (42)–(45). The stable (unsta-
ble) solutions have been represented by solid (dotted) lines
on the σ1 and σ2-axis.

4.2 Stability of non-linear solution

To analyze the stability of the fixed points by Liapunov’s first
method, one lets

an = an0 + an1 and θn = θn0 + θn1 (n = 1, 2), (46)

where an0 and θn0 are the solutions of Eqs. (29)–(32). Insert-
ing Eq. (46) into Eqs. (24)–(27), and keeping only the linear
terms in an1, θn1 we obtain:

ȧ11 =
{
−μ1

2
− α1a10a20

4ω1
sin θ20

}
a11

+
{(

f1

2ω1
− σ1 f1

4ω2
1

)
cos θ10 − μ1 f1

8ω2
1

sin θ10

}
θ11
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−
{(

α1a2
10

8ω1
+ 9α4a2

20

8ω1

)
sin θ20

}
a21

−
{(

3α4a3
20

8ω1
+ α1a2

10a20

8ω1

)
cos θ20

}
θ21, (47)

θ̇11 =
{

σ1

a10
+ μ2

1

8ω1a10
− �1

2ω1a10
− 3α1a20

4ω1
cos θ20

− α2a2
20

4ω1a10
− 9α3a10

8ω1

}
a11

+
{(

σ1 f1

4ω2
1

− f1

2ω1

)
1

a10
sin θ10 − μ1 f1

8ω2
1a10

cos θ10

}
θ11

−
{

3α1a10

8ω1
cos θ20 + 9α4a3

20

8ω1a10
cos θ20 + α2a20

2ω1

}
a21

+
{

3α1a10a20

8ω1
sin θ20 + 3α4a3

20

8ω1a10
sin θ20

}
θ21, (48)

ȧ21 =
{(

β1a2
20+9β4a2

10

)
8ω2

sin θ20+β2a10a20

4ω2
sin 2θ20

}
a11

+
{(

f2

2ω2
− (σ1 − σ2) f2

4ω2
2

)
cos(θ10 − θ20)

− μ2 f2

8ω2
2

sin(θ10 − θ20)

}
θ11

+
{

−μ2

2
+β1a10a20

4ω2
sin θ20+β2a2

10

8ω2
sin 2θ20

}
a21

+
{

−
(

f2

2ω2
− (σ1 − σ2) f2

4ω2
2

)
cos(θ10 − θ20)

+ μ2 f2

8ω2
2

sin(θ10 − θ20) + β2a20a2
10

4ω2
cos 2θ20

+
(
β1a10a2

20 + 3β4a3
10

)
8ω2

cos θ20

}
θ21, (49)

θ̇21 =
{

σ1

a10
+ μ2

1

8ω1a10
− �1

2ω1a10
− 3α1a20

4ω1
cos θ20

− α2a2
20

4ω1a10
− 9α3a10

8ω1
+ β2a10

2ω2
+ 3β1a20

8ω2
cos θ20

+ 9β4a2
10

8ω2a20
cos θ20 + β2a10

4ω2
cos 2θ20

}
a11

+
{(

σ1 f1

4ω2
1

− f1

2ω1

)
1

a10
sin θ10 − μ1 f1

8ω2
1a10

cos θ10

+ μ2 f2

8ω2
2a20

cos(θ10 − θ20) −
(

(σ1 − σ2) f2

4ω2
2

− f2

2ω2

)

× 1

a20
sin(θ10 − θ20)

}
θ11

+
{
−3α1a10

8ω1
cos θ20 − 9α4a3

20

8ω1a10
cos θ20 − α2a20

2ω1

+ (σ2 − σ1)

a20
− μ2

2

8ω2a20
+ �2

2ω2a20
+ 3β1a10

4ω2
cos θ20

+ β2a2
10

8ω2a20
cos 2θ20 + β2a2

10

4ω2a20
+ 9β3a20

8ω2

}
a21

+
{

3α1a10a20

8ω1
sin θ20 + 3α4a3

20

8ω1a10
sin θ20

+
(

(σ1 − σ2) f2

4ω2
2

− f2

2ω2

)
1

a20
sin(θ10 − θ20)

− μ2 f2

8ω2
2a20

cos(θ10 − θ20) − 3β1a10a20

8ω2
sin θ20

− β2a2
10

4ω2
sin 2θ20 − 3β4a3

10

8ω2a20
sin θ20

}
θ21, (50)

To study the stability of the fixed points corresponding to the
practical case, we let an1 �= 0 and θn1 �= 0 in Eqs. (47)–(50),
and obtain the eigenvalues from the Jacobian matrix of the
right hand sides. The zeros of the characteristic equation are
given by

λ
4 + L1λ

3 + L2λ
2 + L3λ + L4 = 0, (51)

where L1, L2, L3 and L4 are functions of the parameters
(ω1,ω2,μ1,μ2, α1, α2, α3, α4, β1, β2, β3, β4, f1, f2, θ1,

θ2, σ1, σ2). According to Routh–Huriwitz criterion, the nec-
essary and sufficient conditions for all roots of Eq. (51) to
possess negative real parts is that

L1 > 0, L1L2 − L3 > 0, L3(L1L2 − L3)

−L2
1L4 > 0, L4 > 0. (52)

In all frequency response curves, solid lines comprise the
stable solutions whereas dotted lines stand for unstable solu-
tions.

5 Numerical results

When the amplitude achieves a constant nontrivial value, a
steady state vibration exists. Using the frequency response
equations, we can assess the influence of the damping coeffi-
cients, the nonlinear parameters and the excitation amplitude
on the steady state amplitudes. The frequency response Eqs.
(33)–(36) are nonlinear equations in a1, a2 which are solved
numerically. The numerical results are shown in Figs. 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 and 21.
In all figures the region of stability of the nonlinear solutions
is determined by applying the Routh-Hurwitz criterion. The
non-linear solution has stable and unstable solutions which
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Fig. 2 Comparison between
analytical prediction using
multiple time scale and
numerical integration of the first
mode
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σ
1

a 1

 Analytical solution
Numerical solution

are represented on the frequency response curves by solid
and dotted lines and also the linear solution has stable and
unstable solutions which are represented by solid and dotted
lines on the σ1 and σ2 -axis. From the geometry of the fig-
ures, we observe that the each curve are continuous and have
stable and unstable solution.

5.1 Amplitude frequency responses

To check the accuracy of the analytical solution derived by
the multiple time scale in predicting the amplitude of the first
mode, we compare the amplitude of the first mode obtained
from frequency response equation with values obtained from
numerical integration of Eq. (1). Figure 2 shows a comparison
of these outputs for the first mode. The effects of the detuning
parameter σ1 on the steady state amplitude of the first mode
for the stability first case, where a1 �= 0, a2 = 0, for the
parameters: α3 = 0.02, f1 = 2,μ1 = 0.2, f11 = 0.1, f12 =
0.2, f14 = 0.3,�1 = 1,�2 = 1.2,�4 = 1.4,ω1 = 2.3 is
shown in Fig. 2. Figures 3, 4, 5 and 6, show the effects of the
non-linear spring stiffness α3, the external excitation ampli-
tude f1, the damping coefficient μ1, the first mode natural
frequency ω1 for the system. Figure 3 shows that as the non-
linear spring stiffness α3 is increased the continuous curve
is moved downwards. Also, the negative and positive values
of α3, produce either hard or soft spring respectively as the
curve is either bent to the right or to the left, leading to the
appearance of the jump phenomenon. The region of stability
is increased for increasing value of α3. It is clear from Fig. 4
that the steady state amplitude a1 is increasing for increasing
value of external excitation force f1, the curve bends more to
the left, and hence the softening behavior becomes stronger
and the zone of instability is increased. Figures 5 and 6 shows
that the steady state amplitude a1 is inversely proportional to
μ1 and ω1 also for decreasing μ1 or ω1 the curve is bending
to the left.

Figures 7, 8, 9, 10 and 11, show the effects of system
parameters on the amplitude frequency response curves for
the stability of the second case, where a1 = 0, a2 �= 0.
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Fig. 3 Effects of the nonlinear parameter α3
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Fig. 4 Effects of the external excitation f1

Figure 7 shows a comparison between analytical prediction
using multiple time scale and numerical

integration of the second mode. A comparison between
the solutions obtained numerically with that prediction from
the multiple time scale show an excellent agreement in the
amplitude of the second mode of a laminated composite
piezoelectric rectangular plate near the bifurcation. Figure 7
shows the effects of the detuning parameter σ2 on the steady
state amplitude of the second mode a2 for the parameters
μ2 = 0.2, β4 = 0.01,ω2 = 2.3, f2 = 2, f21 = 0.1, f22 =
0.2, f24 = 0.3,�1 = 1,�2 = 1.2,�4 = 1.4, σ1 = 0.04. It
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Fig. 5 Effects of the linear damping μ1

Fig. 6 Effects of the natural frequency ω1

can be seen from Fig. 7 that maximum steady state amplitude
occurs when ω2 ∼= ω1. Figure 8 shows that as the non-linear
spring stiffness β4 is increased the continuous curve is moved
downwards. The positive and negative values of β4, produce
either softening or hardening behavior respectively. Figure 9
shows variation of the amplitude of the second mode a2 with
the detuning parameter σ2 for various values of the exter-
nal excitation force f2. In this case, the amplitude behavior
is softening. We note that increasing the external excitation

Fig. 8 Effects of the nonlinear parameter β4

Fig. 9 Effects of the external excitation f2

force leads to increase on the steady state amplitude and
multi-valued solutions.

Figures 10 and 11 show that the steady state amplitude
a2 is inversely proportional to μ2,ω2. Also, for decreasing
μ2,ω2 the curve is bending to the left producing softening
behavior.

Fig. 7 Comparison between
analytical prediction using
multiple time scale and
numerical integration of the
second mode
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Fig. 10 Effects of the linear damping μ2

Fig. 11 Effects of the natural frequency ω2

Figures 12, 13, 14, 15, 16, 17, 18, 19, 20 and 21, show the
response of the third case a1 �= 0, a2 �= 0 of simultaneous
primary and internal resonance �3 ∼= ω1,ω2 ∼= ω1 against
detuning parameter σ2. Figure 12 represents the main figure
for the case of primary resonance in the presence of one-to-
one internal resonance for the parameters μ1 = 0.2,μ2 =
0.2, α1 = 0.05, α2 = 0.01, α3 = 0.02, α4 = 0.03, β1 =
0.02, ω1 = ω2 = 2.3, f1 = f2 = 2. Each mode has
two branches, which are stable and unstable solutions. For

increasing external excitations f1 and f2 we observe that
the first and second modes have increasing magnitude and
the upper branch of the first and second mode intersect with
the lower branch, as shown in Figs. 13 and 14. The steady
state amplitudes of the first and second modes are decreas-
ing and increasing for decreasing non-linear stiffness α1, and
the upper branch becomes stable as shown in Fig. 15. Fig-
ure 16 shows that for increasing nonlinear parameter β1 the
steady state amplitudes of the two modes are decreased. For
increasing natural frequencies we show that the lower branch
becomes unstable and upper branch becomes stable and the
steady state amplitudes of the first and second are increased
as obtained in Fig. 17.

Figure 18 shows that the effects of the detuning parameter
σ1 on the amplitudes of the two modes. The two branches for
both modes have stable and unstable solutions.

When α2 is increased up to 0.5, we observe that both
modes have the magnitudes as in Fig. 18, i.e. both modes
do not affect by increasing α2 but the regions of stability are
increased as shown in Fig. 19. For increasing nonlinear para-
meters α3, α4 we show that the steady state amplitude of two
modes is decreasing as shown in Figs. 20 and 21.

5.2 Comparison with the previous work

In the previous work [16], The Shilnikov type multi-pulse
orbits and chaotic dynamics of a four-edge simply sup-
ported laminated composite piezoelectric rectangular plate
subjected to the in-plane, transverse and piezoelectric excita-
tions are investigated by using the energy phase method. The
four-dimensional averaged equation in the case of primary
parametric resonance and 1:3 internal resonances is obtained
by using the method of multiple scales. Numerical simula-
tions indicate that there exist different shapes of the chaotic
responses for laminated composite piezoelectric rectangular
plate under combined parametric and transverse excitations.
It is found from numerical simulations that the shapes of the
chaotic motions in the two modes are completely different.

In our study, the nonlinear analysis and stability of a
composite laminated piezoelectric rectangular plate under

Fig. 12 Effects of the detuning
parameter σ2
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Fig. 13 Effects of the external
excitation f1
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Fig. 14 Effects of the external
excitation f2
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Fig. 15 Effects of the nonlinear
parameter α1
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Fig. 16 Effects of the nonlinear
parameter β1
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simultaneous external and parametric excitation forces are
investigated. The second-order approximation is obtained to
consider the influence of the quadratic and cubic terms on

non-linear dynamic characteristics of the composite lami-
nated piezoelectric rectangular plate using the multiple scale
method. All possible resonance cases are extracted at this
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Fig. 17 Effects of the natural
frequencies
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Fig. 18 Effects of the detuning
parameter σ1
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Fig. 19 Effects of the nonlinear
parameter α2
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Fig. 20 Effects of the nonlinear
parameter α3
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approximation order. The analytical results given by the
method of multiple time scale are verified by comparing
them with results of numerical integration of the modal

equations. The study is focused on the case of 1:1 inter-
nal resonance and primary resonance, where ω2 ∼= ω1 and
�3 ∼= ω1. The stability of the system and the effects of
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Fig. 21 Effects of the nonlinear
parameter α4
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different parameters on system behavior have been studied
using frequency response curves. Variation of the some para-
meters leads to multi-valued amplitudes and hence to jump
phenomena.

6 Conclusions

The method of multiple scales is used to obtain a uniform
second-order expansion for rectangular symmetric cross-
ply laminated composite plate subjected to external and
parametric excitations. Second-order approximate solutions
are obtained to study the influence of the cubic terms on
non-linear dynamic characteristics of the composite lami-
nated piezoelectric rectangular plate. All possible resonance
cases are extracted at this approximation order. The study is
focused on the case of 1:1 internal resonance and primary
resonance, where ω2 ∼= ω1 and �3 ∼= ω1. The stability of
linear and nonlinear solutions of the system is investigated.
The frequency response curves are calculated to study the
stability of the system. From the above study, the following
may be concluded:

• A comparison between the solutions obtained numeri-
cally with that prediction from the multiple scales show
an excellent agreement.

• Variation of the parametersα3, β4, f1, f2,μ1,μ2,ω1,ω2

leads to multi-valued amplitudes and hence to jump phe-
nomena.

• The multi-valued solutions are disappeared for increasing
linear damping coefficients μ1,μ2.

• For the first and second modes, the steady state ampli-
tudes a1 and a2 are directly proportional to the excitation
amplitude f1 and f2, and inversely proportional to the
linear damping μ1,μ2 and natural frequencies ω1 and
ω2.

• The zone of instability increase, which is undesirable, for
increasing excitation amplitude f1, f2 and for negative
values of non-linear stiffness α3, β4.

• The zone of stability increase, which is desirable, for
increasing non-linear parameters α1, α2.

• Negative and positive values of non-linear stiffness α3, β4
produce either hard or soft spring respectively.
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