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Abstract Chatter is one of the most important factors that
inhibit the improvement of productivity and deteriorate the
machined surface quality in milling process. In order to
obtain good surface quality, classical machining process usu-
ally has to take conservative milling parameters. Based on
the authors’ previous work, this paper presented a new third-
order discretization method to compute the stability lobes
considering multi-regenerative chatter effect. A mathemat-
ical model, which is suitable for the dynamic system with
non-uniform pitch cutter or cutter run-out, is first established
for multi-regenerative chatter. Then, three examples are per-
formed to test the validity of the proposed method. The first
example is for the case that the system takes a non-uniform
pitch cutter. In the second example, after the modal para-
meters, run-out parameters and cutting force parameters are
gained from experiments, the stability lobes are predicted
using the proposed method and subsequently testified by a
series of experiments. The third example is for the case of
existing cutter run-out. The final computation and experiment
results indicate the effectiveness and validity of the proposed
method. It is applicable in high performance machining for
achieving a good parameter combination.
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1 Introduction

In milling process, machining chatter often leads to several
negative effects such as poor surface quality, unacceptable
inaccuracy and reduced material removal rate [1]. For these
reasons, stability limit prediction and chatter avoidance have
become the key issues in high performance milling [2,3]
so as to acquire maximum chatter-free matter removal rate.
The stability lobe diagram, which is helpful for selecting
stable and reliable cutting parameter combinations, is usu-
ally derived based on the delay-differential equations (DDEs)
[4,5] embracing the regeneration of instantaneous uncut chip
thickness. For a specific process system, once the location of
stability limit of the milling process is given, one can deter-
mine suitable axial depth of cut and spindle speed rapidly
and effectively.

During milling process, chatter vibration is possibly
excited by the dynamic interactions between the cutting tool
and workpiece [6–9]. If the current cutting edge removes
the material left by the first previous cutting edge, the sin-
gle regenerative effect of chatter vibration occurs. Otherwise,
the multiple regenerative effect of chatter vibration occurs.
When the cutter run-out exists or the pitch angle of the cutter
is non-uniform, the chatter vibration is induced by multi-
ple, not single, regenerative effect. The first accurate model
of self-excited chatter vibrations was presented by Tlusty
and Polacek [10] and Tobias [11]. They found that the main
source of chatter vibration is self-excited or regenerative
effect. For the model of the chatter vibration is DDE, there
has been no analytical solution. So the calculation method
of this equation usually uses numerical method, experimen-
tal method [12] or experimental–analytical method [13].
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36 Q. Guo et al.

Currently, some numerical methods have been developed.
One way of the numerical methods computes the DDEs in
frequency domain, Minis and Yanushevsky [14] used Flo-
quet’s theory and the Fourier series to calculate the milling
stability of dynamic system. Altintas and Budak [12,15–18]
have made great efforts on computing the stability lobes in
the frequency domain. The basic idea of their methods to
predict stability limit is translating DDEs from time domain
to frequency domain using Fourier Transform. And then, by
means of Fourier transform the stability lobes are calculated
using the real and image part of the characteristic equation
of the dynamic system. The method has been widely veri-
fied [12,18,19], and also is applied to ball-end milling [20],
predicting the stability lobes of the dynamic system with
non-uniform pitch angle cutter [13,16] as well as with cut-
ter considering helix angle [21–23]. In addition, utilizing the
method, Kivanc and Budak [24,25] took finite element analy-
sis (FEA) as a tool to obtain modal parameters of the dynamic
system and then predicted stability lobes based on these para-
meters. Ozlu and Budak [26,27] also took this theory as a
foundation to propose a method for predicting stability lim-
its in turning and boring operations.

Another numerical way to predict stability lobes of the
dynamic system is in time domain, the main advantage of this
way is that it can prevent the transformation error induced by
Fourier Transform. The basic theory of this method is intro-
ducing finite element ideology into the time domain. In this
respect, Insperger et al. [28–31] proposed an extremely sig-
nificant semi-discretization method (SDM) to predict the sta-
bility lobes and analyze the influence of cutter runout on the
chatter frenquences. The method has been proved by Cata-
nia and Mancinelli [32] and has already aroused more and
more attention. In addition, literatures [33,34] also developed
numerical methods to predict the stability lobes. Recently,
Ding et.al [35] introduced a numerical integration scheme
to obtain the stablity lobes, and then they [36,37] devel-
oped first-order and second-order full-discretization methods
(FDM). Subsequently, Zhang et al. [38] presented a variable-
step integration FDM method for milling chatter stability pre-
diction with multiple delays. Between the SDM and FDM,
some comparations have been made to show their own advan-
tages [39].

In our previous works [40], an accurate calculation method
of milling stability limits have been proposed. In the present
work, the basic principle of the milling stability prediction
method has been further extended from single to multiple
regenerative chatter to predict stability lobes of the dynamic
system with nonuniform pitch cutter or cutter runout. Then
three examples are conducted to verify the accuracy and
validity of the proposed method. The dynamic system with
variable pitch cutter is given in the first example and the
results are also compared with the methods in existing litera-
tures. The second example conducts a series of experiments
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Fig. 1 The schematic diagram of dynamic milling system

to verify the validity of the proposed method. And the third
example analyzes the influence of cutter runout parameters
on the stability lobes.

2 Mechanical model

Figure 1 shows the schematic diagram of a dynamic machin-
ing system. In this figure, cutter edges’ radius as well as pitch
angles are different from each other. This can result in that
the cutting edge removes the material lefted by j th cutter
edge, where j = (1, 2, 3, . . ., N ). And cutting edges’ pass-
ing periods may not be equal to the ideal value. In this case,
multi-regenerative chatter occurs. The mathematical model
of this dynamic system can be expressed using the following
equation

M
d2q (t)

dt2 + C
dq (t)

dt
+ Kq (t)

= a
N∑

j=1

(
Kcj (t)

[
q

(
t − τ j

) − q (t)
])

(1)

where
⎧
⎪⎪⎨

⎪⎪⎩
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]
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cx 0
0 cy

]
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2
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Prediction of stability limit 37

In the above formula, g(ϕ j ) is 0–1 function which deter-
mines whether the cutter edge is removing material or not.
And this function can be expressed as
{

g
(
ϕ j

) = 1 when ϕst ≤ ϕ j ≤ ϕex

g
(
ϕ j

) = 0 when ϕst > ϕ j or ϕ j > ϕex
(2)

where ϕst and ϕex stand for the entering and exiting cutting
angle, respectively, ϕ j is the rotation angle for j th cutter
edge and it should transform into [0, 2π ] using: while ϕ j >

2π, ϕ j = ϕ j − 2π and while ϕ j < 0, ϕ j = ϕ j + 2π .
For variable pitch angle cutter and constant pitch angle

with cutter run-out, there are some differences in the para-
meters of milling process such as entering and exiting angle in
Eq. 2 and the cutting radius of the cutter edge between them.
Therefore, it is necessary to describe these factors firstly.

2.1 Milling process with non-uniform pitch angles

When the cutter with non-uniform pitch angles is used in
milling process, τ j in Eq. 1 is not spindle rotational period
but tooth pass period. And τ j can be expressed using the
following equation

τ j = 60φ j, j−1

2πn
(3)

where φ j, j−1 is the pitch angle between j th and ( j − 1)th
cutter edge, and when j = 1 it is the pitch angle between
first cutter edge and N th cutter edge. n is the spindle speed
in revolution per minute. It can be seen that the sum of all
teeth’s periods of the cutter is equal to the spindle period.

N∑

j=1

τ j =
N∑

j=1

(
60φ j, j−1

2πn

)
= T = 60

n
(4)

And the entering angle and exiting angle of the cutter with
non-uniform pitch angles can be computed using the follow-
ing equation
{

ϕst = π/2 + arcsin
[(

R − ap
)
/R

]

ϕex = π
(5)

This equation is used under the situation that the machin-
ing process is down milling. For the up milling process, enter-
ing angle becomes exiting angle and exiting angle becomes
entering angle in Eq. 5. That is
{

ϕst = π

ϕex = π/2 + arcsin
[(

R − ap
)
/R

] (6)

It is worth nothing that the rotation angle of j th cutter edge
of the non-uniform cutter is different from the value of the
cutter with uniform pitch angle. It can be calculated utilizing
the following equation

ϕ j (t) = α + 2πnt +
j∑

i=1

φi,i−1 (7)

where α is the initial angle between the first cutter edge and
the positive y-axis at time t = 0.

2.2 Milling process with run-out

More or less, the cutter run-out exists in machining process.
When considering the cutter run-out effect, the real cutting
radius of the cutter edge and pitch angle will deviate from
their ideal values. Therefore, it is necessary to compute these
real values of the cutting radius and pitch angle and so on.

The cutting radius of the cutter edge can be expressed
using the following equation

if π − λ − 2(i − 1)π/N > 0

Ri =
√

ρ2 + R2 − 2ρR cos (π − λ − 2(i − 1)π/N )

else

Ri =
√

ρ2 + R2 − 2ρR cos (λ + 2(i − 1)π/N − π)

(8)

where R is the nominal cutting radius of the cutter edge, and
Ri is the actual cutting radius of i th cutter edge when existing
cutter run-out. ρ is the offset parameter and λ is the location
angle of the cutter run-out.

Owing to the change of the cutting radius in milling with
cutter run-out effect, the pitch angle is also different from its
nominal value, and it can be calculated as

if i == 1

φN1 = a cos
((

R2
N + R2

1 − R2
c

)/
2RN R1

)

else

φ(i−1)i = a cos
((

R2
i−1 + R2

i − R2
c

)/
2Ri−1 Ri

)
(9)

where φN ,1 is the pitch angle between the N th and 1th cutter
edge, and R2

c = 2R2 (1 − cos (2π/N )).
Then, taking down milling as an example, the entry and

exit angles can be obtainedutilizing the following formula

φi,st = π/2 + a sin
(
(Ri − ar )

/
Ri

)

if i == 1

φ1,ex =π/2 + a cos
(((

ft,1
)2+R2

1 −R2
N

)/
2 ft,1 R1

)

else

φi,ex = π/2 + a cos
(((

ft,i
)2 + R2

i − R2
i−1

)/
2 ft,i Ri

)

(10)

where φi,st and φi,ex are the entry and exit angle correspond-
ingly. ft,i and ft,1 are the real feedrate per tooth for the i th
and 1th cutter edge

if i == 1

ft,1 = ftφN1

/
2π

else

ft,i = ftφ(i−1)i

/
2π

(11)

where f stands for the nominal feedrate per tooth.
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Thus, the stability lobes of milling process with non-
uniform pitch angle and cutter run-out can be calculated.
The next section will introduce the method of predicting the
stability limits for multiple delays described by Eq. 1.

3 Stability prediction for multiple delays

In order to predict the stability lobes for multiple delays,
a third-order full discretization method is proposed in this
paper.

3.1 Third-order discretization

The formula of Eq. 1 is simplified utilizing the following
method to obtain first order differential equations

dx (t)

dt
= A0x (t) +

N∑

j=1

[
A j (t) x (t) + B j (t) x

(
t − τ j

)]

(12)

where A0 is the constant matrix standing for the time invari-
ants of the dynamic system. A j (t) and B j (t) are two periodic
functions with the period τ j for j th cutter axis. x(t) is the
state variable of the system. A0, x(t), A j (t) and B j (t) can
be expressed by the following equations

A0 =
[

−M−1C
2 M−1

CM−1C
4 − K −M−1C

2

]
(13)

x (t) =
[

q (t) M dq(t)
dt + Cq(t)

2

]T
(14)

B j (t) = −A j (t) = a

2

[
0 0

Kcj (t) 0

]
(15)

In order to obtain the stability lobes of the dynamic system,
the first step is to divide the j th cutter rotational period τ j

into m j time-intervals, and m j can be calculated by
⎧
⎪⎪⎨

⎪⎪⎩

m j = round
(
τ j/h

)

h = T/m

m =
N∑

j=1
m j

(16)

where round() stands for the rounding operation, such as
round(3.2) = 3 and round(3.6) = 4. For the kth time-interval
of the j th cutter rotational period, the solution of this time
delay differential equation with multi-regenerative effect can
be calculated by
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xm( j,k+1) = eA0hxm( j,k)

+
N∑

j=1

(∫ h

0
eA0(h−ε)

[
A(ε)x(ε)

+B(ε)x(ε − τ j )

]
dε

)

m ( j, k + 1) =
j−1∑
l=1

ml + k + 1

(17)

with h = T/m and m = sum(m1, . . ., m N ), ε ∈ [0, h].

The next step is to solve Eq. (17) using one and third-order
interpolation theory. For the kth time interval, A(ε), B(ε) and
x(ε−τ j ) are correspondingly interpolated by two boundaries
[

Am( j,k) Am( j,k+1)

]
,
[

Bm( j,k) Bm( j,k+1)

]

and
[

xm( j,k−m) xm( j,k−m+1)

]

with

A (ε) ≈ ε

h
Am( j,k+1) + h − ε

h
Am( j,k) (18)

B (ε) ≈ ε

h
Bm( j,k+1) + h − ε

h
Bm( j,k+1) (19)

x
(
ε − τ j

) ≈ ε

h
xm( j,k−m+1) + h − ε

h
xm( j,k−m) (20)

where x(ε) can be approximated by third-order Newton’s
interpolation equation using xm( j,k+1), xm( j,k), xm( j,k−1)

and xm( j,k−1) with following expression

xm( j,k+1) = (I − F1)
−1

×

⎡

⎢⎢⎢⎢⎢⎣

(F0 + F2) xm( j,k) + F3xm( j,k−1)

+ F4xm( j,k−2) +
N∑

j=1

(
F j,m−1xm( j,k−m j)

)

+
N∑

j=1

(
F j,mxm( j,k−m j +1)

)

⎤

⎥⎥⎥⎥⎥⎦

(21)

with

F1 = f0
(
f5 + 3hf4 + h2f3

)

6h4

N∑

j=1

Am( j,k+1)

+ f0
(
2h3f2 + h2f3 − 2hf4 − f5

)

6h4

N∑

j=1

Am( j,k) (22)

F2 = f0
(
f4 + 3hf3 + 2h2f2

)

2h3

N∑

j=1

Am( j,k+1)

+ f0
(
6h3f1 + 3h2f2 − 6hf3 − f4

)

6h3

N∑

j=1

Am( j,k) − 3F1

(23)

F3 = f0 (f3 + 2hf2)

h2

N∑

j=1

Am( j,k+1)

+ f0
(
2h2f1 − hf2 − f3

)

h2

N∑

j=1

Am( j,k) − 2F2 − 3F1

(24)

F4 = f0
f2

h

N∑

j=1

Am( j,k+1)

+ f0

(
f1 − f2

h

) N∑

j=1

(
Am( j,k)

) − F2 − F1 − F3 (25)
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F j,m−1 =
(

f0f3/h2
)

Bm( j,k+1)+
(

f0 (hf2 − f3)/h2
)

Bm( j,k)

(26)

F j,m =
(

f0 (hf2 − f3)/h2
)

Bm( j,k+1)

+
(

f0

(
h2f1 − 2hf2 + f3

)
/h2

)
Bm( j,k) (27)

where, F0, f0, f1, f2, f3, f4 and f5 can be expressed using
the following equations

F0 = f0 = eA0h (28)

f1 =
h∫

0

e−A0εdε (29)

f2 =
h∫

0

e−A0εεdε (30)

f3 =
h∫

0

e−A0εε2dε (31)

f4 =
h∫

0

e−A0εε3dε (32)

f5 =
h∫

0

e−A0εε4dε (33)

Further, f1, f2, f3, f4 and f5 in Eqs. (16)–(20) can be
expressed using the following forms.

f1 = A−1
0

(
I − f−1

0

)
(34)

f2 = A−1
0

(
f1 − hf−1

0

)
(35)

f3 = A−1
0

(
2f2 − h2f−1

0

)
(36)

f4 = A−1
0

(
3f3 − h3f−1

0

)
(37)

f5 = A−1
0

(
4f4 − h4f−1

0

)
(38)

Then, Eq. (21) named as iterated function can be expressed
in another form, e.g. in matrix form

Ym( j,k+1) = Dm( j,k)Ym( j,k) (39)

In this equation, the column vector Ym( j,k+1) can be
expressed by the following equation

Ym( j,k+1) = [
Xm( j,k+1) Xm( j,k) Xm( j,k−1)

· · · Xm( j,k−m1+1) · · ·
Xm( j,k−m N +1) · · · Xm( j,k−m+1)

]T (40)

The matrix Dm( j,k) can be formulated as the following
expressions

Dm( j,k)

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Uk Uk−1 Uk−2 · · · 0 0 Uk−m1+1 Uk−m1 0 · · · Uk−m j +1 Uk−m j 0 · · · Uk−m N +1 Uk−m N · · · 0 0
I

I
I

I
I

I
I

I

I
I

I

I
I

I 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(41)
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Fig. 2 Convergence of the eigenvalues for different approximation
parameters m. a Axial cutting depth 4 mm, rotational speed 5,000 rmp,
|u0| = 3.637. b Axial cutting depth 3 mm, rotational speed 3,000 rpm,
|u0| = 2.408

Table 1 The parameters of the dynamic cutting system

Direction Mode Natural
frequency (Hz)

Modal
mass (kg)

Damping
ratios

X 1 441.64 11.125 0.028722

2 563.6 1.4986 0.055801

3 778.6 13.063 0.058996

Y 1 516.21 1.199 0.025004

Further, the concrete parameters in the above matrix can
be expressed as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Uk = (I − F1)
−1 (F0 + F2)

Uk−1 = (I − F1)
−1 F3

Uk−2 = (I − F1)
−1 F4

Uk−m j = (I − F1)
−1 F j,m

Uk−m j +1 = (I − F1)
−1 F j,m−1

(42)
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Fig. 3 Comparison of the stability lobes predicted by literatures’
method and the proposed method

Then, Ym can be calculated using Y0 with iterated function
(39). The formula can be written as

Ym = Dm−1 · · · D2D1D0Y0 (43)

Defining � is the transfer function matrix of the dynamic
machining system with multiple delays, and then � is deter-
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Prediction of stability limit 41

Fig. 4 Machine tool and cutter utilized in the experiment

mined by the matrix in Eq. (43)

� = Dm−1 · · · D2D1D0 (44)

Thus, using the above transform function equation and
Floquet theory, the stability lobes with multiple delays can
be calculated.

3.2 Convergence estimates

Considering the convergence of existing methods has been
compared in the literatures [37], so here the comparisons of
convergence between the proposed method and second-order
full discretization method are given. The parameters of the
dynamic milling process are the same as those in Insperger’s
work [4]. In the machining process, down milling is per-
formed, and rotational speeds are 5,000 rpm and 3,000 rpm.
The axial cutting depths and the ratio between radial cutting
depth and cutter radius are set as (4 mm, 0.4) and (3 mm,0.3)
correspondingly. As shown in Fig. 2, the differences between
the approximate modulus of the critical eigenvalue |µ| and
the exact one |µ0| are obtained, where |µ0| is determined by
using the method in [40] with m = 500. The results show that
the proposed method converges faster than the second-order
FDM.

4 Examples and verifications

To illustrate the validity of the proposed method, three exam-
ples are given and conducted.

4.1 Example I: stability lobe for non-uniform pitch cutter

The dynamic system with variable pitch angle cutter can sup-
press the self-excited vibration and improve the limit of the
dynamic system. The authors use the system in Altintas’

Fig. 5 Modal parameter
measurement system
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Table 2 Parameters of modal, cutter run-out and cutting force coefficients of the cutter-machine dynamic system

Modal parameters
Mode Y Natural frequency (Hz) Damping ratios Modal mass (Kg)

1 950 0.067 1.4858

2 1736 0.0122 0.8368

3 2225 0.0388 0.609

Mode X Natural frequency (Hz) Damping ratios Modal mass (Kg)

1 891.92 0.0289 1.615

2 1749.23 0.0159 0.3864

3 2225 0.0423 0.6672

Cutter run-out parameters
Offset (mm) Location angle (rad.)

0.0045 0.889

Cutting force coefficients
Radial cutting force coefficient (MPa) Tangent cutting force coefficient (MPa)

876 1,320

Fig. 6 Stability lobes of the cutter-machine dynamic system

paper to verify the validity of the proposed method in this
paper. The parameters of the dynamic system are illustrated
in Table 1.

The ratio between radial cutting depth and cutter radius is
0.5, the pitch angle of cutter is 70-110-70-110, the number
of cutter edge is N = 4, and the cutting force coefficients are
Kt = 679 MPa and Kn = 249.193 MPa. Then the stability
lobe is predicted using the Altintas’ method and the proposed
method. The computational results are shown in Fig. 3.

In this figure, three positions,namely point A (8,000 rpm,
4 mm), point B (8,000 rpm, 4.5 mm), point C (8,000 rpm,
5.5 mm) and point D (6,000 rpm, 3.1 mm), are selected to
compute the vibration displacement in x and y axis direction
using the dde23 function of MATLAB2008a. It can be seen
that point A, point B and point D are stable. Meanwhile, we

can see that point A is under the curves respectively predicted
by Altintas’ method and the proposed method. For point B,
it lies in the stable area calculated by the proposed method,
but it is in the unstable area computed with the Altintas’
method. In contrast to the case of point B, point D is under
the curve calculated by Altinas’ method, but it is above the
curve computed using the proposed method. It means that
the proposed method in this paper is more accurate.

4.2 Example II: experiment verification

In order to illustrate the validity of the proposed method more
clearly, as illustrated in Fig. 4, an experiment is carried out on
a DMU60T CNC machine.The material of cutter is cemented
carbide, the radius of the cutter with uniform pitch angle is
6 mm. The number of cutter edge is 4, and the helix angle of
the cutter is 45◦.

The modal parameters of the dynamic system are mea-
sured by a CRAS analyzer system shown in Fig. 5. The
cutting force coefficients and cutter run-out parameters are
derived through machining experiments based on the author’s
previous works [41]. Table 2 shows the concrete modal
parameters, cutting force coefficients and cutter run-out
parameters. In the experiment the radial cutting depth is
0.5 mm. Then, as shown in Fig. 6 the stability lobes of the
dynamic system are predicted and a series of three axis
milling experiments are conducted to verify the proposed
method

In the experiment, the parameter combinations of spin-
dle speed and axial cutting depth are given as (1,500 rpm,
0.03 m), (1,750 rpm, 0.05 m), (2,000 rpm, 0.01 m), (2,500
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Fig. 7 Stability lobes and chatter frequency when cutting process with and without cutter run-out

rpm, 0.01 m), (2,500 rpm, 0.03 m), (2,000 rpm, 0.05 m),
(3,000 rpm, 0.03 m), (3,500 rpm, 0.03 m), (4,000 rpm, 0.03 m)
and (4,500 rpm, 0.03 m). The experimental results prove
that the process parameters under the stability limit curve,
namely (2,000 rpm, 0.01 m), (2,500 rpm, 0.03 m), (3,000 rpm,
0.03 m), (3,500 rpm, 0.03 m), (4,000 rpm, 0.03 m) and (4,500
rpm, 0.03 mm) are stable, and the parameter combinations
over the stability limit curve are also unstable in real machin-

ing. These show that the proposed method is of valid and
effective.

4.3 Example III: influence of cutter run-out parameters on
the stability lobes

Cutter run-out has great effect on the geometric accuracy
and cutting forces [41,42]. Consequently, it also has contri-
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butionsto the vibration of the dynamic machining process.
Therefore, it is essential and necessary to analyze the influ-
ence of cutter run-out on the stability lobes and vibration
chatter.

Two stability lobes and corresponding chatter frequency
charts under with and without cutter run-out are calculated
using the method proposed in this paper for down milling
process. Cutter run-out parameters are ρ1 = 0.9 and ρ2 =
1.1. The meanings of ρ1 = 0.9 and ρ2 = 1.1 are 10 % smaller
and 10 % larger than the standard cutting force value for the
first and second cutter edge correspondingly. The parameters
of the dynamic system are given as follows
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

M =
[

0.046 0
0 0.046

]
kg

C =
[

4.32 0
0 4.32

]
Ns/m

K =
[

9.57e5 0
0 9.57e5

]
N/m

(45)

The parameters of the cutting process, cutter and cutting
force coefficients are
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D = 12.75 mm
f = 0.127 mm/tooth
ar/D = 0.05
Kt = 536 N/mm2

Kr = 187 N/mm2

N = 2

(46)

where D is the cutter radius, ar is the radial cutting depth,
f is feedrate per-tooth, Kt is the tangent cutting force coef-
ficient, and Kr is the radial cutting force coefficient. All the
parameters illustrated above can be found in the Insperger’s
work [43]. Figure 7 shows the calculating results under with
and without cutter run-out. From the results we can find that
on the one hand cutter run-out has little effect on the stability
lobes as showed in Fig. 7(a). On the other hand, cutter run-out
has a great influence on the chatter frequencies. As illustrated
in Fig. 7(b), the chatter chart has 5 and 3.5 frequency lobes
in the spindle speed interval [8,10] krpm and [11,12] krpm
in milling process without cutter run-out.Whereas, when the
chatter chart has 10.5 and 6.5 frequency lobeswith run-out.

Figure 7(c) shows the critical characteristic values of five
unstable machining points and their positions on the unit cir-
cle. For point A, the frequency belongs to the Quasi-periodic
chatter whose critical characteristic values is conjugate com-
plex. For point B, the frequency is period 2 chatter, the critical
characteristic values of which is −1. Point C, point D and
point E are the critical characteristic values in the machin-
ing process with cutter run-out. Among them, period 1 chat-
ter (point E whose critical characteristic values is 1) can be
found. However, this phenomenonis not found in the machin-
ing process without cutter run-out.

5 Conclusions

Based on the author’s previous work, a new prediction
method of stability limit for the dynamic system with multi-
ple regenerative effect is proposed in this paper. The milling
process with non-uniform pitch angle and cutter run-out
is first analyzed and related parameters in calculation are
derived. Then a mathematical modelof stability prediction
for multi-regenerative chatteris established. After that, three
examples are given to verify the validity of the proposed
method. Experimental and computational results show that
the proposed method is able to handle the case of non-uniform
pitch angle cutter and incorporate the cutter run-out into the
model, at the same time it can calculate the stability lobe with
a high accuracy. By means of accurate calculation method
of stability lobes and reliable detection system, good para-
meter combination can be determined for high performance
machining according to the obtained stability limit curve.
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