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Abstract Irregular pitch tools have been used since a long
time ago to avoid chatter in milling processes. Optimal
design of these mills was studied by some researchers. The
method used is based in the frequency domain, and there
were some practical examples showing that the process gives
good results. Nevertheless, for high order lobes the method
was not verified analytically, one of the difficulties being
the large size of the matrices involved in the analysis. A
recent method for obtaining stability diagrams is based in
the use of implicit subspace iteration method, giving rise to
much shorter calculation times than the already known dis-
cretized time domain methods. Use of this method allowed
assessing the stability of processes with irregular pitch mills
in both high and medium order lobes regions. The method
of subspace iteration was compared with the more conven-
tional semi-discretization method in low order lobes region,
with good agreement. Afterwards, the stability of milling
processes with irregular pitch tools designed after previous
proposals was assessed in both medium and high order lobes
regions. As a conclusion, in the examples analyzed the angles
selection shows to be an optimal solution, although for high
order lobes the regular pitch tools provides better stability.
As a further research topic, other possible angle distributions
to improve the behavior at low velocities should be analyzed.
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1 Introduction

Chatter vibration is a main limitation for the productivity
of machining processes. Chatter gives rise to high vibration
level, bad part surface, and reduced life of tools and machine
components. There are many strategies to avoid chatter in
milling processes, which are more or less suited depending
on the particular application. One of the solutions proposed
is the use of uneven pitch tools, which disrupt the regen-
eration of chatter vibration giving rise to extended cutting
capability.

Selection of the best possible angle between cutting teeth
is an issue which has been analyzed in some previous papers.
Budak [1,2] proposed a method to optimize stability at a
given rotation speed for a single mode system, while Suzuki
et al. [3] extended the solution for two mode systems. The
optimization was based on a simplified analysis in the fre-
quency domain, by considering the zeroth order approach,
that is, disregarding the effect of the harmonics of the main
vibration frequency. Several applications were shown with
good results for the optimized variation of pitch, but the sta-
bility diagrams were not calculated by the more accurate
multi-frequency solution.

Time domain methods have also been applied to verify
the stability of milling processes with uneven pitch mills.
The stability analysis is done by calculating the well-known
lobe diagram. There are several methods of this kind, which
have the advantage over frequency domain to be very robust
and to consider all the harmonics of the main frequency, but
at the same time they do not provide the capacity of analyz-
ing the phenomenon from an engineering point of view. One
drawback of these time domain based methods is the limita-
tions when calculating the stability at low cutting frequencies
(high order lobes of the stability diagram), due to the large
size of the matrices involved.
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Stability analysis of milling by ISIM 27

The goal of the work being presented here is to obtain such
verification for some examples which were proposed in the
bibliography by a time domain method that is much faster
computationally than the already known methods.

The paper will start by a revision of the state of the
art. Then, the way of applying the implicit subspace itera-
tion method (isim) to obtain stability prediction in milling
processes will be shown. Finally, the method will be vali-
dated by resolution of already published cases, and stability
diagrams with the tool pitch variations proposed by the design
method by [1,2] will be obtained.

2 State of the art

The first theories explaining the uprising of chatter as a regen-
erative phenomenon were developed by Tobias and Fish-
wick [4] and by Tlusty and Polacek [5]. Later, Merritt [6]
interpreted the system as a feedback process. As a geomet-
ric approach of the system, the directional factor describes
the relationship between the cutting force and the modal dis-
placement, and between the modal displacement and the chip
thickness. For milling processes, where the geometry of the
system varies, the system is much more complicated to be
solved than in the case of simple cutting geometry, as in the
case of turning. Opitz and Bernardi [7] proposed a way of
calculating an equivalent directional factor. By means of it,
limit depth of cut diagrams for milling, for one degree of
freedom systems, could be obtained.

A more precise solution for the stability assessment of the
milling process was formulated by Minis et al. [8], by using
Floquets theorem [9] and Fourier series, and determining
the stability limits numerically using the Nyquist stability
criterion. Budak and Altintas [10] extended this approach by
proposing an analytical method for the stability prediction of
milling, giving rise to a multi-frequency analysis, in which
chatter vibration has several frequency components separated
by the cutting frequency. When only the first term of the
frequency content of the vibration is considered the system
can be solved in an extremely fast way [11]. For a system
with a single degree of freedom, the result coincides with the
solution proposed by Opitz and Bernardi [7].

Other developments by Davies et al. [12], Insperger et
al. [13,14] and Bayly et al. [15] obtained the stability limits
using different methods in the time domain, by separating the
solution between the forced part and the stability problem,
giving rise to an eigenvalue system. All these methods men-
tioned above performed the analysis in the Cartesian coordi-
nates system, with the limitation of having modal displace-
ments in the Cartesian directions. While this approach might
be acceptable for high frequency chatter in milling processes,
which usually is due to the flexibility of the spindle and of
the tool, when instability is due to structural vibration this

simplification cannot be accepted. Zatarain et al. [16] ana-
lyzed the effect of the feed direction with respect to the modal
displacement direction by working in modal coordinates, for-
mulation that is valid for structural instability also.

Fitting chatter was done by many different approaches.
It is possible to mention the use of high damping struc-
tural materials like polymer concrete [17], dynamic vibration
absorbers [18], impact absorbers [19], continuous variation
of spindle speed [20], and so on.

One of the ways to get rid of chatter in milling is the
use of uneven pitch tools. Right selection of the pitch angles
requires the use of models of the process with uneven pitch
mills. It is worth to mention the papers by Slavicek [21], Opitz
[22], Vanherck [23], and Tlusty et al. [24], who analyzed the
stability of milling processes with irregular pitch tools by
simplified approaches. Budak [1,2] proposed an approach for
the selection of the pitch variation. The analysis was done in
the frequency domain by the zero order approach (single fre-
quency). Working with methods in the time domain stability
diagrams were shown in several papers [25,26]. The limita-
tion of these methods is the size of the transition matrix when
high order lobes region has to be analyzed, as the complete
tool rotation has to be discretised instead of the tooth pass
angle. The subspace iteration method was proposed as a way
to speed up the solution of time domain methods, and at the
same time to allow working with much higher size matrices.
This method seems very suitable to cope with the problem
of high order lobe stability with uneven pitch mills.

It is also possible one performs time-domain simulations
of complex milling processes based on standard solvers like
dde23 in Matlab [27]. However, one can realize the pre-
sented method can also cope with these standard solvers only
having one period simulations rather than long transient sim-
ulations to decide the stability of stationary cutting.

Therefore, the goal of the research is the use of the sub-
space iteration method to assess the stability of processes
with irregular pitch tools, and to evaluate the analytical results
when the pitch angles are selected following the simplified
analysis [1,2].

3 Method of subspace iteration applied to analyze
milling stability

Time domain based methods to predict the stability of a
milling process need the calculation of the transition matrix,
relating the state at a particular moment with the state one
period later, and then the calculation of the dominant eigen-
vector/eigenvalue pair of that matrix. The magnitude of the
eigenvalue being higher or lower than 1 defines if the system
is respectively unstable or stable.

The subspace iteration method for assessing stability of
milling can be explained in two steps: solving the eigenvalue
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28 M. Zatarain, Z. Dombovari

problem by the subspace iteration method, which requires
calculation of the product of the transition matrix by guess
vectors a number of times, and then the way to obtain this
product without the need to explicitly obtain the transition
matrix.

3.1 General method for reduction of eigenproblem size

The different methods for computing eigenvalues μ =
diagn

k=1μk and eigenvectors S = rown
k=1sk can be consid-

ered as variants of power iteration for the same eigenvalue
problem described as

Z S = Sμ, (1)

where n denotes the size of the square transition matrix Z.
If S j = rowNs

k=1s j,k is the j th guess for the set of Ns ≤ n
dominant eigenvectors, and a power iteration step is applied
to this vector set, a new set V j will be obtained

V j = Z S j . (2)

If S j is a set obtained after several steps of power iteration it
can be considered that the vectors in this set will have strong
content of the dominant eigenvectors, and a low content of
the less dominant ones. Therefore, if the basis formed by the
vectors in S j and the vectors in V j expand approximately the
same space, we can obtain a matrix H j which approximately
relates both vector sets in the minimum square error sense,
that is

V j ≈ S j H j , and H j =
(

Sᵀ
j S j

)−1
Sᵀ

j V j . (3)

If we solve the eigenvalue and eigenvector problem on matrix
H j we will have

H j = G j λ j G
−1
j . (4)

For the sake of the next iteration step we can state

S j ≈ S Q j , (5)

since S j contains guess of the eigenvectors related to the
largest eigenvalues of the matrix Z. In (5) S are the accurate
corresponding eigenvectors. Then, the vectors V j will be
after (2) and (3)

V j ≈ S Q j H j = S Q j G jλ j G−1
j = SμQ j . (6)

Then one can derive

G j λ j G−1
j = Q−1

j μ Q j . (7)

Then it is possible to deduct that the eigenvectors G j of the
matrix H j represent the inverse of the content Q j of the j th
guess of eigenvectors S j . Therefore, the exact eigenvector is
theoretically

S ≈ V j G j λ−1
j , (8)

after equation (6). As the matrix λ j is diagonal it only influ-
ences on the size of the columns of S. Therefore, it is possible
to disregard that value. The new iteration vector (guess of the
eigenvectors) will be

S j+1 = V j G j . (9)

3.2 Avoiding calculation of the transition matrix

The next problem to deal with is that of the long calculation
time required to form the transition matrix Z by any of the
existing methods (semi-discretization, time finite elements,
etc.). Therefore, an alternative possibility will be proposed
here. The methods shown in the previous section for calculat-
ing the eigenvalues require processing multiplications of the
matrix times a number of approximated state vectors in S j . If
a method to calculate those products without the explicit use
of the transition matrix is developed, it will not be necessary
to form it, and therefore the time required to compute the
stability diagrams might reduce significantly.

If we start with any initial solution for the state over a
period length of time, we could calculate the situation one
period T later by multiplying the initial solution by the tran-
sition matrix; but another possibility is to perform the time
integration over that period. The result of both methods must
be the same, except for differences given by numerical errors,
and if an efficient algorithm is used to perform the time inte-
gration, the result can be obtained much faster than the time
required to form the transition matrix.

For example, if the Krylov subspace has to be obtained,
starting from the same vector s0,1 in e.g. S0 at (2) instead
of obtaining that subspace by forming the complete tran-
sition matrix Z and performing the matrix vector multi-
plications indicated in the previous section. It is possi-
ble to directly compute the time integration of the sys-
tem response for the required number of periods. The vec-
tors obtained after each of the periods are the vectors that
have to be used to form the Krylov subspace, like S0 :=
[s0,1 Z s0,1 Z2 s0,1 . . . ZNs−1 s0,1].

An efficient way to apply this alternative consists in cal-
culating the step matrices, which relate the dynamic state at
each of the discretized positions with the state at the previous
position and with the mark left by the previous pass. As the
state is a vector of very small size, these step matrices are
very small.

3.3 Calculation of step matrices in a milling process

The milling process is described in the modal space with m
modal coordinates q(t) := colml=1ql(t) which can be trans-
formed back to spatial Cartesian space by using the mass
normalized modal transformation matrix U. Then

r(t) = U q(t), (10)
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Stability analysis of milling by ISIM 29

where r(t) := col(x(t), y(t), z(t)). The matrix U =
[u1 u2 . . . um] contains m modeshapes, in which sense this
matrix is a truncated modal matrix. In order to have a reason-
able model of milling processes such mathematical model
needs to developed that can handle multiple modes occa-
sionally in the same direction and also keep the size of the
problem as low as it is possible. Considering the regenera-
tive effect between subsequent edges induces the past states
to be activated the mathematical model is going to have delay
differential equation (dde) form. This means the system is
infinite dimensional and from dynamic point of view it can
be described in the following state space
[
qt (θ) q̇t (θ)

]ᵀ
, (11)

where the notation qt (θ) = q(t + θ) (θ ∈ [−σ, 0]) describes
the continuum amount of involved past states up to θ =
−σ . As later one can realize, past states only act through the
resultant cutting force, which is compiled using the Cartesian
coordinates r through the local chip thickness. This means
in fact it is enough to use the following abstract mixed state

zt (θ) :=
{[

q(t) q̇(t)
]ᵀ

, θ = 0,

rt (θ), −σ ≤ θ < 0,
(12)

which is still infinite dimensional, but tracks only maximum
three dimensional Cartesian delayed states rather than 2m
dimensional modal states considering modal velocities, too.
Any discretization of (12) results the most efficient discrete
state for any kind of calculation related to milling processes.

The chip thickness cut by the i th edge segment at the axial
level of z can be expressed in the following form

hi (z, t, rt (θ)) ≈ ( fi + x(t) − x(t − τi )) sin ϕi (z, t)

+ (y(t) − y(t − τi )) cos ϕi (z, t), (13)

where the lead angle is considered as κ = 90◦ and the angular
displacement of the i th flute at level z can be expressed with

ϕi (z, t) = Ωt +
i−1∑
k=1

ϕp,k − ϕη(z). (14)

Here η and ϕη(z) = 2
D z tan η are the helix and the lag angle,

D is the diameter of the tool and ϕp,i is the pitch angles
between subsequent edges, which in fact determine the regen-
eration as (see Fig. 1)

τi = 1

Ω
ϕp,i . (15)

Having the regeneration time between subsequent edges the
feed motion in (13) can be expressed as

fi = f
Ω

2 π
τi , (16)

where f is the feed per revolution and Ω is the angular veloc-
ity of the tool. The theoretical feed per tooth can be defined
as fZ = f/Z , where Z is the number of teeth. The calculated

Fig. 1 Model of milling process

chip depth produces distributed cutting force on the i th edge
segment that can be calculated as:

ftra,i (z, t, rt (θ)) = −Ke − Kchi (z, t, rt (θ)), (17)

where the edge coefficients and cutting coefficients are Ke =
[Ke,t Ke,r Ke,a]ᵀ and Kc = [Kc,t Kc,r Kc,a]ᵀ. After inte-
grating along the edges and summing all “edge” forces the
resultant force can be expressed in Cartesian coordinate sys-
tem

F(t, rt (θ)) = − 1

cos η

Z∑
i=1

ap∫

0

gi

⎡
⎣

cos ϕi sin ϕi 0
− sin ϕi cos ϕi 0

0 0 1

⎤
⎦

×(Ke + Kchi (z, t, rt (θ)))dz, (18)

where the screen function considers the radial immersion as

gi := gi (z, t) =
{

1, ϕen ≤ ϕi (z, t) mod 2 π ≤ ϕex,

0, otherwise
(19)

and ϕi := ϕi (z, t) defined at (14). In (18) the ap is the axial
immersion of the cylindrical milling tool. In (19) ϕen and
ϕex denote the enter and exit angles of the radial immersion.
The resultant force excites the dynamics described in modal
space in the following way

q̈(t) + [2ξlωn,l ]q̇(t) + [ω2
n,l ]q(t) = UᵀF(t, rt (θ)), (20)

keeping in mind rt (θ) = Uqt (θ). In Eq. (20) ξl and ωn,l are
the damping ratio and the undamped natural frequency of the
lth mode. Equation (20) has a periodic stationary solution
qp(t) = qp(t + T ) and it can be solved by boundary value
problem. Considering the variation ξ(t) = U u(t) around the
stationary solution

q(t) = qp(t) + u(t) and r(t) = rp(t) + ξ(t) (21)
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30 M. Zatarain, Z. Dombovari

the following linear so-called variational system can be for-
mulated

ü(t) + [2ξlωn,l ]u̇(t) + [ω2
n,l ]u(t)

= − 1

cos η
Uᵀ

Z∑
i=1

ap∫

0

gi

⎡
⎣

cos ϕi sin ϕi 0
− sin ϕi cos ϕi 0

0 0 1

⎤
⎦ Kc

[sin ϕi cos ϕi 0](U u(t) − ξ(t − τi ))dz (22)

After building a first order representation with using the def-
inition y(t) = [u(t) u̇(t)]ᵀ the system at (22) has the form

ẏ(t) = Ay(t) − B(t)y(t) +
Z∑

i=1

Ci (t)ξ(t − τi ), (23)

where the matrices are

A =
[

0 I
−[ω2

n,l ] −[2ξlωn,l ]
]
, B(t) =

[
0 0

c(t) U 0

]
, (24)

Ci (t) =
[

0
ci (t)

]
, c(t) =

Z∑
i=1

ci (t), (25)

ci (t) = 1

cos η
Uᵀ

ap∫

0

gi

⎡
⎣

cos ϕi sin ϕi 0
− sin ϕi cos ϕi 0

0 0 1

⎤
⎦

Kc[sin ϕi cos ϕi 0]dz. (26)

Note that matrices B(t) = B(t + T ) and Ci (t) = Ci (t +
T ) are time periodic with the possible smallest period T
which (is in fact) can be the integer quotient of the theoretical
tooth passing period TZ = 2 π

ZΩ
depending on the geometrical

allocation of the pitch angles ϕp,i . Also the number of delays
at (23) depends on the distribution of pitch angles, but it kept
to be the maximum amount Z in order to ease the notation.

With the formula presented in (23) we can calculate the
new state at different time steps by semi-discretization [28]

using constant (zeroth order) values both to approximate the
delayed terms and periodic coefficients as

y j+1 = Aey j + D j y j −
Z∑

i=1

Ei, j ξ j−ni
(27)

for the sake of simplicity with zeroth order approximation.
In (27) ni = � τi

Δt � and the matrices are

D j = (I−Ae)A−1B j and Ei, j =(I − Ae)A−1Ci, j , where

(28)

B j = 1

Δt

t j+1∫

t j

B(t)dt, Ci, j = 1

Δt

t j+1∫

t j

Ci (t)dt and (29)

Ae = eAΔt with Δt = t j+1 − t j . (30)

The matrix exponential can be expressed analytically in the
following form

Ae =
[

Ae,11 Ae,12

Ae,21 Ae,22

]
, where (31)

Ae,11 =
⎡
⎢⎣

(cos(ν1Δt) − α1
ν1

sin(ν1Δt))eα1Δt 0
. . .

0 (cos(νmΔt) − αm
νm

sin(νmΔt))eαmΔt

⎤
⎥⎦ ,

Ae,12 =
⎡
⎢⎣

1
ν1

sin(ν1Δt)eα1Δt 0
. . .

0 1
νm

sin(νmΔt)eαmΔt

⎤
⎥⎦ ,

Ae,21 =

⎡
⎢⎢⎣

− ν2
1+α2

1
ν1

sin(ν1Δt)eα1Δt 0
. . .

0 − ν2
m+α2

m
νm

sin(νmΔt)eαmΔt

⎤
⎥⎥⎦ ,

Ae,22 =
⎡
⎢⎣

(cos(ν1Δt) + α1
ν1

sin(ν1Δt))eα1Δt 0
. . .

0 (cos(νmΔt) + αm
νm

sin(νmΔt))eαmΔt

⎤
⎥⎦ .

where νi is the damped natural frequency of the i th natural
mode, with αi its damping exponent, so that

αl = −ξlωn,l , ν2
l = ω2

n,l − α2
l (32)

The matrix Ae is constant for all the process if t j ( j =
1, . . . , r ) time mesh is equidistant, while the matrices D j

and Ei, j vary. For each time step it is necessary to calculate
and store the matrices Ae +D j and Ei, j . This set of matrices
represents the step matrices for the time step.

When the tool has helix angle, an integration of the matri-
ces along the helix has to be done, which can be done numer-
ically by dividing the depth of cut into sufficiently small parts
replacing integral presented in (18) with summation. Also, in
the same case of the helical flutes, and when there are more

123



Stability analysis of milling by ISIM 31

Fig. 2 Computation time by optimised sdm and by the (isim)

than one tooth cutting simultaneously, when calculating the
matrices for some angular positions there will be some teeth,
or parts of a tooth, which are cutting at only one portion of
the segment.

With the semi-discretization method presented at (27)
the implicit subspace iteration (ISIM–SDM) new state for
Krylov subspace or for power iteration can be determined
without determining the transition matrix Z performing the
following iteration r = T/Δt times knowing that in any other
iterations the matrices at (28), (29), (30), (31) are available.

3.4 Calculation time comparison

Figure 2 shows a comparison of the time required for cal-
culation of the stability lobes in similar conditions by the
optimized sdm and by the subspace iteration, depending on
the number of segments in which the cutting arc is divided.
It becomes clear that for a high number of segments the
subspace iteration is much more favorable. Therefore, this
method permits the evaluation for uneven pitch tools, requir-
ing Z times more segments, Z being the number of teeth of
the tool.

3.5 Calculation of the step matrices for uneven pitch tools

For the general case of uneven pitch tools the period to con-
sider is no more one tooth pass, but the integer multiple of
tooth pass or in general maximum the complete rotation of

the tool. Therefore, the number of segments to consider is
larger than for regular pitch tools.

This is almost the only change to consider if the resolution
is done by the subspace iteration method. A larger number of
step matrices have to be considered and stored, and for each
vector iteration a higher number of operations with those
step matrices have to be performed. The size of the time
step does not change, as it depends on the highest natural
frequency considered and on the rotation speed; therefore,
the ratio of the time of calculation for uneven pitch with
respect to the corresponding regular pitch case should be
linearly proportional to the number of teeth. It is interesting
to remind that for a conventional sdm resolution, the time
would vary roughly with the exponent 3 of the number of
teeth, similarly presented at [29].

4 Comparison with already reported cases: Sellmeier
and Denkena

The validation of the methodology presented in this paper
to obtain the stability diagrams will be validated by compar-
ison to previous works based on other methods. The paper
by Sellmeier and Denkena [25] presented the methodology
to obtain stability diagrams with uneven pitch mills by the
sdm, including some experimental verifications. One of the
processes proposed in that paper was used contrasting the
results of the method presented here. The parameters are
summarized in Table 1.

There is very good agreement of the results obtained with
the method of subspace iteration and the results obtained by
the paper mentioned for the 4 pitch angle variations proposed.
The panels in Fig. 3 show the results obtained for each of the
tools proposed.

Apart from the stable islands, it is interesting to see that
the stability of the system is not improved by any of the pitch
variations proposed in the paper by Sellmeier and Denkena
[25] at the minimum of the e.g. second lobe. An alternative
pitch angle combinations following a linear evolution pro-
posed by Budak [1] were tested for the rotation speed 2,000
rev/min, at the minimum of the second lobe. As seen in Fig.
4, the stable depth of cut is increased in 41 % at that speed.
But that tool produces less stable cut for all the velocities
except exactly for the velocities in the vicinity of the one
selected for the optimization.

Table 1 Milling process
parameters in the example
chosen from [25]

System m = 5.1 kg, c =468.8 Ns
m , k = 10.4 N

μm , ξ = 3.3 %, ωn = 227.7 Hz, direction: x ,
Tool Conventional, cylindrical, D = 20 mm, Z = 4, η = 30◦,
Material Aluminum, Kc,t = 793.99 N

mm2 , Kc,r = 109.41 N
mm2 ,

Process Full immersion, theoretical feed per tooth fZ = 0.12 mm, feed direction: x
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32 M. Zatarain, Z. Dombovari

Fig. 3 Results of the example
by [25] for pitch angles a
ϕp,i = 80◦, 100◦, 80◦, 100◦,
b ϕp,i = 70◦, 110◦, 70◦, 110◦,
c ϕp,i = 75◦, 105◦, 75◦, 105◦
and d ϕp,i = 85◦, 95◦, 85◦,
95◦. Dashed lines denotes
uniform tool with ϕp,i = 90◦
pitches

(a) (b)

(c) (d)

Fig. 4 Results of the example by Sellmeier and Denkena [25]
(dashed) for pitch angles after Budaks [1] method results ϕp,i =
70.23◦, 83.4◦, 96.59◦, 109.77◦ (continuous). Dashed lines denotes
uniform tool with ϕp,i = 90◦ pitches

It might be interesting to mention that in the low order
lobes region it should be difficult to produce stabilization
by irregular pitch due to the large angle variation required.
It seems that most of the times the selection of a different
rotation velocity at the sweet zone would be preferable.

5 Assessment of the pitch variation optimization by
Budak

Budak [1,2] presented the first formulation for selection of
the pitch angles of uneven pitch mills to avoid chatter at
determined rotation speeds. One of the possible formulations
shown consists in selecting linearly varying pitch angles, with
the variation calculated after the ratio between the dominant
natural frequency and the rotation frequency. The develop-
ment is based in the frequency domain, and the harmonics of
the dominant chatter vibration frequency are not included in
the formulation. Therefore, it can be interesting to see if the

Fig. 5 Results of the example by Budak [2] for pitch angles ϕp,i =
78◦, 86◦, 94◦, 102◦ (continuous) and its conventional counterpart
(dashed)

simplifications assumed for the development affect the result
in the foreseen stability increase.

One of the examples shown in [2] consists in a process of
milling magnesium. The dominant mode is due to the tool
assembly. That mode has components both in x and y direc-
tions, with slightly varying natural frequency for each direc-
tion, or it might also be that there are two modes with different
natural frequencies. No values for the cutting force coeffi-
cients were given in the paper, as the goal was to increase the
stable cutting depth in a practical case.

The important fact in that example was that an increase
of stability was obtained by using a determined non constant
pitch tool, with pitch angles ϕp,i = 78◦, 86◦, 94◦, 102◦.
These angles were calculated after the design process shown
in [1] for the natural angular frequency 6000 rad/s and at the
rotation velocity 2,500 rev/min.

From Fig. 5, it follows that the pitch angle combination
proposed by Budak beautifully finds a sweet area at the
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Fig. 6 Stability diagrams at
high order lobes for tools
optimised at 600, 400 and 800
rpm. (blue ϕp,i = 90◦, red
ϕp,i = 88.586◦, 89.529◦,
90.471◦, 91.414◦, green ϕp,i =
89.058◦, 89.686◦, 90.314◦,
90.942◦, purple ϕp,i =
88.115◦, 89.372◦, 90.629◦,
91.886◦). (Color figure online)

Fig. 7 Stability diagrams at
high order lobes for tools
optimized at 2,500 rpm inducing
ϕp,i = 78◦, 86◦, 94◦, 102◦
(continuous)

selected velocity region. In this case, the lobe order at which
the sweet zone is found is 6. The rotation frequency is 42 Hz,
and the bandwidth at the mode considered is roughly 36 Hz
(=damping ratio times natural frequency). That means that
in this velocity region, the harmonics of the main vibration
frequency does not produce very large dynamic response at
the system. Therefore, it would be interesting to analyze the
behavior at lower rotation speeds, where that speed produces
harmonics inside the bandwidth of the dominant mode.

For that analysis, a lower velocity region was selected.
The analysis was performed in the region from 200 to 2,000
rpm, which already represents high order lobes and the
practical impossibility to calculate the stability diagram by
time domain methods. The diagrams were calculated by
the ISIM–SDM, and the tools were designed after Budak
[2] to give optimum stability at the rotation velocities 600
rpm (ϕp,i = 88.586◦, 89.529◦, 90.471◦, 91.414◦), 400 rpm
(ϕp,i = 89.058◦, 89.686◦, 90.314◦, 90.942◦), and 800 rpm
(ϕp,i = 88.115◦, 89.372◦, 90.629◦, 91.886◦). The results
are shown in Fig. 6.

From this figure it follows that each irregular pitch tool
has local optimum behaviour at the speed region for which
it was designed, following Budaks methodology [2], but the
stability tends to be lower than when using the regular pitch
mill. As a comparison, the stability diagram produced for
the tool optimized for 2,500 rpm, that is, a tool with much
larger angle variation, is shown in Fig. 7. It follows that this
tool does not produce stability benefits in the high order lobe
region.

6 Conclusions

As a general conclusion, the ISIM enables the accurate
calculation of stability diagrams at high order lobes when
using irregular pitch mills. The method combined by semi-
discretization (ISIM–SDM) was validated by comparison
with results previously published at low order lobe region.
The pitch angle selection proposed by Budak [1,2] finds
sweet regions at the desired velocities, although at high order
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lobes regions the stability seems to deteriorate when com-
pared to that of the regular pitch mill. As a research to be
developed, the possibility of increasing the stability by the
use of irregular pitch mills in the high order lobe region has
to be analyzed. Another field of development would be the
analysis of the design method proposed by Suzuki et al. [3] for
the optimization of tools when there are two modes involved
in the vibration.
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