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Abstract In this paper, we study the problem of stability
test of neutral delay differential equations. Firstly we prove
that the Mikhailov stability criterion and its equivalent inte-
gral form for ordinary differential equations hold for neutral
delay differential equations in general form. The criteria are
simple in form that is easy for numerical implementation.
However, the criteria are characterized by an auxiliary func-
tion associated with the characteristic function, not by the
characteristic function itself. To reduce the computational
complexity, we further prove that a Mikhailov-type criterion
in terms of the characteristic function holds. With this new
criterion, the stability of a given neutral delay differential
equation can be tested with a rough estimation of the testing
integral. Thus, the computational complexity and computa-
tional cost can be greatly reduced. As two applications of
these criteria, we firstly propose a numerical scheme for cal-
culating the rightmost characteristic root(s) as well as the
characteristic roots other than the rightmost roots of a given
neutral delay differential equation, demonstrated with two
examples. Then we derive a graphical stability criterion. With
this graphical stability criterion, it is not required to know the
exact curve of the Nyquist plot, but just to know whether the
Nyquist plot encircles the origin of the complex plane or not.
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1 Introduction

Delay differential equations of neutral type (NDDEs for
short) are differential equations that involve a single delay
or multiple delays in the highest-order derivative, and they
are encountered frequently in different engineering applica-
tions [1–7]. For example, in controlling the vibration of a
beam, a NDDE delayed resonator was proposed on the basis
of delayed acceleration feedback [3], this technique utilizes
acceleration sensor for its advantage in high frequency-low
amplitude situation, the delayed signal of acceleration sensor
leads to NDDE. Another example of NDDE comes from the
problem of reducing the sway of container crane by using a
delayed nonlinear controller [4,5]. Having been successfully
installed on a huge industrial container crane, this delayed
control can effectively reduce the cargo sway and there-
fore greatly improve the crane productivity. NDDEs are also
encountered in the applications of real-time dynamic sub-
structuring method [6]. In studying the dynamic response to
complex structures, this method replaces part of the physical
structure with a numerical model, and a time delay naturally
arises when combining both numerical and remained part of
the physical substructure by using actuators. In addition, a
nonlinear NDDE was used to model transmission line oscil-
lator, which can produce chaotic high-frequency output and
demonstrate rich dynamics induced by the delay [7]. Numer-
ical analysis shows that the NDDE affects certain dynamics
such as the convergence rates of the fold points to the homo-
clinic tangencies.

For autonomous DDEs, complicated nonlinear dynamics
is possible if the system undergoes a number of bifurcations
with the change of some parameter. Thus, stability analy-
sis is one of the major topics about DDEs in the literature.
Compared with delay differential equations of retarded type
(RDDEs for short) that have no delayed derivative terms of
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the highest order, NDDEs exhibit some peculiarities from
the view point of stability analysis. For example, a RDDE
always has a finite number of characteristic roots in the
right-half complex plane only, but a NDDE may have an
infinite number of characteristic roots in the right-half com-
plex plane. In addition, the asymptotical stability of a RDDE
is guaranteed if all the characteristic roots have negative real
parts, but a NDDE may not be asymptotically stable when
such a condition holds, because the infinite number of roots
may have accumulation points on the imaginary axis. Under
some additional conditions placed on the coefficients of the
highest-order delayed terms, the asymptotical stability of a
NDDE is guaranteed by the condition “all the characteristic
roots have negative real parts” [1,2]. In this case, many sta-
bility criteria for RDDEs can be generalized to NDDEs. For
example, the Nyquist plots can be used to test the stability
of RDDEs [8,9] and NDDEs [10]. This is also true for the
method of stability switches, which was proposed to deter-
mine the stable intervals of a parameter including delay or
feedback gain [1]. Together with D-subdivision method, this
method can also demonstrate the stability maps against mul-
tiple parameters of RDDEs [14] or NDDEs [15]. The Hassard
theorem [11], a different version of Stepan Theorem [12] that
gives an explicit formula for calculating the number of the
unstable characteristic roots of RDDEs, has been extended
to NDDEs[13]. The semi-discretization method for RDDEs
[16] has been generalized to NDDEs [17]. This method dis-
cretizes the delayed terms while remained actual time terms
are unchanged, and can be used to study periodic continuous
DDEs. It is referred to see the monograph [18] for a detailed
introduction of the semi-discretization method with applica-
tions to stability analysis. In addition, the rightmost charac-
teristic root(s) tells not only the system stability, but also the
convergence speed of the time history of the DDE to the target
state. A numerical scheme [19] for calculating the rightmost
characteristic roots of RDDEs is extended to NDDEs [20].
Following this method, an auxiliary function associated with
the characteristic function is firstly constructed by using the
Lambert W function, then the rightmost roots can be found by
properly using the Newton–Raphson iteration method. Using
a linear multi-step method, a MATLAB package called DDE-
BIFTOOL [21] dealing with RDDEs has been extended to
NDDEs [22]. Within this frame, one first approximates the
roots of linearized characteristic equations, then use Newton
iteration to correct the approximate roots. This package has
found many applications in the literature. Usually, the avail-
able numerical methods uses approximation that reduces an
infinite-dimensional delay differential equation to a finite-
dimensional ordinary differential equation. In this way, cal-
culation accuracy in stability test depends on approximation
accuracy.

Mikhailov formula is an analytical stability criterion
derived on the basis of Argument Principle for complex

functions. It states that the asymptotical stability of a sys-
tem is justified if the change of the argument of the char-
acteristic function along the positive imaginary axis equals
to nπ/2, where n is the order of the system. This formula
has been proved true for RDDEs [23]. Although beautiful
in form, this criterion is actually not convenient in stabil-
ity analysis. In applications, its equivalent integral form is
much very flexible and effective, and it has been extended
for checking whether a delay-fractional system has charac-
teristic roots with negative real parts only, and for calculating
the rightmost characteristic roots [24]. The main objective of
this paper is to prove that Mikhailov formula and its equiva-
lent form hold for NDDEs. The stability criteria can be char-
acterized by an auxiliary function associated with the char-
acteristic function or by the characteristic function directly.
Unlike the numerical methods available in the literature that
use proper approximation of the NDDEs or their characteris-
tic functions with high accuracy, the new proposed stability
criteria enable us to test the stability of a given NDDE via a
rough estimation of the testing integral.

The rest of the paper is organized as follows. Firstly in
Sect. 2, we present the main results with proofs, including a
Mikhailov-type stability criterion and its equivalent integral
form in terms of an axillary function, and a stability crite-
rion in terms of the characteristic function. Then in Sect. 3,
based on the proposed stability criteria, we propose a numer-
ical scheme for the calculation of the rightmost characteristic
roots and the other characteristic roots, and in Sect. 4, we give
two examples for demonstration. As another application of
the proposed Mikhailov-type stability criteria, a graphical
stability criterion is also derived in Sect. 5. Finally in Sect. 6,
we draw some concluding remarks from the investigation.

2 Mikhailov-type stability criteria

Let us consider linear NDDEs described by

ẋ(t) +
m∑

i=1

Ni ẋ(t − τi ) = Ax(t) +
m∑

i=1

Bi x(t − τi ) (1)

where x ∈ R
n, A, Bi , Ni ∈ R

n×n , and at least one Nk �= 0
for some k = 1, 2, . . . , m. The characteristic equation of Eq.
(1) is in the form f (λ) = 0 with

f (λ) = λn +
n∑

i=0

αi (e
−λτ1 , . . . , e−λτm )λn−i (2)

where αi (z1, . . . , zm), (i = 0, 1, . . . , n), are real polynomi-
als with respect to z1 = e−λτ1 , . . . , zm = e−λτm . The trivial
solution x = 0 of Eq. (1) is asymptotically stable if and only
if the characteristic roots lie in the left half complex plane
and are uniformly bounded away from the imaginary axis [1].
This is true if the function α0(e−λτ1 , . . . , e−λτm ) satisfies
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Fig. 1 The integral contour C
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sup
�(λ) > 0
|λ| → ∞

∣∣α0(e
−λτ1 , . . . , e−λτm )

∣∣ < 1 (3)

where �(z) is the real part of complex number z. Condition
(3) ensures that the characteristic function f (λ) has only
finite number of roots located in the right half complex plane
and has no roots with accumulation points on the imaginary
axis. Without loss of generality, let the coefficients of the non-
zero terms of α0(z1, . . . , zm) be denoted by β1, β2, . . . , βk ∈
R, then one has

sup
�(λ) > 0
|λ| → ∞

∣∣α0(e
−λτ1 , . . . , e−λτm )

∣∣ =
k∑

j=1

|β j | (4)

If condition (3) is satisfied, the stability can be tested by
calculating the number N of characteristic roots with non-
negative real parts, or by calculating the real part σ of the
rightmost characteristic root(s). The trivial solution x = 0
of Eq. (1) is asymptotically stable if and only if N = 0 or
σ < 0.

Assume that f (λ) has no roots on the imaginary axis, and
let �C arg f (λ) denote the change in the argument of f (λ)

over the contour C shown in Fig. 1, then the number N of
the characteristic roots in the open right-half complex plane
of λ can be calculated with

N = lim
R→+∞

�C arg( f (λ))

2π
(5)

where

C1 : λ = Reiθ , θ increases from − π

2
to

π

2
;

C2 : λ = iω, ω decreases from R to − R.

Under the assumption (3), 1 + α0(e−λτ1 , . . . , e−λτm ) �= 0
holds for any λ ∈ C. Hence, the auxiliary function W (λ)

defined by

W (λ) = f (λ)

1+α0(z1, . . . , zm)
= λn +

n∑

i=1

ξi (z1, . . . , zm)λn−i

(6)

is well-defined, where z1 = e−λτ1 , . . . , zm = e−λτm , and
each ξi (z1, . . . , zm) is analytic with respect to z1, . . . , zm .
Obviously, one has

N = lim
R→+∞

�C arg(W (λ))

2π
(7)

Theorem 1 Assume that the characteristic function f (λ),
defined by Eq. (2), of a NDDE has no roots on the imagi-
nary axis, and condition (3) holds. Let W (λ) be the function
defined by (6), then N = 0 holds if and only if
+∞∫

0

�
(

W ′(iω)

W (iω)

)
dω = nπ

2
(8)

where the integral is called “testing integral”.

Proof In fact, on the right-half complex plane with λ ∈ C

satisfying �(λ) > 0 and |λ| → +∞, one has

W (λ) − λn

λn
→ 0 (9)

Then for θ ∈ [−π
2 , π

2 ] and R � 1, one has

�C1 arg(W (λ)) = �C1 arg(λn)+�C1 arg

(
1+ W (λ)−λn

λn

)

≈ �C1 arg(Rneniθ ) + �C1 arg(1)

Hence, as R → +∞, one has

�C1 arg(W (λ)) → 0 + n
π

2
− (−n

π

2
) = nπ

In addition, when R → +∞, one has

�C2 arg(W (λ)) = arg(W (iω))

∣∣∣
ω=−R

ω=R

→ − arg(W (iω))

∣∣∣
ω→+∞
ω→−∞

= −2arg(W (iω))

∣∣∣
ω→+∞
ω=0

It follows that

N =
nπ − 2arg(W (iω))

∣∣∣
ω→+∞
ω=0

2π

= n

2
− 1

π
arg(W (iω))

∣∣∣
ω→+∞
ω=0

Moreover, it is easy to show that

d

dω
arg(W (iω)) = �

(
W ′(iω)

W (iω)

)

Therefore, using Newton–Leibnitz formula leads to
+∞∫

0

�
(

W ′(iω)

W (iω)

)
dω = (n − 2N ) · π

2
(10)

where the testing integral on the left side always converges
due to

�
(

W ′(iω)

W (iω)

)
= O(

1

ω2 ), (ω � 1) (11)
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Hence, N = 0 holds if and only if Eq. (8) holds. This com-
pletes the proof. 
�
Corollary 1 Under the assumptions of Theorem 1, Eq. (8)
is true if and only if there is a sufficiently large T > 0 such
that

T∫

0

�
(

W ′(iω)

W (iω)

)
dω >

(n − 1)π

2
(12)

Proof If Eq. (8) holds, namely N = 0, then for any given
ε > 0, there is a T0 such that for all T > T0 one has
∣∣∣∣∣∣

T∫

0

�
(

W ′(iω)

W (iω)

)
dω − nπ

2

∣∣∣∣∣∣
< ε

In particular, for ε = π/2, there is a T0 such that for all
T > T0 one has
∣∣∣∣∣∣

T∫

0

�
(

W ′(iω)

W (iω)

)
dω − nπ

2

∣∣∣∣∣∣
<

π

2

It follows that (12) holds for all T > T0.
Conversely, if on the contrary (12) does not hold, namely

if for any T > 0 one has
T∫

0

�
(

W ′(iω)

W (iω)

)
dω ≤ (n − 1)π

2

then it follows that

N = n

2
− 1

π

+∞∫

0

(
W ′(iω)

W (iω)

)
dω ≥ n

2
− 1

π

(n − 1)π

2
= 1

2

Hence N ≥ 1 because N is an integer. It means that the
characteristic function has at least one roots with positive
real part. The proof is completed. 
�

Corollary 1 implies that in the stability test of a given
NDDE, it is not necessary to calculate the exact value of the
testing integral, but just to find an estimation of the testing
integral with a properly chosen large T . This reduces the
computational cost in the stability test considerably. In real
applications, it is preferable if the stability test is carried out
by using the characteristic function f (λ) directly. To see such
a case, let us firstly note that for any T > 0, the argument
rule gives

T∫

0

�
(

W ′(iω)

W (iω)

)
dω −

T∫

0

�
(

f ′(iω)

f (iω)

)
dω

= arg(W (iω))

∣∣∣
ω=T

ω=0
− arg( f (iω))

∣∣∣
ω=T

ω=0

= −arg
(

1 + α0(e
−iωτ1 , . . . , e−iωτm )

)∣∣∣
ω=T

ω=0

= −arg
(

1 + α0(e
−iT τ1 , . . . , e−iT τm )

)
(13)

Unlike in Corollary 1 where the testing integral for W (λ)

converges, namely as T → +∞, the limit

T∫

0

�
(

W ′(iω)

W (iω)

)
dω →

+∞∫

0

�
(

W ′(iω)

W (iω)

)
dω

exits, here in the present case the testing integral for f (λ)

does not converge because the difference between the two
integrals, given by Eq. (13), is not convergent as ω = T →
+∞. However, the following lemma holds.

Lemma 1 For the characteristic function f (λ), there is a
number T0 > 0 such that for all T > T0, one has

T∫

0

�
(

f ′(iω)

f (iω)

)
dω ∈

(
(n−2N −1)π

2
,
(n−2N + 1)π

2

)

(14)

Proof In fact, under the condition (3), for any T > 0,
the real part of 1 + α0(e−iT τ1 , . . . , e−iT τm ) must be pos-
itive, which means that the argument in absolute of 1 +
α0(e−iT τ1 , . . . , e−iT τm ) is less than π/2. Moreover, because
1 + α0(e−iωτ1 , . . . , e−iωτm ) is continuous and periodic with
respect to ω when all the time delays are commensurate,
or continuous and quasi-periodic with respect to ω when
the delays are incommensurate, there must be a constant
0 < γ < π/2 such that
∣∣∣arg

(
1 + α0(e

−iωτ1 , . . . , e−iωτm )
)∣∣∣ ≤ π

2
− γ

For such a constant γ , there is a constant T0 > 0 such that
for all T > T0, one has
∣∣∣∣∣∣

T∫

0

�
(

W ′(iω)

W (iω)

)
dω − (n − 2N )

nπ

2

∣∣∣∣∣∣
< γ

because Eq. (10) holds. It follows that for T > T0 one has

T∫

0

�
(

f ′(iω)

f (iω)

)
dω >

(
(n − 2N )π

2
− γ

)
+

(
−π

2
+ γ

)

= (n − 2N − 1)π

2
(15)

and
T∫

0

�
(

f ′(iω)

f (iω)

)
dω <

(
(n − 2N )π

2
+ γ

)
+

(π

2
− γ

)

= (n − 2N + 1)π

2
(16)

This completes the proof. 
�
Now, we are ready to prove the key observation of this

paper. With this stability criterion, the computational com-
plexity in the stability test can be even more significantly
reduced.
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Theorem 2 Under the assumptions of Theorem 1, Eq. (8) is
true if and only if there is a sufficiently large T > 0 such that

T∫

0

�
(

f ′(iω)

f (iω)

)
dω >

(n − 1)π

2
(17)

Proof If N = 0, then obviously (17) holds due to (15).
Conversely, if for any sufficiently large T > 0 one has

T∫

0

�
(

f ′(iω)

f (iω)

)
dω <

(n − 1)π

2

then N ≥ 1 due to (16). Thus, N = 0 holds if and only if
(17) is true. 
�

3 A numerical method for calculating the rightmost
characteristic root(s)

Lots of well-developed numerical methods are available for
calculating the approximation of the testing integral over a
finite interval, thus the stability test of a given NDDE can be
carried out effectively by using Corollary 1 or Theorem 2.
By repeatedly use of this criterion, the stable intervals and
unstable intervals within a given range of the delay or some
other parameter can be obtained. Moreover, Lemma 1 and
Theorem 2 can also be used to calculate the rightmost char-
acteristic root(s) as well the other characteristic roots in a
simple way.

Let σ be the abscissa of a given NDDE, defined by

σ = max{�(λ) : f (λ) = 0}
where f (λ) is the characteristic function in the form of Eq.
(2). The number σ must be a finite number because all the
characteristic roots of the NDDE stay in a strip parallel to the
imaginary axis. Under the condition (3), the NDDE is asymp-
totically stable if and only if σ < 0. The large of the negative
σ in absolute, the better stability of the system. In this case,
f (λ) = 0 has no roots on �(λ) = σ with the accumulation
points on the infinity of the imaginary axis. Consequently
f (σ + λ) = 0 has no roots with the accumulation points on
the infinity of the imaginary axis and also no infinite number
of roots on the right half plane[1], providing that

sup
�(λ) > 0
|λ| → ∞

∣∣∣α0(e
−(σ+λ)τ1 , . . . , e−(σ+λ)τm )

∣∣∣ < 1 (18)

Hence, for f (ξ + λ) = 0 with ξ close enough to σ , one has

sup
�(λ) > 0
|λ| → ∞

∣∣∣α0(e
−(ξ+λ)τ1 , . . . , e−(ξ+λ)τm )

∣∣∣ < 1 (19)

which holds true if σ > 0.
Now, the rightmost root(s) can be found out by utilizing the

above criteria to test whether or not the roots of f (ξ +λ) = 0

have negative real parts only, if ξ is close enough to σ , in three
steps.

The first step is to find two estimation numbers R, R with
R < R such that R < σ < R. For any given ξ, η, (ξ < η <

0), one has

sup
�(λ) > 0
|λ| → ∞

∣∣∣α0(e
−(η+λ)τ1 , . . . , e−(η+λ)τm )

∣∣∣

< sup
�(λ) > 0
|λ| → ∞

∣∣∣α0(e
−(ξ+λ)τ1 , . . . , e−(ξ+λ)τm )

∣∣∣

Thus, the two numbers R, R can be obtained by checking

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

sup �(λ) > 0
|λ| → ∞

∣∣α0(e−(R+λ)τ1 , . . . , e−(R+λ)τm )
∣∣ < 1

∫ T
0 �

(
W ′(R+iω)

W (R+iω)

)
dω <

(n−1)π
2

∫ T
0 �

(
W ′(R+iω)

W (R+iω)

)
dω >

(n−1)π
2

(20)

or more directly by checking
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

sup �(λ) > 0
|λ| → ∞

∣∣α0(e−(R+λ)τ1 , . . . , e−(R+λ)τm )
∣∣ < 1

∫ T
0 �

(
f ′(R+iω)

f (R+iω)

)
dω <

(n−1)π
2

∫ T
0 �

(
f ′(R+iω)

f (R+iω)

)
dω >

(n−1)π
2

(21)

The interval [R, R] can be narrowed by repeated use of the
above procedure.

The second step is to find an estimation of the rightmost
root(s). When R − R is small enough, taking α0 ∈ (R, R)

as an initial guess of σ , an estimation ω0 of the imaginary
part ω of the rightmost characteristic root(s) can be found
numerically from f (σ0+iω) ≈ 0. Each real root ω of f (σ0+
iω) ≈ 0 corresponds to a possible characteristic root (finite
and isolated) on the line �(λ) = σ .

The final step is to refine the above estimation. Starting
from σ0 + iω0, the rightmost characteristic root(s) can be
determined by using the Newton–Raphson iteration method
with a few number of iterations:

λi+1 = λi − f (λi )

f ′(λi )
, (i = 0, 1, 2, . . .) (22)

For a given tolerance ε > 0, the iteration procedure is stopped
if |λk+1 − λk | < ε.

It is worthy of mentioning that the numerical scheme
introduced above works also for calculating the character-
istic roots besides the rightmost root(s). In fact, according to
Lemma 1, for sufficiently large T > 0, the integral

T∫

0

�
(

f ′(iω)

f (iω)

)
iω
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stays always in the intervals ((n − 2N − 1)
π

2
, (n − 2N +

1)
π

2
), where N = 0, 1, 2, 3, . . .. These intervals have no

overlaps to each other for different value of N . If there are
two real numbers R, R with R < R, a positive integer N ,
and sufficiently large T > 0, such that
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

sup �(λ) > 0
|λ| → ∞

∣∣α0(e−(R+λ)τ1 , . . . , e−(R+λ)τm )
∣∣ < 1

∫ T
0 �

(
f ′(R+iω)

f (R+iω)

)
dω <

(n−2N−1)π
2

(n−2N−1)π
2 <

∫ T
0 �

(
f ′(R+iω)

f (R+iω)

)
dω

(23)

then there is at least one characteristic root λ that stays on
the line �(λ) = ζ with ζ ∈ (R, R), and the number of char-
acteristic roots that stay in �(λ) > ζ is N . With this fact
in mind, the characteristic roots of a given NDDE in a given
domain of the complex plane can be numerically found out
one by one, by searching all possible lines �(λ) = ζ with
the above criteria for some N = 0, 1, 2, 3, 4, . . . . In partic-
ular, the case N = 0 determines the rightmost characteristic
root(s).

4 Two illustrative examples

Example 1 Consider the following linear NDDE arising
from modeling real-time dynamic substructuring [6]

ẍ(t) + 2ξ ẋ(t) + x(t) + pẍ(t − τ) = 0 (24)

whose characteristic equation for the trivial solution x = 0
takes the form f (λ) = 0, where

f (λ) = λ2 + 2ξλ + 1 + pλ2e−λτ (25)

Accordingly, the function W (λ) is

W (λ) = f (λ)

1 + pe−λτ

Figure 2 presents the plot of
∫ 50.0

0 �
(

W ′(iω)
W (iω)

)
dω, an estima-

tion of the testing integral, with respect to τ within [0, 8] for
the NDDE when ξ = 0.05, p = 0.2. A similar plot is given
in Fig. 3 by using the characteristic function f (λ) directly,
which is in agreement with Fig. 2. The two plots show that
both at τ = τ ∗

1 ≈ 3.27 and τ = τ ∗
2 ≈ 6.17, a stability

switch occurs. The solution x = 0 is asymptotically stable if
τ ∈ [0, τ ∗

1 ) ∪ (τ ∗
2 , 8] and is unstable if τ ∈ (τ ∗

1 , τ ∗
2 ).

In particular, when τ = 1, one has

50.0∫

0

�
(

W ′(iω)

W (iω)

)
dω ≈ 3.1399 >

(2 − 1)π

2

Fig. 2 The plot of the testing integral
∫ 50.0

0 �
(

W ′(iω)
W (iω)

)
dω vs τ for Eq.

(24) with ξ = 0.05, p = 0.2

Fig. 3 The plot of the testing integral
∫ 50.0

0 �
(

f ′(iω)
f (iω)

)
dω vs τ for Eq.

(24) with ξ = 0.05, p = 0.2

which implies that σ < 0. Moreover, one has

sup
�(λ) > 0

|λ| →
∞

∣∣∣α0(e
−(−0.2+λ)τ )

∣∣∣ = 0.2e−(−0.2) ≈ 0.2443 < 1

50.0∫

0

�
(

W ′(−0.1 + iω)

W (−0.1 + iω)

)
dω ≈ 3.1917 >

(2 − 1)π

2

50.0∫

0

�
(

W ′(−0.2 + iω)

W (−0.2 + iω)

)
dω ≈ −3.0834 <

(2 − 1)π

2

Thus, σ ∈ (−0.2,−0.1). With a freely chosen initial guess
−0.15 ∈ (−0.2,−0.1) for σ , we see from Fig. 4 that the
imaginary part of the rightmost characteristic root(s) is close
to 1. Thus, starting from −0.15+i, using Newton–Raphson’s
iteration method finds the the rightmost characteristic root(s)
to be −0.1155 ± 0.9221i, which is the same as the one
obtained in [20].

Example 2 In order to reduce the vibration of a SDOF vibra-
tion system with mass m, damping coefficient c, elastic coef-
ficient k and harmonic excitation f (t), a resonator can be
installed for total absorption. With ma, ca, ka standing for

123



160 Q. Xu, Z. Wang

Fig. 4 The real and imaginary parts of f (−0.15 + iω) vs ω for Eq.
(24) with ξ = 0.05, p = 0.2 and τ = 1. At about ω ≈ 1, one has
f (−0.15 + iω) ≈ 0. Solid The real part; Dashed The imaginary part

Fig. 5 The resonator based on the delayed feedback

the mass, damping coefficient, elastic coefficient of the res-
onator respectively, the combined resonator system can be
described by
⎧
⎪⎪⎨

⎪⎪⎩

ma ẍa(t) + ca ẋa(t) + ka xa(t) − ca ẋ(t) − ka x(t) = u

mẍ(t) + (ca + c)ẋ(t) + (ka + k)x(t) − ca ẋa(t)

−ka xa(t) = −u + f (t)

(26)

where u is a feedback control to the resonator, see Fig. 5.
When total absorption occurs, namely x(t) → 0 as t →
+∞, one has
{

ma ẍa(t) + ca ẋa(t) + ka xa(t) − u = 0

−ca ẋa(t) − ka xa(t) + u = f (t)
(27)

It follows that ma ẍa(t) = f (t). If f (t) takes simply as
f (t) = f0 sin(ω0t), then under the zero initial condition,
one has xa(t) = f0 sin(ω0t)/(maω2

0).
When u = −gẍa(t −τ), the characteristic equation of the

resonator is given by

f (λ) ≡ maλ2 + caλ + ka + gλ2e−λτ = 0 (28)

In order that the resonator vibrates with frequency ω0, it
requires that Eq. (28) has a pair of conjugate roots λ = ±iω0,
the feedback gain g is determined from f (iω0) = 0.

Fig. 6 The plot of testing integral of
∫ 50.0

0 �
(

F ′(iω)
F(iω)

)
dω and

∫ 50.0
0 �

(
f ′(iω)
f (iω)

)
dω vs τ for Eq. (26) and Eq. (27), with m = 1 kg,

c = 2 kg/s, k = 100 N/m, ma = 0.2 kg ca = 0.5 kg/s, ka = 10 N/m,

ω0 = 10 rad/s g = −0.1118 N/m. Points for F(λ); Circles for f (λ)

Moreover, the characteristic equation of the combined res-
onator system is given by F(λ) ≡ det(�) = 0, where

� =
[

f (λ), −caλ − ka

−caλ − ka − gλ2e−λτ , mλ2 + (ca + c)λ + (ka + k)

]

Hence, the stability of the combined resonator system can be
carried out as done in Example 1. Here, using the character-
istic function F(λ) directly is preferable.

In particular, when m = 1 kg, c = 2 kg/s, k = 100 N/m,

ma = 0.2 kg, ca = 0.5 kg/s, ka = 10 N/m, ω0 = 10 rad/s
one finds g = −0.1118 N/m Taking τ as the parameter, the
plot of the test integral for f (λ) and F(λ) with respect to the
delay τ is shown in Fig. 6 for T = 50. It shows that for the
combined resonator system the critical delay values within
τ ∈ [0, 1] are found to be

τ ∗
1 ≈ 0.078, τ ∗

2 ≈ 0.4, τ ∗
3 ≈ 0.875

thus the solution x = 0 of the combined system is asymp-
totically stable if τ ∈ [0, τ ∗

1 ) ∪ (τ ∗
2 , τ ∗

3 ) and unstable if
τ ∈ (τ ∗

1 , τ ∗
2 ) ∪ (τ ∗

3 , 1]; while for the resonator only, the crit-
ical delay values within τ ∈ [0, 1] are found to be

τ ∗∗
1 ≈ 0.046, τ ∗∗

2 ≈ 0.382, τ ∗∗
3 ≈ 0.675

and the solution x = 0 of the resonator is asymptoti-
cally stable if τ ∈ [0, τ ∗∗

1 ) ∪ (τ ∗∗
2 , τ ∗∗

3 ) and unstable if
τ ∈ (τ ∗∗

1 , τ ∗
2 )∪ (τ ∗∗

3 , 1]. Here τ ∗∗
1 ∈ (0, τ ∗

1 ), τ ∗∗
3 ∈ (τ ∗

2 , τ ∗
3 ),

both stay in the stable intervals of the combined system, and
at the critical delays τ ≈ τ ∗∗

1 and τ ≈ τ ∗∗
3 , the characteris-

tic function f (λ) has no pure imaginary roots except ±iω0,
thus the resonator vibrates with the same frequency ω0 of
the excitation, but the vibration of the main part with mass
m of the combined system is totally reduced to zero due to
resonance.

In the following, the rightmost characteristic root(s) of the
combined system will be calculated for τ = τ ∗∗

1 and τ = τ ∗∗
3 .
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Fig. 7 The displacement of Eq.(26) with m = 1 kg, c = 2 kg/s,
k = 100 N/m, ma = 0.2 kg, ca = 0.5 kg/s, ka = 10 N/m,

ω0 = 10 rad/s, g = −0.1118 N/m, and τ = τ ∗∗
1 . x : displacement

of m; xa : displacement of ma

For the two cases, α < 0, thus, R and R should be chosen
from negative numbers.

For τ = τ ∗∗
1 = 0.046, one has,

sup
�(λ) > 0
|λ| → ∞

∣∣∣α0(e
−(−0.4+λ)τ∗∗

1 )

∣∣∣ =
∣∣∣∣

g

ma
e0.4τ∗∗

1

∣∣∣∣ ≈ 0.5694 < 1

200.0∫

0

�
(

W ′(−0.2 + iω)

W (−0.2 + iω)

)
dω ≈ 6.2676 >

(4 − 1)π

2

200.0∫

0

�
(

W ′(−0.4 + iω)

W (−0.4 + iω)

)
dω ≈ −0.0115 <

(4 − 1)π

2

Thus, α ∈ (−0.4,−0.2). With α0 = −0.3 ∈ (−0.4,−0.2)

as an initial guess, F(−0.3 + 8ω) ≈ 0 gives an estima-
tion ω0 ≈ 11 of ω, then using Newton–Raphson’s iteration
method finds the rightmost characteristic roots are−0.3765±
8.1050i. As for τ = τ ∗∗

3 = 0.675, the same procedure above
finds the rightmost characteristic roots −0.3929 ± 10.8767i.
The results can be confirmed by using a matlab-based pack-
age DDE-BIFTOOL [21]. As shown in Figs. 7 and 8, for both
τ = τ ∗∗

1 = 0.046 and τ = τ ∗∗
3 = 0.675, the vibration of the

main part of the combined system has been totally reduced.

5 A graphical stability criterion

As seen above, the proposed stability criteria does work effec-
tively in the stability analysis of NDDEs. These criteria can
also be used to derive a graphical stability criterion, which
enables us to determine the stability of a given NDDE graph-
ically. In fact, for a given constant c > 0, let

Fig. 8 The displacement of Eq. (26) with m = 1 kg, c = 2 kg/s,
k = 100 N/m, ma = 0.2 kg, ca = 0.5 kg/s, ka = 10 N/m, ω0 =
10 rad/s, g = −0.1118 N/m and τ = τ ∗∗

3 . x : displacement of m; xa :
displacement of ma

Π(λ) = f (λ)

(λ + c)n
(29)

where f (λ) is the characteristic function defined by (2) sub-
ject to (3). Moreover, let

Π(iω) = P(ω) + iQ(ω) (30)

Then we have

Theorem 3 Assume that the conditions of Theorem 1 hold,
then N = 0 if there is a constant c > 0 such that the Nyquist
frequency plot, defined by the curve of

{(P(ω), Q(ω)) : − ∞ < ω < +∞}
does not encircle the origin of the complex plane.

Proof The argument rule implies that

argΠ(iω) = arg f (iω) − arg((iω + c)n)

then one has,

argΠ(iω)

∣∣∣
T

0
= arg( f (iω))

∣∣∣
ω=T

ω=0
− arg((iω + c)n)

∣∣∣
ω=T

ω=0

With a fixed c > 0, it holds

lim
T →+∞ arg((iω + c)n)

∣∣∣
ω=T

ω=0
= nπ

2

Thus, according to Lemma 1, N = 0 if and only if there is a
T0 > 0 such that for all T > T0 one has

argΠ(iω)

∣∣∣
T

0
∈

(−π

2
,
π

2

)
(31)

Note that under the assumption (3), for sufficiently large
ω > 0, one has P(ω) > 0. It means that the Nyquist fre-
quency plot must eventually stay in the right-half complex
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(a)

(b)

Fig. 9 The Nyquist frequency plot of Π(iω) with c = 1

plane. Since the Nyquist frequency plot is asymmetric to the
real axis, thus, (31) is true if there is a constant c > 0 such
that the Nyquist frequency plot does not encircle the origin
of the complex plane. This completes the proof. 
�

With this graphical stability criterion, it is not required to
know the exact curve of the Nyquist plot, but just to know
whether the Nyquist plot encircles the origin or not. It should
be pointed out that with fixed c = 1 as done in [8,10], the
Nyquist frequency plot may not help in stability test in some
cases.

Example 3 Let us consider the characteristic function of a
six-order RDDE, described by

f (λ) = λ6 + 1.5 λ5 + 126 λ4 + 100 λ3 + 4381 λ2

+ 938 λ + 31250 + (1.5λ5 + 23 λ4 + 130 λ3

+ 1619 λ2 + 1890 λ + 19750)e−λτ

(a)

(b)

Fig. 10 The Nyquist frequency plot of Π(iω) with c = 5

When τ = 0.01, straightforward calculation gives,

100.0∫

0

�
(

f ′(iω)

f (iω)

)
dω = 9.4032 >

(6 − 1)π

2

It means that N = 0. To check this fact graphically, let

Π(λ) = f (λ)

(λ + c)6 (32)

With c = 1, the Nyquist frequency plot of Π(λ) is shown in
Fig. 9, where the arrow indicates the direction of the Nyquist
plot as ω increases. A detailed calculation shows that when ω

increases from −∞ to +∞, the total change of the argument
arg(Π(iω) equals zero, this is in agreement with the fact
N = 0. In this case, the Nyquist plot does not help much
in judging the stability. However, if we take c = 5, then as
shown obviously in Fig. 10, the Nyquist plot does not encircle
the origin. This fact justifies N = 0 directly.
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Similar cases occur for NDDEs. Thus we must be cautious
in judging the stability when the Nyquist plot encircles the
origin of the complex plane.

6 Conclusions

In this paper, three Mikhailov-type stability criteria are estab-
lished for the stability test of a class of time-invariant NDDEs.
Two of them (Theorem 1; Corollary 1) are expressed in terms
of an axillary function associated with the characteristic func-
tion, and the other (Theorem 2) is represented in terms of
the characteristic function directly. The peculiarity of these
criteria is that in stability testing, it is not required to cal-
culate the exact value of the testing integral defined over
infinite integrating interval, but it just requires to calculate a
rough estimation of the testing integral over a considerable
short interval. With the well-developed numerical methods
for integration, the stability test can be carried out easily. The
three criteria are mathematically equivalent to each other,
but using Theorem 2 is more preferable, because it uses the
characteristic function directly and it has much less computa-
tional complexity than using the auxiliary function. Based on
the proposed stability criteria, a three-step numerical scheme
is proposed for calculating the rightmost root(s) of NDDEs,
each step is easy for numerical implementation. This scheme
works also for calculating other characteristic roots. Numer-
ical examples show that the proposed method works effec-
tively, but a schematic routine for finding an estimation of the
testing integral is left for future consideration. The graphical
stability criterion (Theorem 3) is a sufficient condition for the
asymptotical stability of a given NDDE and it can be used in
a more intuitive way than numerical calculation.
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