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Abstract This is a concise review of the symmetries and
conserved quantities of the constrained mechanical systems.
It deals with three kinds of symmetries: the Noether sym-
metry, the Lie symmetry and the form invariance, and three
kinds of conserved quantities: the Noether conserved quan-
tity, the Hojman type conserved quantity and the new con-
served quantity.
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1 Introduction

The most important task in dynamics is to find the solution
of the differential equations of motion. If one can find all of
the integrals of the equations, the solution of the equations
can be given. An integral is a conserved quantity, therefore,
people make efforts to find all of the conserved quantities of
mechanical system.

Newtonian mechanics provides us three conservation
laws, i.e. the conservation of momentum, the conservation of
moment of momentum and the conservation of mechanical
energy, by means of the analysis of forces. The three conser-
vation laws have very clear physical meaning. Lagrangian
mechanics provides us two conservation laws, i.e. the con-
servation of generalized momentum and the conservation of
generalized energy, by means of the analysis of the form
of Lagrangian. The conservation of generalized momentum
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may be a conservation of momentum, a conservation of
moment of momentum, or neither. The physical meaning of
the conservation law in Lagrangian mechanics is less clear
than that in Newtonian mechanics, but the conserved quan-
tities deduced by Lagrangian mechanics are more than that
deduced by Newtonian mechanics. Since Noether published
her well-known paper [1], the Noether symmetry method has
become a modern method for seeking the conservation law
of mechanical systems [2–18]. The physical meaning of the
conservation law in the Noether symmetry method is less
than that in Lagrangian mechanics, but the conserved quan-
tities deduced by the Noether symmetry method are more
than that deduced by Lagrangian mechanics.

The Noether symmetry is an invariance of the Hamilton
action under the infinitesimal transformations of time and
coordinates. Besides the Noether symmetry, there are two
other important symmetries, i.e. the Lie symmetry and the
form invariance. The Lie symmetry is a kind of invariance
of the differential equations under the infinitesimal trans-
formations of time and coordinates. The form invariance is
a kind of invariance under which the transformed dynami-
cal functions still satisfy the original differential equations
of motion. A Noether symmetry can lead to a conserved
quantity according to the Noether theory. A Lie symmetry
or a form invariance can also lead to a conserved quantity
under certain conditions. The conserved quantities deduced
directly by the Noether symmetry, the Lie symmetry and the
form invariance are called the Noether conserved quantity,
the Hojman type conserved quantity and the new conserved
quantity, respectively. The constrained mechanical systems
in the review involves holonomic systems, nonholonomic
systems and Birkhoffian systems.

The outline of this review is as follows: In Sect. 2, we
study the Noether symmetry of constrained mechanical sys-
tems. In Sect. 3, we discuss the Lie symmetry of constrained
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mechanical systems. In Sect. 4, we present the form invari-
ance of constrained mechanical systems. Section 5 deals with
the Noether conserved quantity deduced by the Noether sym-
metry. Section 6 provides the Hojman type conserved quan-
tity deduced by the Lie symmetry. In Sect. 7, we work at a
new conserved quantity deduced by the form invariance. Sec-
tion 8 goes into the Non-Noether conserved quantity guided
by the Noether symmetry. Section 9 is devoted to the Noether
conserved quantity and the new conserved quantity deduced
by the Lie symmetry. In Sect. 10, we specialize the Noether
conserved quantity and the Hojman type conserved quantity
deduced by the form invariance. Finally, we propose some
topics for future research on the study of the symmetry in
Sect. 11.

2 Noether symmetry

The Noether symmetry is an invariance of the Hamilton
action under the infinitesimal transformations of time and
the coordinates.

2.1 Noether symmetry of Lagrangian system

The equations of motion of Lagrangian system have the form

Es(L) = 0 (s = 1, . . . , n), (1)

where L is the Lagrangian and Es the Euler operator

Es = d

dt

∂

∂q̇s
− ∂

∂qs
. (2)

For the system (1), Arnold gave the Noether’s theorem [19]
as follows:

If the system (M, L) admits the one-parameter group of
diffeomorphisms hs : M → M, s ∈ R, then the Lagrangian
system of equations corresponding to L has a first integral
I : T M → R.

In local coordinates q on M , the integral I is written in
the form

I (q, q̇) = ∂L

∂q̇

dhs(q)

ds

∣
∣
∣
∣
s=0

. (3)

José and Saletan wrote “ if a Lagrangian is invariant under
a family of transformations, its dynamical system possesses
a constant of the motion, and that constant can be found from
a knowledge of the Lagrangian and the transformation” [20].

Therefore, there are two comprehensions for the Noether
symmetry. One comprehension is an invariance of the Hamil-
ton action; another is an invariance of the Lagrangian. We all
think that the first one is more reasonable.

Introducing the infinitesimal transformations of time and
the generalized coordinates as

t∗ = t +�t, q∗
s (t

∗) = qs(t)+�qs, (4)

or

t∗ = t + εξ0(t, q, q̇),

q∗
s (t

∗) = qs(t)+ εξs(t, q, q̇), (5)

where ε is an infinitesimal parameter, and ξ0, ξs the infinites-
imal generators, the invariance of the Hamilton action leads
to the Noether identity

L ξ̇0 + X (1)(L)+ Ġ N = 0, (6)

where G N = G N (t, q, q̇) is a gauge function and

X (1) = ξ0
∂

∂t
+ ξs

∂

∂qs
+ (ξ̇s − q̇s ξ̇0)

∂

∂q̇s
. (7)

If there exists a function G N such that the identity (6) is sat-
isfied, then the corresponding symmetry is called a Noether
symmetry. We will see that the conserved quantities can be
found by using the Noether symmetry.

2.2 Noether symmetry of general holonomic system

The equations of motion of general holonomic system can
be written in the form

Es(L) = Qs (s = 1, . . . , n), (8)

where Qs = Qs(t, q, q̇) are generalized forces. Under the
infinitesimal transformations (5), the Noether symmetry of
the system leads to the satisfaction of the following Noether
identity

L ξ̇0 + X (1)(L)+ Qs(ξs − q̇sξ0)+ Ġ N = 0. (9)

Formula (9) is called the generalized Noether-Bessel-Hagen
equation [8].

By means of the Noether symmetry, we can seek the con-
served quantities of the general holonomic system.

2.3 Noether symmetry of nonholonomic system

The nonholonomic system is more complected than the holo-
nomic system, e.g. see references [21–31].

Let the position of a mechanical system be determined
by the n generalized coordinates qs (s = 1, . . . , n) and its
motion be subject to the g ideal nonholonomic constraints of
Chetaev’s type

fβ(t, q, q̇) = 0 (β = 1, . . . , g). (10)

The differential equations of motion of the system can be
written in the form [20,25,29–33]

Es(L) = Qs + λβ
∂ fβ
∂ q̇s

, (11)

whereλβ are the constraint multipliers. Before integrating the
differential equations, from Eqs. (10) and (11) one can solve
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the multipliers λβ as functions of t, q and q̇. So, Eqs. (11)
have the form

Es(L) = Qs +�s, (12)

where

�s = λβ(t, q, q̇)
∂ fβ
∂q̇s

(13)

express the nonholonomic constraint forces. Equations (12)
are called the equations of holonomic system corresponding
to the nonholonomic system (10), (11).

For the system (12), the Noether identity is

L ξ̇0 + X (1)(L)+(Qs +�s)(ξs − q̇sξ0)+ Ġ N = 0. (14)

The restriction of nonholonomic constraints (10) on the gen-
erators has the form [13]

∂ fβ
∂q̇s

(ξs − q̇sξ0) = 0. (15)

If the generators ξ0, ξs and the gauge function G N satisfy
Eqs. (14) and (15), then the symmetry is a Noether one of
the nonholonomic system. If they satisfy only Eq. (14), then
the symmetry is a Noether symmetry of the corresponding
holonomic system (12).

Considering Eq. (15), the identity (14) can be simplified as

L ξ̇0 + X (1)(L)+ Qs(ξs − q̇sξ0)+ Ġ N = 0. (16)

The complexity of the Noether symmetry of the nonholo-
nomic system is to have the restriction of nonholonomic con-
straints on the generators.

The conserved quantities can be obtained by using the
Noether symmetry.

2.4 Noether symmetry of Birkhoffian system

The Birkhoffian system is a kind of constrained mechanical
systems. The Birkhoff equations have the form [34]

	μν ȧν − ∂B

∂aμ
− ∂Rμ

∂t
= 0 (μ, ν = 1, . . . , 2n), (17)

where

	μν = ∂Rν
∂aμ

− ∂Rμ
∂aν

, (18)

and B = B(t, a) is the Birkhoffian and Rμ = Rμ(t, a) the
Birkhoff’s functions.

Introducing the infinitesimal transformations as

t∗ = t + εξ0(t, a), aμ∗ = aμ + εξμ(t, a) (19)

for the system (17), the Noether identity has the form [14]
(
∂Rμ
∂t

ȧμ − ∂B

∂t

)

ξ0 +
(
∂Rν
∂aμ

ȧν − ∂B

∂aμ

)

ξμ − Bξ̇0

+ Rμξ̇μ + Ġ N = 0, (20)

where G N = G N (t, a) is the gauge function.

The Noether symmetry of Birkhoffian system can lead to
the conserved quantities.

The study on Birkhoffian mechanics can be seen in refer-
ence [35].

3 Lie symmetry

The Lie symmetry is an invariance of the differential equa-
tions of motion under the infinitesimal transformations. On
the part of mathematics, the monographs are very important,
e.g. see references [36–39]. There have been some impor-
tant results on the study of the Lie symmetry of mechanical
systems [40–48].

3.1 Lie symmetry of Lagrangian system

Suppose that the system (1) is nonsingular, i.e.

det

(
∂2L

∂ q̇s∂ q̇k

)

�= 0. (21)

Then Eq. (1) can be written as

q̈s = αs(t, q, q̇). (22)

Under the infinitesimal transformations (5), the determining
equations of the Lie symmetry of Eq. (22) have the form

q̈s − q̇s ξ̈0 − 2ξ̇0αs = X (1)(αs). (23)

The Lie symmetry can lead to the conserved quantities under
certain conditions. But it is not easy that one find the gen-
erators ξ0, ξs from Eq. (23), because symmetry methods for
differential equations, originally developed by Sophus Lie,
are highly algorithmic [37].

For the Lagrangian system, all of the Noether symmetries
are also Lie symmetries [49,50].

3.2 Lie symmetry of general holonomic system

Let Eq. (8) have the form

q̈s = βs(t, q, q̇). (24)

The determining equations of the Lie symmetry of Eq. (24)
have the form

ξ̈s − q̇s ξ̈0 − 2ξ̇0βs = X (1)(βs). (25)

If the infinitesimal generators ξ0, ξs satisfy Eq. (25), then
the Lie symmetry can lead to the conserved quantities under
certain conditions.

For the general holonomic system, a Noether symmetry
is a Lie symmetry under certain conditions [50].

123



288 F. X. Mei et al.

3.3 Lie symmetry of nonholonomic system

From Eq. (12), we can solve all of the generalized accelera-
tions as

q̈s = γs(t, q, q̇). (26)

Their determining equations of the Lie symmetry are

ξ̈s − q̇s ξ̈0 − 2ξ̇0γs = X (1)(γs). (27)

The restriction equations of nonholonomic constraints (10)
have the form

X (1)( fβ(t, q, q̇)) = 0. (28)

If the generators ξ0, ξs satisfy the determining equations (27)
and the restriction equations (28), then the symmetry is a
Lie symmetry of the nonholonomic system. If the generators
ξ0, ξs satisfy only the determining equations (27), then the
symmetry is a Lie symmetry of the corresponding holonomic
system. The complexity of the Lie symmetry of the nonholo-
nomic system is to have the restriction conditions (28) of the
nonholonomic constraint to the infinitesimal generators.

3.4 Lie symmetry of Birkhoffian system

Suppose that

det(	μν) �= 0. (29)

Then from Eq. (17), we can solve ȧμ as

ȧμ −	μν
(
∂B

∂aν
+ ∂Rν

∂t

)

= 0. (30)

Under the infinitesimal transformations (19), the determining
equations of the Lie symmetry of Eq. (30) have the form

ξ̇μ−	μν
(
∂B

∂aν
+ ∂Rν
∂t

)

ξ̇0 = X (0)
{

	μν
(
∂B

∂aν
+ ∂Rν
∂t

)}

,

(31)

where

X (0) = ξ0
∂

∂t
+ ξμ

∂

∂aμ
. (32)

If the infinitesimal generators ξ0, ξs satisfy the determining
equations (31), then the symmetry is a Lie symmetry of the
Birkhoffian system.

4 Form invariance

There are dynamical functions in the differential equations
of motion of mechanical systems, e.g. the Lagrangian, the
generalized forces, the generalized constraint forces in the
holonomic and nonholonomic systems, the Birkhoffian, the

Birkhoff functions in the Birkhoffian system. If the trans-
formed dynamical functions still satisfy the original differ-
ential equations of motion, then the symmetry is called a
form invariance. There have been some important results on
the study of the form invariance [51–61].

4.1 Form invariance of Lagrangian system

After the transformations (5), the Lagrangian L(t, q, q̇)
becomes L(t∗, q∗, dq∗

dt∗ ), we have

L

(

t∗, q∗, dq∗

dt∗

)

= L (t, q, q̇)+ εX (1)(L)+ 0(ε2). (33)

Substituting (33) into Eq. (1) and neglecting ε2 terms and the
higher terms, we obtain

Es{X (1)(L)} = 0. (34)

If the generators ξ0, ξs satisfy the Eq. (34), then the symmetry
is a form invariance of the Lagrangian system. Equation (34)
are called the criterion equations of the form invariance of
the Lagrangian system. The form invariance is different from
the Noether symmetry and the Lie symmetry.

4.2 Form invariance of general holonomic system

After the transformations (5), the Lagrangian L(t, q, q̇)
and the generalized forces Qs(t, q, q̇) become respectively
L(t∗, q∗, dq∗

dt∗ ) and Qs(t∗, q∗, dq∗
dt∗ ), and we have

L

(

t∗, q∗, dq∗

dt∗

)

= L (t, q, q̇)+ εX (1)(L)+ 0(ε2),

Qs

(

t∗, q∗, dq∗

dt∗

)

= Qs (t, q, q̇)+ εX (1)(Qs)+ 0(ε2).

(35)

Substituting (35) into Eq. (8) and neglecting ε2 terms and the
higher terms, we obtain

Es

{

X (1)(L)
}

= X (1)(Qs). (36)

If the generators ξ0, ξs satisfy the Eq. (36), then the sym-
metry is a form invariance of the general holonomic system.
Equation (36) are called the criterion equations of the form
invariance of the general holonomic system.

4.3 Form invariance of nonholonomic system

After the transformations (5), the Lagrangian L(t, q, q̇), the
generalized forces Qs(t, q, q̇) and the generalized constraint
forces �s(t, q, q̇) become respectively L(t∗, q∗, dq∗

dt∗ ),

Qs(t∗, q∗, dq∗
dt∗ ) and �s(t∗, q∗, dq∗

dt∗ ), and we have
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L

(

t∗, q∗, dq∗

dt∗

)

= L (t, q, q̇)+ εX (1)(L)+ 0(ε2),

Qs

(

t∗, q∗, dq∗

dt∗

)

= Qs (t, q, q̇)+ εX (1)(Qs)+ 0(ε2),

�s

(

t∗, q∗, dq∗

dt∗

)

= �s (t, q, q̇)+ εX (1)(�s)+ 0(ε2).

(37)

Substituting (37) into Eq. (12) and neglecting ε2 terms and
the higher terms, we obtain

Es

{

X (1)(L)
}

= X (1)(Qs)+ X (1)(�s). (38)

If the generators ξ0, ξs satisfy the Eq. (38), then the sym-
metry is a form invariance of the corresponding holonomic
system (12).

After the transformations (5), the constraint functions
fβ(t, q, q̇) become f ∗

β (t
∗, q∗, dq∗

dt∗ ), and we have

f ∗
β = fβ + εX (1)( fβ)+ 0(ε2). (39)

Substituting (39) into the constraint equations (10) and
neglecting ε2 terms and the higher terms, we obtain

X (1)( fβ) = 0. (40)

If the generators ξ0, ξs satisfy the criterion equations (38) and
the restriction equations (40), then the symmetry is a form
invariance of the nonholonomic system. The complexity of
the form invariance of the nonholonomic system is to have
the restriction (40) of the nonholonomic constraints on the
generators.

4.4 Form invariance of Birkhoffian system

After the transformations (19), the Birkhoffian B(t, a)
and the Birkhoff functions Rμ(t, a) become respectively
B(t∗, a∗) and Rμ(t∗, a∗), and we have

B
(

t∗, a∗) = B(t, a)+ εX (0)(B)+ 0(ε2),

Rμ
(

t∗, a∗) = Rμ(t, a)+ εX (0)(Rμ)+ 0(ε2). (41)

Substituting (41) into Eq. (17) and neglecting ε2 terms and
the higher terms, we obtain

{
∂

∂aμ
X (0)(Rν)− ∂

∂aν
X (0)(Rμ)

}

ȧν − ∂

∂aμ
X (0)(B)

− ∂

∂t
X (0)(Rμ) = 0. (42)

If the generators ξ0, ξμ satisfy the criterion equations (42),
then the symmetry is a form invariance of the Birkhoffian
system.

5 Noether conserved quantities deduced by Noether
symmetry

In Sects. 5–10, we will present three kinds of conserved
quantities deduced by using three kinds of symmetries for
the constrained mechanical systems and give some practical
examples to illustrate the application of the results.

The Noether symmetry can lead directly to the Noether
conserved quantity by using the Noether theorem.

5.1 Lagrangian system

Proposition 5.1 For the Lagrangian system (1), if the infin-
itesimal generators ξ0, ξs and the gauge function G N satisfy
the Noether identity (6), then the Noether symmetry will lead
to the Noether conserved quantity

IN = Lξ0 + ∂L

∂ q̇s
(ξs − q̇sξ0)+ G N = const. (43)

This is the Noether theorem of the Lagrangian system.

Example 5.1 The Lagrangian of a harmonic oscillator sys-
tem with two-degree-of-freedom is [62]

L = 1

2
m

(

q̇2
1 + q̇2

2

)

− 1

2
k

(

q2
1 + q2

2

)

,

where m, k are constants.

The Noether identity (6) gives

{
1

2
m

(

q̇2
1 + q̇2

2

)

− 1

2
k

(

q2
1 + q2

2

)}

ξ̇0 + mq̇1
(

ξ̇1 − q̇1ξ̇0
)

+ mq̇2
(

ξ̇2 − q̇2ξ̇0
) − kq1ξ1 − kq2ξ2 + Ġ N = 0.

It has the following solutions:

ξ0 = −1, ξ1 = ξ2 = 0, G N = 0,

ξ0 = 0, ξ1 = −q2, ξ2 = q1, G N = 0,

ξ0 = −1, ξ1 = 0, ξ2 = −q̇2, G N = 1

2
mq̇2

2 − 1

2
kq2

2 ,

ξ0 = −1, ξ1 = −q̇1, ξ2 = 0, G N = 1

2
mq̇2

1 − 1

2
kq2

1 ,

ξ0 = 0, ξ1 = q̇1 + 1

2
q̇2, ξ2 = q̇2 + 1

2
q̇1,

G N = −L + 1

2
kq1q2 − 1

2
mq̇1q̇2.

By using Proposition 5.1, we obtain the following Noether
conserved quantities:
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IN1 = 1

2
m(q̇2

1 + q̇2
2 )+ 1

2
k(q2

1 + q2
2 ) = const.,

IN2 = m(q1q̇2 − q2q̇1) = const.,

IN3 = 1

2
mq̇2

1 + 1

2
kq2

1 = const.,

IN4 = 1

2
mq̇2

2 + 1

2
kq2

2 = const.,

IN5 = 1

2
mq̇1q̇2 + 1

2
kq1q2 = const.

These five integrals are not independent, because [62]

IN1 = IN3 + IN4 ,

IN2 = 2
{m

k

(

IN3 IN4 − I 2
N5

)}1/2
.

The integral IN1 is the integral of energy, the integral IN2 is
the integral of momentum moment, the integrals IN3 and IN4

are the local integrals of energy. The Lagrangian mechanics
only provides us the integral IN1 .

Example 5.2 The Emden equation is

q̈ + 2

t
q̇ + q5 = 0.

This is a Lagrangian system whose Lagrangian has the form

L = t2
(

1

2
q̇2 − 1

6
q6

)

.

The Noether identity (6) gives

L ξ̇0+t

(

q̇2− 1

3
q6

)

ξ0+t2q̇
(

ξ̇ − q̇ ξ̇0
) − t2q5ξ + Ġ N =0.

It has the solution

ξ0 = −2t, ξ = q, G N = 0.

The Noether conserved quantity (43) gives

IN = t3q̇2 + t2qq̇ + 1

3
t3q6 = const.

5.2 General holonomic system

Proposition 5.2 For the general holonomic system (8), if the
infinitesimal generators ξ0, ξs and the gauge function G N

satisfy the Noether identity (9), then the Noether symmetry
will lead to the Noether conserved quantity

IN = Lξ0 + ∂L

∂q̇s
(ξs − q̇sξ0)+ G N = const. (44)

This is the Noether theorem of the general holonomic system.

Example 5.3 The differential equation model of the arma-
ment race can be written in the form

q̈ + (α + β)q̇ + (αβ − kl)q = 0,

where α, β, k and l are constants. It is a particular case of the
Lanchester model [63]. The equation can be considered as
the equation of a holonomic system whose Lagrangian is

L = 1

2
q̇2 − 1

2
(αβ − kl)q2,

and the generalized force is

Q = −(α + β)q̇.

The Noether identity (9) gives
{

1

2
q̇2 − 1

2
(αβ − kl)q2

}

ξ̇0 + q̇
(

ξ̇ − q̇ ξ̇0
)

−(αβ − kl)qξ − (α + β)q̇(ξ − q̇ξ0)+ Ġ N = 0.

which has the solution

ξ0 = 0, ξ = exp At, G N = q(α + β − A) exp At,

where the constant A is the solution of the following algebraic
equation

A2 − (α + β)A + αβ − kl = 0.

The Noether conserved quantity (44) gives

IN = {q̇ + (α + β − A)} exp At = const.

Example 5.4 The differential equation is

q̈ + knqn−1 = −μ
(

aq̇ + bq̇2
)

,

where n is a positive integer, a, b and k are constants and
μ � 1 [8].

The equation can be considered as the equation of a holo-
nomic system whose Lagrangian is

L = 1

2
q̇2 − kqn,

and the generalized force is

Q = −μ
(

aq̇ + bq̇2
)

.

There is no exact constant of motion in the example. In
the following, we seek the approximate constant of motion
of the system by using the Noether theorem. Let

ξ0 = (ξ0)0 + μ(ξ0)1 + · · · ,
ξ = (ξ)0 + μ(ξ)1 + · · · ,
G N = (G N )0 + μ(G N )1 + · · · .
Substituting them into the Noether identity (9), we obtain

−knqn−1 {(ξ)0 + μ(ξ)1 + · · · } + q̇
{(

ξ̇
)

0 + μ
(

ξ̇
)

1 + · · · }

+
(

−1

2
q̇2 − kqn

)
{(

ξ̇0
)

0 + μ
(

ξ̇0
)

1 + · · · }

−μ
(

aq̇ + bq̇2
)

{(ξ)0 + μ(ξ)1 + · · · − q̇(ξ0)0

− μq̇(ξ0)1 − · · · }
+ (

Ġ N
)

0 + μ
(

Ġ N
)

1 + · · · = 0.
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Separating the terms containingμ and the terms not contain-
ing μ, we obtain

−knqn−1(ξ)0+q̇
(

ξ̇
)

0 −
(

1

2
q̇2+kqn

)
(

ξ̇0
)

0+(

Ġ N
)

0 =0,

−knqn−1(ξ)1 + q̇
(

ξ̇
)

1 −
(

1

2
q̇2 + kqn

)
(

ξ̇0
)

1

−(aq̇ + bq̇2) [(ξ)0 − q̇(ξ0)0] + (

Ġ N
)

1 = 0.

which have the solution

(ξ0)0 = 1, (ξ)0 = 0, (G N )0 = 0,

(ξ0)1 =2bq+ 2ant

2+n
, (ξ)1 =− 2aq

2 + n
, (G N )1 =2bk

qn+1

1+n
.

The Noether conserved quantity (44) gives

IN =
(

1

2
q̇2 − kqn

){

1 + 2μ

(

bq + ant

2 + n

)}

+ q̇

{

−μ 2aq

2 + n
− q̇

[

1 + 2μ

(

bq + ant

2 + n

)]}

+ 2μbk
qn+1

1 + n
,

where theμ2 terms and the higher terms are neglected, there-
fore, IN is not a constant of motion. But we have

dIN

dt
= μ2(· · · )+ · · · ≈ 0,

and IN is a generalized adiabatic invariant [8].

5.3 Nonholonomic system

Proposition 5.3 For the nonholonomic system (10), (11), if
the infinitesimal generators ξ0, ξs and the gauge function
G N satisfy Eqs. (14) and (15), then the Noether symmetry
will lead to the Noether conserved quantity (43) [32].

Example 5.5 The Lagrangian and the constraint equation of
a nonholonomic system are respectively

L = 1

2
m

(

q̇2
1 + q̇2

2 + q̇2
3

)

− mgq3,

f = q̇3 −
(

q̇2
1 + q̇2

2

)1/2 = 0.

This is the celebrated Appell–Hamel problem [22,25,26].

The Noether identity (16) and Eq. (15) give respectively

L ξ̇0 + mq̇1
(

ξ̇1 − q̇1ξ̇0
) + mq̇2

(

ξ̇2 − q̇2ξ̇0
)

+ mq̇3
(

ξ̇3 − q̇3ξ̇0
) − mgξ3 + Ġ N = 0,

ξ3 − q̇3ξ0 −
(

q̇2
1 + q̇2

2

)−1/2

×{q̇1 (ξ1 − q̇1ξ0)+ q̇2 (ξ2 − q̇2ξ0)} = 0.

They have the following solutions:

ξ0 = −1, ξ1 = ξ2 = ξ3 = 0, G N = 0,

ξ0 = 0, ξ1 = − 1

q̇2
, ξ2 = q̇1

q̇2
2

, ξ3 = 0, G N = −m
q̇1

q̇2
,

ξ0 = 0, ξ1 = 0, ξ2 = q̇3, ξ3 = q̇2,

G N = mgq2 − mq̇2q̇3,

ξ0 = 0, ξ1 = q̇3, ξ2 = 0, ξ3 = q̇1,

G N = mgq1 − mq̇1q̇3.

The corresponding Noether conserved quantities are respec-
tively

IN1 = 1

2
m

(

q̇2
1 + q̇2

2 + q̇2
3

)

+ mgq3 = const.,

IN2 = −m
q̇1

q̇3
= const.,

IN3 = mq̇2q̇3 + mgq2 = const.,

IN4 = mq̇1q̇3 + mgq1 = const.

Example 5.6 The Lagrangian and the constraint equation of
a nonholonomic system are respectively

L = 1

2

(

q̇2
1 + q̇2

2

)

,

f = q̇1 + btq̇2 − bq2 + t = 0,

where b is a constant [25].

Equation (12) give

q̈1 = − 1

1 + b2t2 , q̈2 = − bt

1 + b2t2 .

The Noether identity (14) becomes

1

2

(

q̇2
1 + q̇2

2

)

ξ̇0 + q̇1
(

ξ̇1 − q̇1ξ̇0
) + q̇2

(

ξ̇2 − q̇2ξ̇0
)

− 1

1 + b2t2 (ξ1 − q̇1ξ0)− bt

1 + b2t2 (ξ2 − q̇2ξ0)+ Ġ N =0.

Equation (15) gives

ξ1 − q̇1ξ0 + bt (ξ2 − q̇2ξ0) = 0.

The above two equations have the solution

ξ0 = 0, ξ1 = bt, ξ2 = −1, G N = −bq1.

Thus, the Noether conserved quantity (43) gives

IN = q̇1bt − q̇2 − bq1 = const.

5.4 Birkhoffian system

Proposition 5.4 [14,34] For the Birkhoffian system (17), if
the generators of infinitesimal transformations ξ0, ξμ and
the gauge function G N satisfy the Noether identity (20), then
the Noether symmetry will lead to the Noether conserved
quantity

IN = Rμξμ − Bξ0 + G N = const. (45)
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Example 5.7 [34] The Birkhoffian and the Birkhoff’s func-
tions of a system are respectively

B = 1

2

{(

a3
)2 + 2a2a3 −

(

a4
)2

}

,

R1 = a2 + a3, R2 = 0, R3 = a4, R4 = 0.

The Noether identity (20) gives
(

ȧ1 − a3
)

ξ2 +
(

ȧ1 − a2 − a3
)

ξ3 +
(

ȧ3 + a4
)

ξ4 − Bξ̇0

+
(

a2 + a3
)

ξ̇1 + a4ξ̇3 + Ġ N = 0.

It has the following solutions:

ξ0 =0, ξ1 =cos t, ξ2 =sin t, ξ3 =− sin t, ξ4 = cos t,

G N = −a3 cos t,

ξ0 =0, ξ1 =sin t, ξ2 =− cos t, ξ3 =cos t, ξ4 =sin t,

G N =−a3 sin t,

ξ0 = 0, ξ1 = 1, ξ2 = ξ3 = ξ4 = 0, G N = 0,

ξ0 =0, ξ1 =−t, ξ2 =0, ξ3 =−1, ξ4 =0, G N =a1.

The Noether conserved quantity (45) gives respectively

IN1 = a2 cos t − a4 sin t = C1,

IN2 = a2 sin t + a4 cos t = C2,

IN3 = a2 + a3 = C3,

IN4 = a1 − a4 −
(

a2 + a3
)

t = C4.

from which we obtain the solution as

a1 = −C1 sin t + C2 cos t + C3t + C4,

a2 = C1 cos t + C2 sin t,

a3 = −C1 cos t − C2 sin t + C3,

a4 = −C1 sin t + C2 cos t.

6 Hojman type conserved quantities deduced by Lie
symmetry

Hojman gave a conserved quantity by using the Lie symme-
try under the infinitesimal transformations where time is not
changed [43]. Clearly, this result is applicable to the con-
strained mechanical systems.

6.1 Lagrangian system

Choosing the infinitesimal transformations as

t∗ = t, q∗
s (t

∗) = qs(t)+ εξs(t, q, q̇), (46)

the determining equations (23) of the Lie symmetry become

d̄

dt

d̄

dt
ξs = ∂αs

∂qk
ξk + ∂αs

∂q̇k

d̄

dt
ξk, (47)

where

d̄

dt
= ∂

∂t
+ q̇s

∂

∂qs
+ αs

∂

∂ q̇s
. (48)

Proposition 6.1 For the Lagrangian system (22), if the infin-
itesimal generators ξs satisfy the determining equations (47)
and there exists a function μ = μ(t, q, q̇) such that

∂αs

∂ q̇s
+ d̄

dt
lnμ = 0, (49)

then the Lie symmetry will lead to the Hojman type conserved
quantity

IH = 1

μ

∂

∂qs
(μξs)+ 1

μ

∂

∂ q̇s

(

μ
d̄

dt
ξs

)

= const. (50)

The complexity of the above proposition is to find the
generators ξs by Eq. (47) and the function μ by Eq. (49).

Example 6.1 The Lagrangian of a system is

L = 1

2
q̇2 exp(−γ t),

where γ is a constant.

Equation (22) give

q̈ = γ q̇.

Equation (47) give

d̄

dt

d̄

dt
ξ = γ

d̄

dt
ξ.

Equation (49) gives

γ + d̄

dt
lnμ = 0.

from which one can obtain

ξ = (γ q − q̇)2, μ = exp(−γ t).

Substitution of them in (50) gives the Hojman type conserved
quantity

IH = 2γ (γ q − q̇) = const.

6.2 General holonomic system

For the system (24), the determining equations of the Lie
symmetry under the transformations (46) have the form

d̄

dt

d̄

dt
ξs = ∂βs

∂qk
ξk + ∂βs

∂q̇k

d̄

dt
ξk . (51)

Proposition 6.2 For the general holonomic system (24), if
the generators ξs of infinitesimal transformations satisfy the
determining equations (51) of the Lie symmetry and there
exists a function μ = μ(t, q, q̇) such that

∂βs

∂ q̇s
+ d̄

dt
lnμ = 0, (52)
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then the Lie symmetry will lead to the Hojman type conserved
quantity (50).

Example 6.2 The Lagrangian and the generalized forces of
a system are respectively

L = 1

2

(

q̇2
1 + q̇2

2

)

, Q1 = 0, Q2 = q̇1.

The differential equations of motion of the system have
the form

q̈1 = q1, q̈2 = q̇1.

which are called the Whittaker equations.
Equations (51) and (52) give

d̄

dt

d̄

dt
ξ1 = ξ1,

d̄

dt

d̄

dt
ξ2 = d̄

dt
ξ1, 1 + d̄

dt
lnμ = 0.

They have the following solutions

ξ1 = 0, ξ2 = t, μ = q1 − q̇2,

ξ1 = ξ2 = exp t, μ = (q1 + q̇1) exp(−t),

ξ1 = −ξ2 = exp(−t), μ = (q1 − q̇1) exp t.

The corresponding Hojman type conserved quantities are
respectively

IH1 = −(q1 − q̇2)
−1 = C1,

IH2 = 2(q1 + q̇1)
−1 exp t = C2,

IH3 = 2(q1 − q̇1)
−1 exp(−t) = C3.

from which we obtain

q1 = 1

C2
exp t + 1

C3
exp(−t),

q2 = 1

C2
exp t − 1

C3
exp(−t)+ 1

C1
t + C4.

6.3 Nonholonomic system

Under the infinitesimal transformations (46), the determining
equations of the Lie symmetry of Eq. (26) have the form

d̄

dt

d̄

dt
ξs = ∂γs

∂qk
ξk + ∂γs

∂q̇k

d̄

dt
ξk, (53)

Equation (28) become

∂ fβ
∂qs

ξs + ∂ fβ
∂q̇s

d̄

dt
ξs = 0. (54)

Proposition 6.3 For the nonholonomic system (10), (11), if
the generators ξs satisfy Eqs. (53) and (54), and there exists
a function μ = μ(t, q, q̇) such that

∂γs

∂q̇s
+ d̄

dt
lnμ = 0, (55)

then the Lie symmetry will lead to the Hojman type conserved
quantity (50) [64].

Example 6.3 The Lagrangian and the constraint equation of
a nonholonomic system are respectively

L = 1

2

(

q̇2
1 + q̇2

2

)

, f = q̇2 − t q̇1 = 0.

Equation (12) give

q̈1 = − t

1 + t2 q̇1, q̈2 = 1

1 + t2 q̇1.

Equations (53), (54) and (55) give

d̄

dt

d̄

dt
ξ1 = − t

1 + t2

d̄

dt
ξ1,

d̄

dt

d̄

dt
ξ2 = 1

1 + t2

d̄

dt
ξ1,

d̄

dt
ξ2 − t

d̄

dt
ξ1 = 0,

− t

1 + t2 + d̄

dt
lnμ = 0.

They have the following solutions

ξ1 = 1, ξ2 = (q2 − q̇1 − t q̇2)
2 , μ = (

1 + t2)1/2
,

ξ1 = 0, ξ2 = q̇1
(

1+t2)1/2
(q2−q̇1−t q̇2) , μ=(

1+t2)1/2
.

The corresponding Hojman type conserved quantities are
respectively

IH1 = 2 (q2 − q̇1 − t q̇2) = const.,

IH2 = q̇1

(

1 + t2
)1/2 = const.

6.4 Birkhoffian system

Choose the infinitesimal transformations as

t∗ = t, aμ∗ (

t∗
) = aμ(t)+ εξμ(t, a). (56)

Under the transformations (56), the determining equa-
tions (31) of the Lie symmetry become

d̄

dt
ξμ= ∂

∂aρ

{

	μν
(
∂B

∂aν
+ ∂Rν
∂t

)}

ξρ (μ, ν, ρ=1, . . . , 2n),

(57)

where

d̄

dt
= ∂

∂t
+	μν

(
∂B

∂aν
+ ∂Rν

∂t

)
∂

∂aμ
. (58)

Then we have

Proposition 6.4 For the Birkhoffian system (30), if the infin-
itesimal generators ξμ satisfy Eq. (57) and there exists a
function μ = μ(t, a) such that

∂

∂aμ

{

	μν
(
∂B

∂aν
+ ∂Rν

∂t

)}

+ d̄

dt
lnμ = 0, (59)
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then the Lie symmetry will lead to the Hojman type conserved
quantity

IH = 1

μ

∂

∂aν
(μξν) = const. (60)

Example 6.4 The Birkhoffian and the Birkhoff’s functions
of a Birkhoffian system are respectively [34]

B = 1

2

{(

a3
)2 + 2a2a3 −

(

a4
)2

}

,

R1 = a2 + a3, R2 = 0, R3 = a4, R4 = 0.

Equations (57) and (59) give respectively

d̄

dt
ξ1 = ξ3,

d̄

dt
ξ2 = ξ4,

d̄

dt
ξ3 = −ξ4,

d̄

dt
ξ4 = −ξ2,

d̄

dt
lnμ = 0.

They have the solutions

ξ1 ={

a1 − a4 − (

a2 + a3) t
}2
, ξ2 =ξ3 = ξ4 = 0, μ = 1,

ξ1 = t, ξ2 = 0, ξ3 = 1, ξ4 = 0, μ = a2 + a3.

The conserved quantity (60) gives respectively

IH1 = 2
{

a1 − a4 −
(

a2 + a3
)

t
}

= const.,

IH2 =
(

a2 + a3
)−1 = const.

The complexity of the study of the Hojman type conserved
quantity is to find the generators ξs or ξμ by using the deter-
mining equations of the Lie symmetry and the suitable func-
tion μ.

7 New conserved quantities deduced by form invariance

For a holonomic system, a new conserved quantity can be
deduced by the form invariance of the system [55]. We now
present the new conserved quantity deduced by the form
invariance for constrained mechanical systems, including the
Lagrangian system, the general holonomic system, the non-
holonomic system and the Birkhoffian system.

7.1 Lagrangian system

Proposition 7.1 For the Lagrangian system (1), if the gen-
erators ξ0, ξs of the form invariance and the gauge function
G F = G F (t, q, q̇) satisfy the structure equation

X̃ (1)(L)
d̄

dt
ξ0 + X̃ (1)

{

X̃ (1)(L)
}

+ d̄

dt
G F = 0, (61)

where

X̃ (1) = ξ0
∂

∂t
+ ξs

∂

∂qs
+

(
d̄

dt
ξs − q̇s

d̄

dt
ξ0

)
∂

∂ q̇s
, (62)

d̄

dt
= ∂

∂t
+ q̇s

∂

∂qs
+ αs

∂

∂ q̇s
, (63)

then the form invariance will lead to the new conserved quan-
tity

IF = X̃ (1)(L)ξ0 + ∂ X̃ (1)(L)

∂ q̇s
(ξs − q̇sξ0)+ G F = const.

(64)

Example 7.1 The Lagrangian of a system is

L = t2
(

1

2
q̇2 − 1

6
q6

)

.

We have

X (1)(L) = 2tξ0

(
1

2
q̇2 − 1

6
q6

)

+ t2
{

q̇
(

ξ̇ − q̇ ξ̇0
) − q5ξ

}

.

Choosing the generators as

ξ0 = t, ξ = −1

2
q,

and we have

X̃ (1)(L) = X (1)(L) = −L ,

E
{

X (1)(L)
}

= −E(L) = 0,

therefore the above generators correspond to a form invari-
ance of the system. Substituting them into the structure equa-
tion (61), we obtain

G F = 0.

Then the conserved quantity (64) gives

IF = 1

2
t3q̇2 + 1

2
t2qq̇ + 1

6
t3q6 = const.

It must be noted that the generators ξ0, ξ are also the gen-
erators of a Noether symmetry, and the Noether conserved
quantity deduced by them is

IN = −IF .

7.2 General holonomic system

Proposition 7.2 For the general holonomic system (8), if the
generators ξ0, ξs of the form invariance and the gauge func-
tion G F = G F (t, q, q̇) satisfy the structure equation

X̃ (1)(L)
d̄

dt
ξ0 + X̃ (1)

{

X̃ (1)(L)
}

+ X̃ (1)(Qs)(ξs − q̇sξ0)

+ d̄

dt
G F = 0, (65)
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where
d̄

dt
= ∂

∂t
+ q̇s

∂

∂qs
+ βs

∂

∂q̇s
, (66)

then the form invariance will lead to the new conserved quan-
tity (64).

Obviously, Proposition 7.1 is a particular case of Propo-
sition 7.2.

Example 7.2 A system with two-degree-of-freedom is

L = 1

2

(

q̇2
1 + q̇2

2

)

− q2,

Q1 = 1

1 + t2 (q̇2 − 2t q̇1 − t) ,

Q2 = − 1

1 + t2

(

t q̇2 + 2q̇1 − t2
)

.

We can obtain the following result

ξ0 = ξ1 = 0, ξ2 = t q̇1 + q̇2 + q1 + t, G F = 0,

IF = − (t q̇1 + q̇2 + q1 + t) = const.

7.3 Nonholonomic system

Proposition 7.3 For the nonholonomic system (10), (11), if
the generators ξ0, ξs of the form invariance and the gauge
function G F = G F (t, q, q̇) satisfy the structure equation

X̃ (1)(L)
d̄

dt
ξ0+ X̃ (1)

{

X̃ (1)(L)
}

+ X̃ (1)(Qs +�s)(ξs −q̇sξ0)

+ d̄

dt
G F = 0, (67)

where
d̄

dt
= ∂

∂t
+ q̇s

∂

∂qs
+ γs

∂

∂q̇s
, (68)

then the form invariance will lead to the conserved quan-
tity (64).

Example 7.3 Novoselov problem is [25]

L = 1

2

(

q̇2
1 + q̇2

2

)

, f = q̇1 + btq̇2 − bq2 + t = 0.

By Proposition 7.3, we can obtain the result

ξ0 =0, ξ1 = q̇2−btq̇1+bq1+bt, ξ2 =1, G F =−b2t,

IF =b(q̇2−btq̇1+bq1)=const.

7.4 Birkhoffian system

Proposition 7.4 For the Birkhoffian system (17), if the gen-
erators ξ0, ξμ of the form invariance and the gauge function
G F = G F (t, a) satisfy the structure equation

X (0)
{

X (0)(Rμ)
}

	μν
(
∂B

∂aν
+ ∂Rν

∂t

)

− X (0)
{

X (0)(B)
}

−X (0)(B)
d̄

dt
ξ0 + X (0)(Rμ)

d̄

dt
ξμ + d̄

dt
G F = 0, (69)

where

d̄

dt
= ∂

∂t
+	μν

(
∂B

∂aν
+ ∂Rν

∂t

)
∂

∂aμ
, (70)

then the form invariance will lead to the conserved quantity

IF = X (0)(Rμ)ξμ − X (0)(B)ξ0 + G F = const. (71)

Example 7.4 A Birkhoffian system of four order is

B =
(

a2 sin t + a4 cos t
)2
,

R1 = 0, R2 = a1 − a4 −
(

a2 + a3
)

t

+
(

a2 sin t + a4 cos t
)

cos t,

R3 = a1 − a4 −
(

a2 + a3
)

t,

R4 = −
(

a2 sin t + a4 cos t
)

sin t.

We can obtain the result

ξ0 = 0, ξ1 = (a2 + a3)t + 1, ξ3 = a2 + a3,

ξ2 = ξ4 = 0, G F = 0, IF = a2 + a3 = const.

The complexity of the study on the new conserved quantity
for the constrained mechanical systems is to find the gener-
ators ξ0, ξs (or ξμ) of the form invariance and the suitable
gauge function G F .

8 Non-Noether conserved quantities deduced by
Noether symmetry

In Sect. 5, we have presented the Noether conserved quan-
tity deduced by the Noether symmetry for the constrained
mechanical systems. In fact, we can also find the non-Noether
conserved quantity, say the Hojman type conserved quantity
and the new conserved quantity, by using the Noether sym-
metry for the constrained mechanical systems.

8.1 Lagrangian system

Under the infinitesimal transformations (46), the Noether
identity (6) of the Lagrangian system (1) becomes

∂L

∂qs
ξs + ∂L

∂ q̇s
ξ̇s + Ġ N = 0. (72)

Proposition 8.1 For the Lagrangian system (1), if the gen-
erators ξs of the Noether symmetry satisfy Eq. (47) and there
exists a function μ = μ(t, q, q̇) satisfying Eq. (49), then the
Noether symmetry will lead to the Hojman type conserved
quantity (50).

Example 8.1 The Lagrangian of a system is

L = 1

2

(

q̇2
1 + q̇2

2

)

− q2.
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Identity (72), Eqs. (47) and (49) give respectively

q̇1ξ̇1 + q̇2ξ̇2 − ξ2 + Ġ N = 0,

d̄

dt

d̄

dt
ξ1 = 0,

d̄

dt

d̄

dt
ξ2 = 0,

d̄

dt
lnμ = 0.

which have the solutions

ξ1 = 1, ξ2 = 0, G N = 0, μ = q1 − q̇1t,

ξ1 = 0, ξ2 = 1, G N = t, μ = q2 − q̇2t − 1

2
t2.

The conserved quantity (50) gives respectively

IH1 = (q1 − q̇1t)−1 = const.,

IH2 =
(

q2 − q̇2t − 1

2
t2

)−1

= const.,

and the Noether conserved quantity are respectively

IN1 = q̇1 = const.,

IN2 = q̇2 + t = const.

Proposition 8.2 For the Lagrangian system (1), if the gen-
erators ξ0, ξs of the Noether symmetry satisfy Eq. (34) and
there exists a gauge function G F = G F (t, q, q̇) satisfying
Eq. (61), then the Noether symmetry will lead to the new
conserved quantity (64).

8.2 General holonomic system

Under the infinitesimal transformations (46), the Noether
identity (9) of the general holonomic system becomes

∂L

∂qs
ξs + ∂L

∂q̇s
ξ̇s + Qsξs + Ġ N = 0. (73)

Proposition 8.3 For the general holonomic system (8), if the
generators ξs of the Noether symmetry satisfy Eq. (51) and
there exists a function μ = μ(t, q, q̇) satisfying Eq. (52),
then the Noether symmetry will lead to the Hojman type con-
served quantity (50).

Proposition 8.4 For the general holonomic system (8), if the
generators ξ0, ξs of the Noether symmetry satisfy Eq. (36) and
there exists a gauge function G F = G F (t, q, q̇) satisfying
Eq. (65), then the Noether symmetry will lead to the new
conserved quantity (64).

Example 8.2 The Lagrangian and the generalized forces of
a holonomic system are respectively

L = 1

2

(

q̇2
1 + q̇2

2 + q̇2
3

)

− q3,

Q1 = −q̇2
2 , Q2 = q̇2

1 , Q3 = 0.

The Noether identity (9) gives

L ξ̇0 + q̇1
(

ξ̇1− q̇1ξ̇0
)+ q̇2

(

ξ̇2 − q̇2ξ̇0
) + q̇3

(

ξ̇3 − q̇3ξ̇0
)−ξ3

− q̇2
2 (ξ1 − q̇1ξ0)+ q̇2

1 (ξ2 − q̇2ξ0)+ Ġ N = 0.

It has the solution

ξ0 = ξ1 = ξ2 = 0, ξ3 = −q̇3 − t, G N = 1

2
q̇2

3 − 1

2
t2.

We have

X̃ (1)(L) = q̇3 + t,

Es

{

X̃ (1)(L)
}

= X̃ (1)(Qs) = 0 (s = 1, 2, 3),

G F = 0,

and the conserved quantity (64) gives

IF = −q̇3 − t = const.

It must be noted that the Noether conserved quantity deduced
by the Noether symmetry is

IN = −1

2
q̇2

3 − q̇3t − 1

2
t2 = const.

Therefore, the conserved quantity IF is a non-Noether one.

8.3 Nonholonomic system

Under the infinitesimal transformations (46), the Noether
identity (14) of the nonholonomic system becomes

∂L

∂qs
ξs + ∂L

∂ q̇s
ξ̇s + (Qs +�s)ξs + Ġ N = 0, (74)

and Eq. (15) become

∂ fβ
∂ q̇s

ξs = 0. (75)

Proposition 8.5 For the nonholonomic system (10), (11), if
the generators ξs of the Noether symmetry satisfy Eqs. (53),
(54) and there exists a function μ = μ(t, q, q̇) satisfying
Eq. (55), then the Noether symmetry will lead to the Hojman
type conserved quantity (50).

Proposition 8.6 For the nonholonomic system (10), (11),
if the generators ξ0, ξs of the Noether symmetry satisfy
Eqs. (38), (40) and there exists a gauge function G F =
G F (t, q, q̇) satisfying Eq. (67), then the Noether symmetry
will lead to the new conserved quantity (64).

Example 8.3 Rolling sphere problem.

The Lagrangian and the constraint equations of the prob-
lem are respectively

L = 1

2
m

(

ẋ2+ ẏ2
)

+ 1

2

2

5
ma2

(

ψ̇2 + θ̇2 + ϕ̇2+2ψ̇ϕ̇ cos θ
)

,

f1 = ẋ + a
(

ϕ̇ sin θ cosψ − θ̇ sinψ
) = 0,

f2 = ẏ + a
(

ϕ̇ sin θ sinψ + θ̇ cosψ
) = 0,
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where a is the radius of the sphere, m the mass, x and y the
coordinates of the center of the sphere, ψ, θ and ϕ the Euler
angles.

Let

q1 = ψ, q2 = θ, q3 = ϕ, q4 = x, q5 = y.

Then Eq. (11) give

2

5
ma2 (q̇1 + q̇3 cos q2)

. = 0,

2

5
ma2q̈2 + 2

5
ma2q̇1q̇3 sin q2 = −λ1a sin q1 + λ2a cos q1,

2

5
ma2 (q̇3 + q̇1 cos q2)

. = λ1a sin q2 cos q1

+λ2a sin q2 sin q1,

mq̈4 = λ1,

mq̈5 = λ2.

By using the constraint equations, we obtain [32]

λ1 = λ2 = 0,

and then

Qs +�s = 0 (s = 1, 2, 3, 4, 5).

All of the accelerations q̈s can be solved as

q̈1 = 1

sin q2
q̇2q̇3 − cos q2

sin q2
q̇1q̇2,

q̈2 = −q̇1q̇3 sin q2,

q̈3 = 1

sin q2
q̇1q̇2 − cos q2

sin q2
q̇2q̇3,

q̈4 = 0,

q̈5 = 0.

Equation (53) give

d̄

dt

d̄

dt
ξ1 = 1

sin q2

(

q̇3
d̄

dt
ξ2 + q̇2

d̄

dt
ξ3

)

− cos q2

sin2 q2
q̇2q̇3ξ2

−cos q2

sin q2

(

q̇1
d̄

dt
ξ2 + q̇2

d̄

dt
ξ1

)

+ 1

sin2 q2
q̇1q̇2ξ2,

d̄

dt

d̄

dt
ξ2 = −q̇1

d̄

dt
ξ3 sin q2 − q̇3

d̄

dt
ξ1 sin q2 − q̇1q̇3ξ2 cos q2,

d̄

dt

d̄

dt
ξ3 = 1

sin q2

(

q̇1
d̄

dt
ξ2 + q̇2

d̄

dt
ξ1

)

− cos q2

sin2 q2
q̇1q̇2ξ2

− cos q2

sin q2

(

q̇2
d̄

dt
ξ3 + q̇3

d̄

dt
ξ2

)

+ 1

sin2 q2
q̇2q̇3ξ2,

d̄

dt

d̄

dt
ξ4 = 0,

d̄

dt

d̄

dt
ξ5 = 0.

Equation (54) show

d̄

dt
ξ4 + a

[
d̄

dt
ξ3 sin q2 cos q1 − d̄

dt
ξ2 sin q1

]

+ a [q̇3ξ2 cos q2 cos q1 − q̇3ξ1 sin q2 sin q1 − q̇2ξ1 cos q1] = 0,

d̄

dt
ξ5 + a

[
d̄

dt
ξ3 sin q2 sin q1 + d̄

dt
ξ2 cos q1

]

+ a [q̇3ξ2 cos q2 sin q1 + q̇3ξ1 sin q2 cos q1 − q̇2ξ1 sin q1] = 0.

Identity (74) becomes

−2

5
ma2q̇1q̇3ξ2 sin q2 + 2

5
ma2q̇1ξ̇1 + 2

5
ma2q̇2ξ̇2 + 2

5
ma2q̇3ξ̇3

+ 2

5
ma2 (

q̇1ξ̇3 + q̇3ξ̇1
)

cos q2 + mq̇4ξ̇4 + mq̇5ξ̇5 + Ġ N = 0.

Eq. (55) gives

d̄

dt
lnμ = 0.

The above 9 equations have the solutions

ξ4 = 1, ξ1 = ξ2 = ξ3 = ξ5 = 0, μ = q4 − q̇4t,

ξ5 = 1, ξ1 = ξ2 = ξ3 = ξ4 = 0, μ = q5 − q̇5t.

The Hojman type conserved quantity are respectively

IH1 = (q4 − q̇4t)−1 = const.,

IH2 = (q5 − q̇5t)−1 = const.

8.4 Birkhoffian system

Under the infinitesimal transformations (56), the Noether
identity (20) becomes
(
∂Rν
∂aμ

ȧν − ∂B

∂aμ

)

ξμ + Rμξ̇μ + Ġ N = 0. (76)

Proposition 8.7 For the Birkhoffian system (17), if the gen-
erators ξμ of the Noether symmetry satisfy Eq. (57) and there
exists a function μ = μ(t, a) satisfying Eq. (59), then the
Noether symmetry will lead to the Hojman type conserved
quantity (60).

Proposition 8.8 For the Birkhoffian system (17), if the gen-
erators ξ0, ξμ of the Noether symmetry satisfy Eq. (42) and
the generators and the gauge function G F = G F (t, a) sat-
isfy Eq. (69), then the Noether symmetry will lead to the new
conserved quantity (71).

Example 8.4 A four order Birkhoffian system is

B = a2 + 1

2

{(

a3
)2 +

(

a4
)2

}

,

R1 = a3, R2 = a4, R3 = R4 = 0.
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The Noether identity (20) gives
(

ȧ1 − a3
)

ξ3 +
(

ȧ2 − a4
)

ξ4 − ξ2

−
{

a2 + 1

2

[(

a3
)2 +

(

a4
)2

]}

ξ̇0 + a3ξ̇1

+ a4ξ̇2 + Ġ N = 0.

Equation (42) give
(
∂ξ4

∂a1 − ∂ξ3

∂a2

)

ȧ2 − ∂ξ3

∂a3 ȧ3 − ∂ξ3

∂a4 ȧ4

−
(
∂ξ2

∂a1 + a3 ∂ξ3

∂a1 + a4 ∂ξ4

∂a1

)

= 0,

(
∂ξ3

∂a2 − ∂ξ4

∂a1

)

ȧ1 − ∂ξ4

∂a3 ȧ3

− ∂ξ4

∂a4 ȧ4 −
(
∂ξ2

∂a2 + a3 ∂ξ3

∂a2 + a4 ∂ξ4

∂a2

)

= 0,

∂ξ3

∂a3 ȧ1 + ∂ξ4

∂a3 ȧ2 −
(
∂ξ2

∂a3 + ξ3 + a3 ∂ξ3

∂a3 + a4 ∂ξ4

∂a3

)

= 0,

∂ξ3

∂a4 ȧ1 + ∂ξ4

∂a4 ȧ2 −
(
∂ξ2

∂a4 + ξ4 + a3 ∂ξ3

∂a4 + ∂ξ4

∂a4

)

= 0.

Eq. (69) becomes
(
∂ξ3

∂aμ
ξμ + ∂ξ3

∂t
ξ0

)

a3 +
(
∂ξ4

∂aμ
ξμ + ∂ξ4

∂t
ξ0

)

a4

−X (0)
(

ξ2 + a3ξ3 + a4ξ4

)

−
(

ξ2 + a3ξ3 + a4ξ4

) d̄

dt
ξ0 + ξ3

d̄

dt
ξ1 + ξ4

d̄

dt
ξ2

+ d̄

dt
G F = 0.

These 6 equations have the following solution

ξ0 = ξ1 = ξ3 = 0, ξ2 = a4, ξ4 = −1, G F = −t.

The conserved quantity (71) gives

IF = −a4 − t = const.

This is a new conserved quantity deduced by the Noether
symmetry. It must be noted that the Noether conserved quan-
tity deduced by the Noether symmetry is

IN = 1

2

(

a4
)2 + a2 = const.,

therefore, the conserved quantity IF is a non-Noether one.

9 Conserved quantities deduced by Lie symmetry

In Sect. 6, we have presented the Hojman type conserved
quantities deduced by the Lie symmetry for the constrained
mechanical systems. In fact, the Noether conserved quantity

and the new conserved quantity can also be deduced by using
the Lie symmetry for the systems.

9.1 Lagrangian system

Proposition 9.1 For the Lagrangian system (1), if the gen-
erators ξ0, ξs of the Lie symmetry and the gauge function
G N = G N (t, q, q̇) satisfy the Noether identity (6), then
the Lie symmetry will lead to the Noether conserved quan-
tity (43).

Proposition 9.2 For the Lagrangian system (1), if the gen-
erators ξ0, ξs of the Lie symmetry satisfy Eq. (34) and the
generators and the gauge function G F = G F (t, q, q̇) sat-
isfy Eq. (61), then the Lie symmetry will lead to the new
conserved quantity (64).

Example 9.1 The Lagrangian of a system is

L = 1

2

(

q̇2
1 + q̇2

2

)

−
(

q2
1 + q2

2 + q4
1 + q4

2 + 6q2
1 q2

2

)

.

Equation (23) give

ξ̈1 − q̇1ξ̈0 + 2ξ̇0

(

2q1 + 4q3
1 + 12q1q2

2

)

= −2ξ1

−12q2
1ξ1 − 12ξ1q2

2 − 24q1q2ξ2,

ξ̈2 − q̇2ξ̈0 + 2ξ̇0

(

2q2 + 4q3
2 + 12q2q2

1

)

= −2ξ2

−12q2
2ξ2 − 12ξ2q2

1 − 24q1q2ξ1.

The Noether identity (6) gives

L ξ̇0 + q̇1
(

ξ̇1 − q̇1ξ̇0
) + q̇2

(

ξ̇2 − q̇2ξ̇0
) − 2q1ξ1 − 2q2ξ2

− 4q3
1ξ1 − 4q3

2ξ2 − 12q1q2
2ξ1 − 12q2

1 q2ξ2 + Ġ N = 0.

These three equations have the solution

ξ0 = 0, ξ1 = q̇2, ξ2 = q̇1,

G N = −q̇1q̇2 + 2q1q2 + 4q1q2

(

q2
1 + q2

2

)

.

The Noether conserved quantity (43) gives

IN = q̇1q̇2 + 2q1q2 + 4q1q2

(

q2
1 + q2

2

)

= const.

9.2 General holonomic system

For the general holonomic system, the Lie symmetry can lead
to the Noether conserved quantity and the new conserved
quantity. We have

Proposition 9.3 For the general holonomic system (8), if the
generators ξ0, ξs of the Lie symmetry and the gauge func-
tion G N = G N (t, q, q̇) satisfy the Noether identity (9), then
the Lie symmetry will lead to the Noether conserved quan-
tity (43).
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Proposition 9.4 For the general holonomic system (8), if the
generators ξ0, ξs of the Lie symmetry satisfy Eq. (36) and the
generators and the gauge function G F = G F (t, q, q̇) satisfy
Eq. (65), then the Lie symmetry will lead to the new conserved
quantity (64).

Example 9.2 The Lagrangian and the generalized forces of
a system with three-degree-of-freedom are respectively

L = 1

2

(

q̇2
1 + q̇2

2 + q̇2
3

)

− q3,

Q1 = −q̇3
2 , Q2 = q̇3

1 , Q3 = 0.

Equation (25) give

ξ̈1 − q̇1ξ̈0 − 2ξ̇0

(

−q̇3
2

)

= −3q̇2
2

(

ξ̇2 − q̇2ξ̇0
)

,

ξ̈2 − q̇2ξ̈0 − 2ξ̇0

(

−q̇3
1

)

= 3q̇2
1

(

ξ̇1 − q̇1ξ̇0
)

,

ξ̈3 − q̇3ξ̈0 − 2ξ̇0(−1) = 0.

They have the solution

ξ0 = ξ1 = ξ2 = 0, ξ3 = q̇3 + t,

and then we have

X̃ (1)(L) = −q̇3 − t, Es

{

X̃ (1)(L)
}

= 0,

X̃ (1)(Qs) = 0 (s = 1, 2, 3).

Equation (65) gives

G F = 0.

Thus, the conserved quantity (64) gives

IF = −q̇3 − t = const.

The conserved quantity is a non-Noether one, because the
Noether conserved quantity deduced by the above generators
is

IN = 1

2
q̇2

3 + t q̇3 + 1

2
t2 = const.

9.3 Nonholonomic system

For the nonholonomic system, the Lie symmetry can lead
to the Noether conserved quantity and the new conserved
quantity. We have

Proposition 9.5 For the nonholonomic system (10), (11), if
the generators ξ0, ξs of the Lie symmetry and the gauge func-
tion G N = G N (t, q, q̇) satisfy the Noether identity (14) and
Eq. (15), then the Lie symmetry will lead to the Noether con-
served quantity (43).

Proposition 9.6 For the nonholonomic system (10), (11), if
the generators ξ0, ξs of the Lie symmetry satisfy Eqs. (38)
and (40), and the generators and the gauge function G F =
G F (t, q, q̇) satisfy Eq. (67), then the Lie symmetry will lead
to the new conserved quantity (64).

Example 9.3 Chaplygin sled problem.

The Lagrangian and the nonholonomic constraint equa-
tion are respectively [32]

L = 1

2
m

(

q̇2
1 + q̇2

2

)

+ 1

2
J q̇2

3 − 1

2
kq2

3 ,

f = q̇2 − q̇1 tan q3 = 0.

Equation (27) give

ξ̈1 − q̇1ξ̈0 − 2ξ̇0(−q̇1q̇3 tan q3) = − q̇1q̇3

cos2 q3
ξ3

+ (ξ̇1 − q̇1ξ̇0)(−q̇3 tan q3)+ (ξ̇3 − q̇3ξ̇0)(−q̇1 tan q3),

ξ̈2 − q̇2ξ̈0 − 2ξ̇0(q̇1q̇3) = q̇3(ξ̇1 − q̇1ξ̇0)+ q̇1(ξ̇3 − q̇3ξ̇0),

ξ̈3 − q̇3ξ̈0 − 2ξ̇0

(

− k

J
q3

)

= − k

J
ξ3.

Equation (28) shows

ξ̇2 − q̇2ξ̇0 − (ξ̇1 − q̇1ξ̇0) tan q3 − q̇1

cos2 q3
ξ3 = 0.

Identity (14) becomes

L ξ̇0 + mq̇1(ξ̇1 − q̇1ξ̇0)+ mq̇2(ξ̇2 − q̇2ξ̇0)+ J q̇3(ξ̇3 − q̇3ξ̇0)

− kq3ξ3 − mq̇1q̇3(ξ1 − q̇1ξ0) tan q3 + mq̇1q̇3(ξ2 − q̇2ξ0)

+ Ġ N = 0.

Equation (15) provide

ξ2 − q̇2ξ0 − (ξ1 − q̇1ξ0) tan q3 = 0.

These six equations have the solution

ξ0 = −1, ξ1 = ξ2 = ξ3 = 0, G N = 0,

and the conserved quantity (43) gives

IN = 1

2
m(q̇2

1 + q̇2
2 )+ 1

2
J q̇2

3 + 1

2
kq2

3 = const.,

which is the integral of energy of the system.

9.4 Birkhoffian system

For the Birkhoffian system, the Lie symmetry can lead to the
Noether conserved quantity and the new conserved quantity.
We have

Proposition 9.7 For the Birkhoffian system (17), if the gen-
erators ξ0, ξμ of the Lie symmetry and the gauge function
G N = G N (t, a) satisfy the Noether identity (20), then the Lie
symmetry will lead to the Noether conserved quantity (45).

Proposition 9.8 For the Birkhoffian system (17), if the gen-
erators ξ0, ξμ of the Lie symmetry satisfy Eq. (42), and the
generators and the gauge function G F = G F (t, a) satisfy
Eq. (69), then the Lie symmetry will lead to the new conserved
quantity (71).
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Example 9.4 The Birkhoffian and the Birkhoff’s functions
of a Birkhoffian system of four order are respectively

B =
(

a2 sin t + a4 cos t
)2
,

R1 = 0, R2 = a1 − a4 −
(

a2 + a3
)

t

+
(

a2 sin t + a4 cos t
)

cos t,

R3 = a1 − a4 −
(

a2 + a3
)

t,

R4 = −
(

a2 sin t + a4 cos t
)

sin t.

Equation (31) give

ξ̇1 − a3ξ̇0 = ξ3, ξ̇2 − a4ξ̇0 = ξ4,

ξ̇3 + a4ξ̇0 = −ξ4, ξ̇4 + a2ξ̇0 = −ξ2.

which have the solution

ξ0 =ξ2 =ξ4 =0, ξ1 =
(

a2 + a3
)

t + 1, ξ3 =a2 + a3,

and then we have

X (0)(B) = X (0)(R1) = X (0)(R4) = 0,

X (0)(R2) = X (0)(R3) = 1,

G F = 0.

The conserved quantity (71) gives

IF = a2 + a3 = const.

10 Conserved quantities deduced by form invariance

In Sect. 7, we have presented the new conserved quantity
deduced by the form invariance for the constrained mechan-
ical systems. In fact, the Noether conserved quantity and
the Hojman type conserved quantity can also be deduced by
using the form invariance for the systems.

10.1 Lagrangian system

Proposition 10.1 For the Lagrangian system (1), if the gen-
erators ξ0, ξs of the form invariance and the gauge function
G N = G N (t, q, q̇) satisfy the Noether identity (6), then the
form invariance will lead to the Noether conserved quan-
tity (43).

Proposition 10.2 For the Lagrangian system (1), if the gen-
erators ξs of the form invariance satisfy Eq. (47), and there
exists a function μ = μ(t, q, q̇) satisfying Eq. (49), then
the form invariance will lead to the Hojman type conserved
quantity (50).

Example 10.1 The Lagrangian of a system is

L = 1

2

(

q̇2
1 + q̇2

2

)

+ 1

b
q̇1 arctan bt + 1

2b
q̇2 ln

(

1 + b2t2
)

,

where b is a constant.

Taking the generators as

ξ0 = ξ2 = 0,

ξ1 = 1

2

{

q1 +
∫

1

b
arctan btdt − t

[

q̇1 + 1

b
arctan bt

]}2

,

and then

X (1)(L) = 0,

therefore the generators are form invariance ones. In this case,
Eq. (47) are verified. Equation (49) gives

d̄

dt
lnμ = 0,

and we have

μ = 1.

The Hojman type conserved quantity (50) gives

IH = q1 +
∫

1

b
arctan btdt − t

[

q̇1 + 1

b
arctan bt

]

= const.

10.2 General holonomic system

Proposition 10.3 For the general holonomic system (8), if
the generators ξ0, ξs of the form invariance and the gauge
function G N = G N (t, q, q̇) satisfy the Noether identity (9),
then the form invariance will lead to the Noether conserved
quantity (43).

Proposition 10.4 For the general holonomic system (8), if
the generators ξs of the form invariance satisfy Eq. (51) and
there exists a function μ = μ(t, q, q̇) satisfying Eq. (52),
then the form invariance will lead to the Hojman type con-
served quantity (50).

Example 10.2 The Lagrangian and the generalized forces of
a system with two-degree-of-freedom are respectively

L = 1

2

(

q̇2
1 + q̇2

2

)

− f (t, q2),

Q1 = −q̇2, Q2 = Q2 (t, q2, q̇2) .

Taking the generators as

ξ0 = ξ2 = 0, ξ1 = 1,

and we have

X (1)(L) = X (1)(Q1) = X (1)(Q2) = 0.

Identity (9) gives

G N = q2,

and the conserved quantity (43) gives

IN = q̇1 + q2 = const.,
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which is a Noether conserved quantity deduced by the form
invariance.

10.3 Nonholonomic system

Proposition 10.5 For the nonholonomic system (10), (11),
if the generators ξ0, ξs of the form invariance and the gauge
function G N = G N (t, q, q̇) satisfy the Noether identity (14)
and Eq. (15), then the form invariance will lead to the Noether
conserved quantity (43).

Proposition 10.6 For the nonholonomic system (10), (11),
if the generators ξs of the form invariance satisfy Eq. (53)
and (54), and there exists a functionμ = μ(t, q, q̇) satisfying
Eq. (55), then the form invariance will lead to the Hojman
type conserved quantity (50) [65].

Example 10.3 Novoselov problem is

L = 1

2

(

q̇2
1 + q̇2

2

)

, f = q̇1 + btq̇2 − bq2 + t = 0.

Taking the generators as

ξ0 = 0, ξ1 = (q̇2 − btq̇1 + bq1)
2 , ξ2 = 0,

we can verify that the generators are form invariant and Lie
symmetric. Then Eq. (55) gives

μ = 1,

and the conserved quantity (50) gives

IH = 2b (q̇2 − btq̇1 + bq1) = const.

10.4 Birkhoffian system

Proposition 10.7 For the Birkhoffian system (17), if the gen-
erators ξ0, ξμ of the form invariance and the gauge function
G N = G N (t, a) satisfy the Noether identity (20), then the
form invariance will lead to the Noether conserved quan-
tity (45).

Proposition 10.8 For the Birkhoffian system (17), if the gen-
erators ξμ of the form invariance satisfy Eq. (57), and there
exists a function μ = μ(t, a) satisfying Eq. (59), then the
form invariance will lead to the Hojman type conserved quan-
tity (60).

Example 10.4 The Birkhoffian and the Birkhoff’s functions
of a Birkhoffian system are respectively

B = 1

2

1

m + f (t)

{

k2

(

a2
)2 − k1

(

a1
)2

}

,

R1 = a2, R2 = 0,

where m, k1 and k2 are constants.

Taking the generators as

ξ0 = 0, ξ1 = k2a2, ξ2 = k1a1,

we can verify that they are form invariance generators. Iden-
tity (20) gives

G N = −1

2

{

k1

(

a1
)2 + k2

(

a2
)2

}

,

and the conserved quantity (45) gives

IN = 1

2

{

k2

(

a2
)2 − k1

(

a1
)2

}

= const.

The methods for finding the conserved quantities in
the review are called the symmetry methods. The symme-
try methods are important modern integration methods in
dynamics. By using the methods, one can find not only
the conserved quantities deduced by Newtonian mechanics
and Lagrangian mechanics, but also the conserved quantities
which can not be deduced by them. Of course, when using
the methods the mathematical difficulties can crop up. The
complexity in the Noether symmetry method is to seek the
generators and the gauge function by the Noether identity.
The complexity in the Lie symmetry method is to find the
generators in the determining equations and the function μ,
and the difficulty in the form invariance method is to find
the generators and the gauge function in the structure equa-
tion. The Noether symmetry method is more convenient than
the two others, because a Noether symmetry corresponds, in
general, to a Noether conserved quantity.

We have presented three kinds of symmetries, i.e. the
Noether symmetry, the Lie symmetry and the form invari-
ance, three kinds of conserved quantities, i.e. the Noether
conserved quantity, the Hojman type conserved quantity and
the new conserved quantity, for the Lagrangian system, the
general holonomic system, the nonholonomic system and
the Birkhoffian system. Every symmetry can lead to three
kinds of conserved quantities. One can study the conserved
quantity of other constrained mechanical systems, say, the
Hamiltonian system, the holonomic system with redundant
coordinates, the variable mass system, the dynamical system
in the event space, the generalized Hamiltonian system, the
nonholonomic system with the nonholonomic constraints of
non-Chetaev’s type, the vakonomic system, etc.

There is a symmetry involving equivalent Lagrangians of
the Lagrangian system and a conserved quantity can be found
by using the symmetry [66]. This idea can be generalized to
other constrained mechanical systems. There is a symme-
try under which a non-Noether conserved quantity can be
found [57,67,68]. The mathematical tools used in the review
are simpler analytical ones. There are differential geometry
methods in the study of the symmetry, e.g. see references
[15,19,69–81].
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11 Open problems

Below, we summarize some problems for future research
in the area of the symmetry and the conserved quantity of
constrained mechanical systems:

1. Find new symmetry methods;
2. Solve the general differential equations by using the sym-

metry methods;
3. Study the stability of motion by using the symmetry

methods;
4. Study the symmetry and the conserved quantity of the

vakonomic system.
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