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Abstract This paper considers a design of an N-pendulum,
which represents a special case of a physical pendulum. The
design of the N-pendulum not only allows uncoupling the
natural frequency of the pendulum from its length, but also
provides easy control of the frequency and torque. The pro-
posed design is stimulated by the idea of developing a wave
power take-off system based on the parametric pendulum.
Different designs are being considered and their dynamic
characteristics are investigated with respect to the feasibility
of such an application. Due to the observed low frequency of
ocean waves, the size of a heaving simple pendulum should
span along unrealistic sizes in order to be parametrically res-
onant. Thus, the N-pendulum is considered and the config-
urations that would fulfill these frequency requirements are
sought. Last, numerical simulation is conducted for an under
development experimental rig aiming to test the functionality
of the concept, modelling the response of the N-pendulum.

Keywords Parametric pendulum · Parametric resonance ·
Tri-pendulum · Power take-off · Wave energy ·
Heaving motion

1 Introduction

The mathematical pendulum—a lumped mass oscillating on
an unstretchable massless string, is an important system in
studying the theory of vibrations. This fruitful example intro-
duces us to a sinus type nonlinearity and things related to
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nonlinear systems, such as dependence of the pendulum’s
period on its amplitude, stability etc. Since it is difficult to
deal with the nonlinear equation of motion, most often this
equation is linearized around its low equilibrium point. Then,
the squared natural frequency of the system is proportional to
the acceleration of gravity and inversely proportional to the
pendulum’s length. Thus, the length of the pendulum should
be around 10 m to get frequency of about 1 rad/s, and it
must be around 100 m long to lower the frequency to 0.316
rad/s. Obviously, such a bulky device is difficult to build and
operate. The only well known example of such a long pen-
dulum (67 m) is related to Foucault, who built it in 1851 to
demonstrate the rotation of the Earth.

A physical pendulum, which natural frequency depends
on the distance to its center of gravity and the moment of
inertia, may be used to achieve any frequency, since its natural
frequency does not depend only on the distance to the centre
of gravity. In fact the natural frequency is defined by the
relation between the first and the second order static moments
of the pendulum. Unfortunately, in practice it is not that easy
to achieve low frequency due to physical tolerance and other
constrains, dictated by a specific application. For instance,
if one uses a disk of radius R, so that its moment of inertia
with respect to its center is m R2/2, pinned at slightly shifted
from its center distance h, then the natural frequency of this
system may be expressed as:

ωn =
√

gh

R2/2 + h2
(1)

The same natural frequency of 0.316 rad/s can be reached
with a relatively small pendulum of R = 1 m and h = 5.1 ×
10−3 m = 5 mm, or R = 0.5 m and h = 1.27 × 10−3 m =
1.27 mm. It is easy to see that it is extremely difficult to
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achieve such an accuracy, since the pin’s diameter dp may
have to be significantly bigger than h in order to hold the
structure. Assuming that one could achieve this accuracy and
tolerance in practice, it is impossible to adjust the natural fre-
quency and torque, if needed, since they are connected and
the only value, which can be adjusted is h. Thus, a physical
pendulum with given R leaves no options to develop a sys-
tem with prescribed frequency and torque, which is required
in some applications. The readers may confirm themselves
that other cross sections, such as rectangular or square,
make the design even worse in terms of the achievable low
frequency.

In this paper another design is proposed, which may be
considered as a special case of the physical pendulum. How-
ever, in view of the practical application, which the proposed
design is intended to be used for, the N-pendulum was proven
to be much more suitable, since it allows not only making the
natural frequency of the pendulum independent of its length,
but also adjusting the frequency and torque of the system
independently. The later is especially important in develop-
ing a wave power take-off device.

2 N-pendulum and its natural frequency

Let’s introduce an N-pendulum—a system of N rigidly con-
nected to a common ring pendulums, which are positioned
at equally spaced intervals of 2π/N , so that the bi-pendulum
and tri-pendulum will have two and three arms of equal
masses m correspondingly. Although it is possible to create a
pendulum with not-equally-spaced arms, this paper does not
consider such a design. All arms except one carry a lumped
mass M, positioned at distance L2 whereas the last arm car-
ries the same mass at distance L1, so that L1 > L2. The
cases of even and odd number of arms could be considered
separately.

The simplest example of an odd number of arms is the tri-
pendulum, which is illustrated on Fig. 1. For the tri-pendulum

Fig. 1 Sketch of the tri-pendulum
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Fig. 2 Equivalent frequency of the tri-pendulum given by (3) in Hz:
�1 − L2 = 1 m, �2 − L2 = 3 m, �3 − L2 = 5 m

the arms will be positioned at equally spaced intervals of 120◦
so that the equation of free motion may be written as:[
3ml2 + M

(
L2

1 + 2L2
2

)]
θ̈

= −MgL1sinθ − MgL2sin

(
2π

3
+ θ

)

+MgL2sin

(
2π

3
− θ

)
(2)

It should be noted that there is no restoring force from the
arms themselves, since they have equal masses and shapes,
therefore they are in equilibrium. Then Eq. (2) after some
simplifications will reduce to:

θ̈ +�2
eqsinθ = 0

�2
eq = Mg

(L1 − L2)[
3ml2 + M(L2

1 + 2L2
2)

] = g

L2

γ − 1

3ψ + γ 2 + 2

ψ = ml2

M L2
2

, γ = L1

L2
> 1 (3)

If M >> m the first term in the denominator ψ can be
neglected. Formula (3) indicates that the natural frequency
of the system depends on the difference between L1 and L2

only. Figures 2 and 3 demonstrate the behaviour of the three
equivalent natural frequencies (Hz) of the system for L2 = 1
m, L2 = 3 m and L2 = 5 m correspondingly for the case of
M >> m, so thatψ = 0. It can be seen from Fig. 2 that some
desired natural frequencies may be achieved in two different
combinations for a given value of L2, one of which provide
very large value of the pendulum length L1 (large values
of γ ). Moreover, the same frequency may be achieved for
different values of L1 and L2, thus different torque can be
created. It should also be mentioned that there is an upper
boundary on the frequency which can be achieved by each
pendulum size. Namely, the larger the distance L2 the lower
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Fig. 3 Zoom in of Fig. 2

value of maximum frequency it can reach. Thus, the same
frequency of 0.316 rad/s can be achieved.

At this point one can generalise the model to any odd
number of equally spaced arms. The equation of motion of
such a system may be written as:

[
Nml2 + M(L2

1 + (N − 1)L2
2)

]
θ̈

= −MgL1 sin θ + MgL2

(N−1)/2∑
i=1,2,3,

{
sin

(
2iπ

N
− θ

)

− sin

(
2iπ

N
+ θ

) }
,

N = 1, 3, 5, 7, ... (4)

After simplification once again one arrives to the well-known
pendulum Eq. (2) with the following value of the natural
frequency:

�2
eq F = Mg

L1 − L2[
Nml2 + M(L2

1 + (N − 1)L2
2)

]
= g

L2

γ − 1

Nψ + γ 2 + N − 1
(5)

The even number of arms is much easier to analyse since
the contribution to the restoring force will come only from
two arms located opposite to each other (at 180◦), one of
length L1 and the other L2. Thus formula (5) for the equiva-
lent natural frequency is valid for odd as well as even number
of equally spaced arms. Figure 4 demonstrates the results for
a different number of arms (two, three and five), the same
value of L2 = 3 m and for the case of M >> m. As expected,
the more arms the system has the less value of maximum fre-
quency it may achieve.

It should be stressed that such a design is very easy to
calibrate and it is not sensitive to small descrepancies of the
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Fig. 4 Natural frequency of the pendulum with 2, 3 and 5 arms corre-
spondingly for L2 = 3 m

arms during the manufacturing process, since moving the
lumped masses to a proper distance L̄1 would eliminate them.

3 Application of the tri-pendulum for a wave energy
power take-off system

Wave energy converters (WECs) are used to convert wave
energy to electricity. An important part of any WEC device
is the power take-off (PTO) system, which actually provides
a mechanism for extracting wave energy. Almost 40 years
have passed since Salter [1] published his pioneering work
on a wave energy PTO. Since then, various devices to cap-
ture wave energy have been developed. All of them may be
classified in different ways and most of them may be found
in the recent report by RenewableUK [2].

There are devices such as the heaving buoy, which benefit
from using the vertical motion of waves. Some of them use
a direct drive linear generator [3], others employ hydraulic
rams or equivalent devices. So far there has been no wave
energy converter which would generate electricity in a con-
ventional way by spinning the rotor of an electric generator.
In the paper by Xu et al [4] the authors outlined the possibility
of using the parametric resonance phenomenon of a lumped
mass pendulum having its pivot point vertically excited by
waves, to create a wave PTO system. This idea was investi-
gated numerically using the stochastic approach in [5] and
it has been shown that in random sea environment it is still
possible to achieve sustainable rotational motion of the pen-
dulum. Although it is possible to generate electricity from an
oscillatory motion, it leads to a number of problems related
to converting a variable speed and variable voltage outcome.
Rotational motion is also preferable since the kinetic energy
stored in the system is bigger than that of oscillations.
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It is well-known that, if the pendulum’s suspension point
is oscillating in the vertical direction with a proper frequency,
the pendulum will start rotating around its suspension point
[4,6–13]. If the force driving the suspension point, is due
to the heaving motion of waves, the device will be able to
harvest wave energy and convert it into electricity. Similar
idea of tuning to a specific wave frequency is used in a number
of wave PTO. The system motion in this case is described by
a nonlinear Mathieu equation [14]:

θ ′′ + [1 + λ cos(ντ)] sin θ = 0,

τ = �t, �2 = g

l
, ν = ω

�
, λ = A

l
ν2

(6)

where� natural frequency of the system, l pendulum length,
A amplitude of waves, so that the wave height is twice the
amplitude, ω wave frequency. For the primary parametric
resonance one would need to regulate ω = 2�, so that λ =
4A/ l.

The system in Eq. (6) is a strongly nonlinear one. The
subharmonic and homoclinic bifurcations of the parametric
pendulum leading to unstable motion were studied in [8]
using the Melnikov method. Bishop et al [6] showed the
path from the symmetry-breaking of the stable oscillatory
response to the rotational and Szemplinska-Stupnicka and
Tyrkiel [7] conducted an extensive study on the oscillatory
and rotatory attractors. The harmonic balance method and the
critical velocity criterion were used in Clifford and Bishop
[9] to approximate the escape zone of non-rotating orbits.
In Xu and Wiercigroch [10] approximate analytical expres-
sions of the resonance curves were presented utilizing the
multiple scales method. Several studies [4,11,12] reported
the existence of rotational response of the parametric pen-
dulum with approximate analytical solutions of the rotating
orbits having been obtained in [13] using the pertrubation
method. Moreover, Yurchenko et al [5] showed that rotational
response is possible when the ocean waves are considered
and modelled as a narrow-band stochastic process as well.
A number of laboratory experiments have verified this idea,
providing another possible wave energy conversion principle
[15,16].

Unfortunately, this idea could not be implemented due
to a significant drawback, related to the size of the system.
Namely, the ocean waves have a frequency of about fe = 0.1
Hz or π/5 rad/s [17], which is several times lower than that
used in the laboratory experiments. For the primary paramet-
ric resonance, the excitation frequency should be twice as
much as the natural frequency of the system fe = 2 f0. This
leads to the following expression for the pendulum length:

l = g

�2 = g

4π2 f 2
0

= g

π2 f 2
e

≈ 100 m (7)

Fig. 5 Sketch of the proposed horizontal axis PTO

where g acceleration due to gravity 1. However, the numerical
simulations, conducted by Xu et al. [4] for the deterministic
system (6) revealed that the rotational motion of the pendu-
lum is possible for values of λ > 1.

The discussed shortcoming can be overcome using the
design of the tri-pendulum, shown in Fig. 5. The main idea is
that, from the dynamics point of view of an SDOF nonlinear
system, the response of the parametric simple pendulum in
the state space would be identical with the tri-pendulum’s
provided that � = �eq , as it can be seen from (3). The
major difference is that for a simple pendulum an unfeasible
size would be required while a trivially-sized design of the
tri-pendulum could match the requirements as demonstrated
in Sect. 2.

Although in this work the authors consider strictly verti-
cal motion of the buoy, in general the motion may be more
complex, which incorporates inclinations from the vertical
position (pitch angle) due to incoming and outgoing waves
[18–20]. The tri-pendulum should be mounted onto a float-
ing platform. For waves of slightly over 1 m in amplitude,
one can select L1 = 2 m and L2 = 1.89 m.

Furthermore, it should be stressed that the current design
opens a wide range of possibilities, including capturing large
waves and adjusting to a wave frequency by moving the
lumped masses along the arms, using a threaded rod for
instance.

1 Usage of a physical pendulum is discussed in Sect. 1
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Fig. 6 a Natural frequency of the tripendulum with L1 �= L2 �= L3 and Mi = M with respect to the shortest length, �
√

L1, against γ2 = L2/L1
and γ3 = L3/L1; normalised inertia I/M for b L1 = 1 m, c L1 = 3 m and d L1 = 5 m

4 Energy harvesting by different configurations of the
tri-pendulum

One might consider even more flexible configurations of the
design regarding the arms’ length and the carried masses. To
that end, let us first consider the case of a tri-pendulum of
equal lumped masses M as introduced before, only that the
arms’ lengths are not constrained by L2 = L3, leading to the
more generic L1 �= L2 �= L3. In the following, the length
of the arms will be non-dimensionalised with respect to the
length of the shortest arm. Since this is a parametric study,
in each case presented one arm will be assumed as being the
shortest and the others will be normalised with respect to
it. This is a useful manipulation, because as it can be seen
in Figs. 2 and 3 the resulting natural frequency is not the
same for different sizes of the tri-pendulum, an indicator of
which is the shortest arm’s length. Then, correspondingly to
the previous definitions, let γ2 = L2/L1 and γ3 = L3/L1.
Following similar manipulations as for Eq. (3) and consid-
ering again the arms’ masses negligible, one would end up
with:

�2
eq =

g

√(
1 − γ2+γ3

2

)2 + 0.75(γ2 − γ3)2

L1(1 + γ2
2 + γ3

2)

I = M L1
2
(

1 + γ2
2 + γ3

2
) (8)

where I is the inertia of the rotating parts.
Figure 6a shows a contour plot of the equivalent natural

frequency of the tri-pendulum with respect to what is con-
sidered as the shortest arm length, i.e. �

√
L1. It can be seen

that the desired frequency range, around 0.314 rad/s, could
become easily achievable by regulating L1 at values such as
2 or 3 m, which are reasonably low from a structural point of
view. However, another aspect for consideration would be the
inertia of the rotating device and that is due to the fact that the
bigger the inertia of the body in rotation the bigger the genera-
tor it could drive. Thus, whereas the manufacturing and main-
tenance processes favor an as small as possible size, energy
production would benefit from larger sizes. In Fig. 6b–d,
the normalised inertia of the rotating system over the mass
M of the lumped masses is presented for different values of
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Fig. 7 a Natural frequency of the tripendulum with L1 > L2 = L3 and M1 > M2 = M3 with respect to the shortest length, �
√

L2, against
γ = L1/L2 and n = M1/M2; normalised inertia, I/M2 for: b L2 = 1 m, c L2 = 3 m, d L2 = 5 m

L1 = 1, 3, 5 m. Along that, the target-frequency is plotted
(� = 0.3 rad/s) so as to attach the inertia values that could
be achieved with such a design to the desired frequency area.

Obviously, the inertia of the rotor is proportional to the
squared lengths of the arms so its value is increasing to the
upper right of each figure. Let us now shortly discuss the
impact of the inertia on the potentially produced energy. A
main advantage of the proposed concept is the straightfor-
ward PTO system where a conventional generator is to be
attached directly to the shaft of the rotor. This is important in
a sense that no intermediate system is required for transform-
ing the wave power to electrical other than a coupling and a
gearbox in contrast with existing WEC technologies where it
is rather common for hydraulic systems, linear generators or
turbines to be used for ultimately producing electricity. Hav-
ing the generator driven directly by the rotor’s shaft would
definitely decrease the complexity of the WEC. In that case,
the generator would add in Eq. (2) a resisting torque which
would be normalised by the rotor’s inertia. So, the bigger the
inertia that is excited by waves the bigger the generator that
could be set to run by it.

Moving forward, let us now consider again a tri-pendulum
where for the arms’ lengths it holds L1 > L2 = L3 as
before, but now the corresponding relation holds for the
lumped masses as well, i.e. M1 > M2 = M3. Again, we
define γ = L1/L2 and we introduce n = M1/M2. The nat-
ural frequency and the system’s inertia in this case could be
expressed by the following:

�2
eq = g (nγ − 1)

L2
(
nγ 2 + 2

)
I = M2L2

2
(

nγ 2 + 2
) (9)

Figure 7 presents the values for the normalised frequency
and inertia against γ and n in the same manner as in Fig. 6.
The natural frequency with respect to the shortest length
which is now assumed to be L2,�

√
L2, is plotted in Fig. 7a.

The desired application-oriented frequency range is again
achievable for reasonable values of L2, fulfilling the struc-
tural requirements discussed previously. The rest of the plots,
Fig. 7b–d, depict the variation of the normalised system iner-
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tia, I/M2, along a short range of the parameters for different
length values, L2 = 1, 3, 5 m. The range of the inertia is seen
to be similar with the previous case however the frequency
follows rather linear isolines which slightly changes the pos-
sible matches of the targeted frequency with the system’s
inertia.

Closing this section, two remarks could be made upon the
behaviour of the frequency with respect to the given para-
meters. First, from both Figs. 6a and 7a it is noticed that for
bigger values of the shortest arm’s length, the required ratios
to achieve the same frequency increase as well. This means
that the length increase is not proportional in between the
arms and rather extreme values would be required should
the shortest arm was to be heavily lengthened. Secondly,
these extreme values could well enough introduce shock-
like excitations of the pivot which would result in undesir-
able response of the rotor, let alone the thereafter structural
concerns. In the same manner, it is fortunate that the sought
frequency range is achievable for n, γ, γ2, γ3 ratio values
close to 1 and thus extreme phenomena are avoided.

Performing a rough estimation of the mechanical power
harvested from ocean waves by use of the tri-pendulum, con-
sider the design as described last with n = M1/M2 and
γ = L1/L2 and suppose M2 = 500 kg and L2 = 5 m. That
would direct us to Fig. 7d. In order to approach the necessary
natural frequency one would have to choose n, γ ≈ 1.1 lead-
ing to I/M2 ≈ 83 m−2. Taking into account that the mechan-
ical power of the rotor could be expressed as P = I θ̈ θ̇
and considering a period-1 rotational point of the parame-
ters (ν, λ), then the average power extracted by the heaving
motion of waves and transformed to mechanical power of the
rotor would be around 4 kW.

Scaling up the device for practical applications shows
that it is possible to achieve much higher inertia values (see
Fig. 8) therefore leading to greater power generation, how-
ever in this case one mass should be several times larger than
the others and should be positioned far away from them, an
extreme case of n = 10, γ = 10 shown in Fig. 8 being an
example. In this configuration the desired natural frequency
would be achieved only by applying unrealistic sizes due to
the constrain imposed by the frequency of the waves. This
fact clearly states that in the scaling process the tri-pendulum
tends to a structure of a regular pendulum.

5 Discussion of an experimental rig

Parametric excitation of a pendulum has attracted signif-
icant interest of the scientific community regarding the
stability boundaries, chaotic attractors and the bifurca-
tions that have been observed. It is only reasonable that
experimental investigation has been part of the ongoing
research with the scope varying from identification of the
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Fig. 9 Sketch of the experimental rig

chaotic attractors [21,22] to the bifurcations occurring in
an inverted pendulum [23] or even a double pendulum
[24]. In the frame of developing a pendulum-based WEC,
rotational response of the parametric pendulum driven by
a shaker was sought [15] and a benchmark—proof of
concept—experimental study was conducted in a wave
tank [16].

However, most of the previous experiments concentrated
on considerably higher frequencies than those observed in
ocean waves. At the time, an experimental rig of an ongoing
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Fig. 10 Parameter space plots for a physical pendulum parametrically excited by Eq. (10) for a j = 2, b j = 3, c j = 4 and d j = ∞

investigation is under development aiming to demonstrate
the functionality of a tri-pendulum as it was introduced in the
previous sections. The exciting force is designed to simulate
ocean waves by applying frequencies and amplitudes much
closer to those occurring in nature.

Figure 9 shows a sketch of the rig. Namely, the tri-
pendulum will be attached to a vertical rod allowed to move
in one direction constrained by a slider-rail system function-
ing as a linear bearing. The total achievable stroke will be
over 1 m in order to approach amplitudes close to the ones
exhibited in sea. At the bottom of that rod, a connecting rod of
a reciprocal piston-like mechanism will be hinged. Its other
endpoint will perform a circular motion driven by a crank
of adjustable length and rigidly connected to the shaft of a
motor. It is well known that the working point of that mech-
anism which could be also thought as the translation of the
pendulum’s pivot will follow a sinusoidal profile augmented
by subharmonic excitations depending on the ratio of the

length of the connecting rod over the crank’s one. The accel-
eration of the pivot in this case can be fairly approximated
by the following expression:

ẍ = ω2r

(
cosωt + cos 2ωt

j

)
(10)

where ω the motor’s speed in rad/s, r the crank’s radius,
j = l/r the size ratio and l the length of the connecting
rod. Obviously, in the limit case of j → ∞ the excitation
reduces to a perfect sinusoidal as in Eq. (6). It is also seen that
the speed of the motor defines the excitation frequency and
the crank radius the amplitude. In this paper, the response
of a tri-pendulum carrying equal masses M and excited by
Eq. (10) is modelled by means of numerical analysis and
parameter space plots are constructed describing the amount
of the exhibited rotational motion. Then, the governing equa-
tion would be:
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θ ′′ + cθ ′ +
[

1 + λ

(
cos ντ + cos 2ντ

j

)]
sin θ = 0 (11)

where c denotes the coefficient of viscous damping.
Figure 10 shows the parameter space plots calculated for
different values of the size ratio. In these figures, red col-
ors the parameter regions where over 90 % of rotations
were observed while blue those with less than 10 %. Here,
the period-doubling bifurcations are not considered and
thus period-1, period-2 and so on responses are not sep-
arately displayed nor do different attractors such as the
chaotic ones. The target of this investigation is to iden-
tify the parameters that would lead to rotational motion of
the tri-pendulum simulating the vertical translation imposed
by the described rig’s reciprocal mechanism. The damping
coefficient is kept constant for all the plots taking a small
value, c = 0.01, approaching the one of the experimental
setup’s.

Figure 10d assumes a size ratio j → ∞ practically
devolving to the perfect harmonic excitation described in
Eq. (6). This plot resembles as expected the ones previously
created for the perfect harmonic signal [5] and is shown to
facilitate comparison. Further on, three values for the size
ratio j = 2, 3, 4 are considered and the corresponding plots
are shown in Fig. 10a–c. A first observation would be that
the boundaries separating oscillatory and asymptotically sta-
ble motion from the rotary and chaotic ones remain almost
independent of the parameter j something that especially
holds for the primary resonance zone around ν = 2. How-
ever, the picture is rather different when it comes to rota-
tional and chaotic regions. While in the purely harmonically
excited case the two rotational regions merge for λ > 3.2,
they remain completely distinct for j = 2 shown in Fig. 10a,
separated by a long chaotic attractor. Increasing the size ratio
reshapes the plots towards the limiting case of j → ∞ retain-
ing though distinguishable differences in the internal struc-
ture of the map. Thus, an experimental investigation as the
one described that would be based on Eq. (6) and not take
into account the subharmonic excitation, would reflect sig-
nificantly erroneous results depending on the selected size
ratio j .

6 Conclusions

This paper offers a design of the N-pendulum, which can be
considered as a special case of a physical pendulum. Never-
theless, the proposed N-pendulum is a much better choice for
some applications and in particular for the wave energy har-
vesting application, because it is capable of not only achiev-
ing low frequencies staying relatively small in size, but also
being able to easily control its natural frequency and the cre-
ated torque. It has been shown that the proposed design can be

used as the first horizontal axis wave PTO system. Besides,
other major advantages of the proposed design are its sim-
plicity, possible automatic calibration and simple start-stop
mechanism, all of which are important features of energy
converters. Although the numerical results for the system’s
response have been provided, their experimental validation
is required. For this purpose the proposed design has been
assembled and about to be tested at the Heriot-Watt Univer-
sity.
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