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Abstract This paper investigates the multi-pulse global
heteroclinic bifurcations and chaotic dynamics for the non-
linear vibrations of a simply supported rectangular thin plate
by using an extended Melnikov method in the resonant case.
The rectangular thin plate is subjected to spatially and tem-
porally varying transversal and in-plane excitations, simul-
taneously. The equations of motion for the rectangular thin
plate are derived from the von Kármán equation. Applying
the method of multiple scales and Galerkin’s approach to the
partial differential governing equation, the four-dimensional
averaged equation is obtained for the case of 1:2 internal
resonance and primary parametric resonance. From the aver-
aged equations obtained, the theory of normal form is used
to derive the explicit expressions of normal form with a dou-
ble zero and a pair of pure imaginary Eigenvalues. Based on
the explicit expressions of normal form, the extended Mel-
nikov method is used to analyze the multi-pulse heteroclinic
bifurcations and chaotic dynamics of the rectangular thin
plate. The contribution of the paper is the simplification of the
extended Melnikov method. The extended Melnikov function
can be simplified in the resonant case and does not depend on
the perturbation parameter. The necessary conditions of the
existence for the Shilnikov type multi-pulse chaotic dynam-
ics of the rectangular thin plate are analytically obtained.
Numerical simulations also display that the Shilnikov type
multi-pulse chaotic motions can occur in the rectangular
thin plate. Overall, both theoretical and numerical studies
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demonstrate that the chaos for the Smale horseshoe sense
exists in the rectangular thin plate.
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1 Introduction

Due to the high-speed, lightweight and energy-saving re-
quirements in the aerospace and aviation industry, many
structures become thinner. Thin plates are widely used as
main structures in a large space station, wing skins. In
aerospace applications, these thin plates are relatively large
structural flexibility, and its flexibility can induce large defor-
mation. Thin plates can exhibit large amplitude vibrations
and give rise to non-linear phenomena when these structures
are subjected to dynamic loads. Therefore, it is important
to investigate large deformation and geometrically nonlin-
ear effects of thin plates in order to effectively control large
amplitude vibrations. Since the linear theory is not sufficient
to describe the dynamical behaviour of thin plate, nonlinear
strain-displacement equations are utilized to include geomet-
rical non-linearities in the local vibration equations which
take into account the stretching of the mid-plane of thin plate.
However, some problems, such as the Shilnikov type multi-
pulse orbits and jumping phenomena for thin plate in the case
of large deformation, also are open.

Recently, studies on nonlinear vibrations, bifurcations and
chaotic dynamics of thin plates have made some progress.
Yang and Sethna [1] investigated Hopf bifurcations and
global chaotic phenomena in nonlinear flexural vibrations
of a nearly square plate subjected to periodical excitation.
Baumgarten and Kreuzer [2] studied periodic motions and
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chaotic attractor in parametrically excited nonlinear vibra-
tions of shallow cylindrical panels. Elbeyli and Anlas [3]
explored nonlinear response of a simple supported rectan-
gular metallic plate subjected to transverse harmonic exci-
tation. Touze et al. [4] applied von Karman theory and the
method of multiple scales to examine the forced asymmet-
ric nonlinear vibrations of circular plates with a free edge.
Yeh [5] utilized fractal dimension criteria and the maximum
Lyapunov exponent to probe into the chaotic motion of a
simply supported thermo-mechanically coupled orthotropic
rectangular plate. Krysko et al. [6] made use of the Bubnov-
Galerkin approach to analyze chaotic motion and bifurca-
tions of flexible plate-strips with non-symmetric boundary
conditions. Wang [7] canvassed bifurcations and chaotic
vibrations of bimetallic thin circular plates with geometric
nonlinearity. Hegazy [8] used the method of multiple scales
to investigate nonlinear vibration of a rectangular thin plate
under parametric and external excitations. Tang and Chen
[9] employed the Hamilton principle and the method of mul-
tiple scales to investigate nonlinear free transverse vibra-
tions of in-plane moving plates subjected to plane stresses.
Xue et al. [10] exploited the von Karman plate theory to
derive the nonlinear partial differential equation for the
vibration of a thin orthotropic plate subjected to the trans-
verse magnetic field and the transverse harmonic mechanical
excitation.

The global bifurcations and chaotic dynamics of high-
dimensional nonlinear systems have been at the forefront
of nonlinear dynamics for the past two decades. There are
two ways of solutions on Shilnikov type chaotic dynam-
ics of high-dimensional nonlinear systems. One is Shilnikov
type single-pulse chaotic dynamics and the other is Shilnikov
type multi-pulse chaotic dynamics. Most researchers focused
on Shilnikov type single-pulse chaotic dynamics of high-
dimensional nonlinear systems. Much research in this field
has concentrated on Shilnikov type single-pulse chaotic
dynamics of thin plates. Feng and Sethna [11] utilized the
global perturbation method to study the global bifurcations
and chaotic dynamics of the thin plate under parametric exci-
tation and obtained the conditions in which the Shilnikov type
homoclinic orbits and chaos can occur. Tien et al. [12,13]
applied the Melnikov method to investigate the global bifur-
cation and chaos for the Smale horseshoe sense of a two-
degree-of-freedom shallow arch subjected to simple har-
monic excitation for the case of 1:2 internal resonance and 1:1
internal resonance. Malhotra and Sri Namachchivaya [14,15]
employed the averaging method and Melnikov technique to
canvass the local, global bifurcations and chaotic motions
of a two-degree-of-freedom shallow arch subjected to sim-
ple harmonic excitation for the case of 1:2 internal reso-
nance and 1:1 internal resonance. The global bifurcations and
chaotic dynamics were investigated by Zhang et al. [16,17]
for the simply supported rectangular thin plates subjected

to the parametrical-external excitation and the parametrical
excitation. Yeo and Lee [18,19] made use of the global per-
turbation technique to examine the global dynamics of an
imperfect circular plate for the case of 1:1 internal resonance
and obtained the criteria for chaotic motions of homoclinic
orbits and heteroclinic orbits. Yu and Chen [20] adopted the
global perturbation method to explore the global bifurcations
of a simply supported rectangular metallic plate subjected to
a transverse harmonic excitation for the case of 1:1 internal
resonance. Zhang and Li [21] took advantage of exponential
dichotomies, an averaging procedure and Melnikov theory
to analyze resonant chaotic motions of a simply supported
rectangular thin plate with parametrically and externally
excitation.

While most of studies are on the Shilnikov type single-
pulse global bifurcations and chaotic dynamics of high-
dimensional nonlinear systems, there are researchers inves-
tigating the Shilnikov type multi-pulse homoclinic and het-
eroclinic bifurcations and chaotic dynamics. So far, there
are two theories of the Shilnikov type multi-pulse chaotic
dynamics. One is the extended Melnikov method and the
other theory is the energy phase method. Much achievement
is made in the former theory of high-dimensional nonlin-
ear systems. In 1996, Kovacic and Wettergren [22] used a
modified Melnikov method to investigate the existence of
the multi-pulse jumping of homoclinic orbits and chaotic
dynamics in resonantly forced coupled pendula. Further-
more, Kaper and Kovacic [23] studied the existence of sev-
eral classes of the multi-bump orbits homoclinic to resonance
bands for completely integral Hamiltonian systems subjected
to small amplitude Hamiltonian and damped perturbations.
Camassa et al. [24] presented a new Melnikov method which
is called as the extended Melnikov method to explore the
multi-pulse jumping of homoclinic and heteroclinic orbits
in a class of perturbed Hamiltonian systems. Until recently,
Zhang and Yao [25,26] introduced the extended Melnikov
method to the engineering field. They came up with a sim-
plification of the extended Melnikov method in the resonant
case, and utilized it to analyze the Shilnikov type multi-pulse
homoclinic bifurcations and chaotic dynamics for the non-
linear nonplanar oscillations of the cantilever beam. Sub-
sequently, Zhang and Yao [27–29] improved the extended
Melnikov method to non-autonomous systems from high-
dimensional autonomous systems. They used the extended
Melnikov method for non-autonomous nonlinear dynamical
systems to examine the global bifurcations and multi-pulse
chaotic dynamics of a buckled thin plate and a laminated
composite piezoelectric rectangular plate.

The study on the second theory of the Shilnikov type
multi-pulse chaotic dynamics were stated by Haller and Wig-
gins [30]. They presented the energy phase method to inves-
tigate the existence of the multi-pulse jumping homoclinic
and heteroclinic orbits in perturbed Hamiltonian systems.
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Up to now, few researchers have made use of the energy phase
method to study the Shilnikov type multi-pulse homoclinic
and heteroclinic bifurcations and chaotic dynamics of high-
dimensional nonlinear systems in engineering applications.
Malhotra et al. [31] used the energy-phase method to investi-
gate multi-pulse homoclinic orbits and chaotic dynamics for
the motion of flexible spinning discs. Yao and Zhang [32]
utilized the energy-phase method to analyze the Shilnikov
type multi-pulse heteroclinic orbits and chaotic dynamics in
a parametrically and externally excited rectangular thin plate.
Yu and Chen [33] made use of the energy-phase method to
examine the Shilnikov type multi-pulse homoclinic orbits of
a harmonically excited circular plate.

This paper focuses on the Shilnikov type multi-pulse orbits
and chaotic dynamics for a simply supported at four-edge,
rectangular thin plate subjected to spatially and temporally
varying transversal and in-plane excitations, simultaneously.
Based on the von Karman type equation, we derive the gov-
erning equation of the rectangular thin plate subjected to
transversal and in-plane loads. We employ the Galerkin’s
approach to obtain a two-degree-of-freedom nonlinear sys-
tem under combined parametric and external excitations. We
apply the method of multiple scales and the theory of normal
form to the equations of motions in order to obtain the four-
dimensional averaged equation for the case of 1:2 internal
resonance and primary parametric resonance-fundamental
parametric resonance. We study the heteroclinic bifurca-
tions of the unperturbed system and the characteristic of
the hyperbolic dynamics of the dissipative system, respec-
tively. Finally, we employ the extended Melnikov method
to analyze the Shilnikov type multi-pulse orbits and chaotic
dynamics in the simply supported rectangular thin plate. We
present the geometric structure of the multi-pulse orbits in
the four-dimensional phase space. The results from numeri-
cal simulation show that chaotic motion can occur in nonlin-
ear vibration of the simply supported rectangular thin plate,
which verifies the analytical prediction. The Shilnikov type
multi-pulse orbits are discovered from the results of numer-
ical simulation. In summary, both theoretical and numerical
studies demonstrate that chaos for the Smale horseshoe sense
in the motion exists.

2 Equations of motion and perturbation analysis

We consider a simply supported at the four-edge, rectangu-
lar thin plate, where the edge lengths are a and b and thick-
ness is h, respectively. The thin plate is subjected to spatially
and temporally varying transversal and in-plane excitations,
simultaneously. We establish a Cartesian coordinate system,
shown in Fig. 1, such that the coordinate Oxy is located in
the middle surface of thin plate. It is assumed that u, v and
w represent the displacements of a point in the middle plane

Fig. 1 The model of a rectangular thin plate and the coordinate system
are given

of the thin plate in the x, y and z directions, respectively.
The excitation in-plane of the thin plate may be described in
the form p = p0 − p1 cos �2t along the x direction in the
Cartesian coordinate system Oxyz. From von Karman-type
equation for the thin plate obtained by Chia et al. [16,34], we
obtain the equation of motion for the rectangular thin plate
as follows

D∇4w + ρ h
∂2w

∂t2 − ∂2w

∂x2

∂2φ

∂y2 − ∂2w

∂y2

∂2φ

∂x2

+ 2
∂2w

∂x∂y

∂2φ

∂x∂y
+ μ

∂w

∂t
= F(x, y) cos �1t, (1)

∇4φ = Eh

[(
∂2w

∂x∂y

)2

− ∂2w

∂x2

∂2w

∂y2

]
, (2)

where ρ is the density of thin plate, D = Eh3/(12(1 − ν2))

is the bending rigidity, E is Young’s modulus, ν is Possion’s
ratio,φ is the stress function,μ is the damping coefficient, and
F(x, y) represents the amplitude of transversal excitation for
the rectangular thin plate.

We assume that the simply supported boundary conditions
can be written as

at x = 0 and a, w = 0,
∂2w

∂x2 = 0;

at y = 0 and b, w = 0,
∂2w

∂y2 = 0. (3)

The boundary conditions satisfied by the stress function φ

may be expressed in the following form

u =
a∫

0

[
1

E

(
∂2φ

∂y2 − ν
∂2φ

∂x2

)
− 1

2

(
∂w

∂x

)2
]

dy = δx ,

and h =
b∫

0

∂2φ

∂y2 dy = p, at x = 0 and a, (4)

v =
b∫

0

[
1

E

(
∂2φ

∂x2 − ν
∂2φ

∂y2

)
− 1

2

(
∂w

∂y

)2
]

dx = 0, and

a∫
0

∂2φ

∂x2 dx = 0, at y = 0 and b, (5)
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where δx is the corresponding displacement in the x direction
at the boundary.

We mainly consider the nonlinear oscillations of a thin
plate in the first two modes. There are only the odd-order
modes without the presence of even order modes when the
thin plate is subjected to uniform transversal and in-plane
excitations. Thus, we can not choose (2, 1), (1, 2) and (2,
2) modes. According to the geometry of the structure, we
determine modal selection. If the nonlinear oscillations of
the square thin plate are considered, the case of 1:1 internal
resonance is very likely to occur. We will select (1, 1) mode.
But, we study the nonlinear oscillations of the rectangular
thin plate in this paper. The case of 1:1 internal resonance is
not going to happen, and the case of 1:2 internal resonance
may occur in the nonlinear oscillations of the rectangular thin
plate. Modal frequency under the case of internal resonance
is relatively large since the thin plate is subjected to in-plane
excitation. Thus, we choose (3, 1) and (1, 3) modes to inves-
tigate the nonlinear oscillations of the thin plate. Thus, we
write the w in the form of

w(x, y, t) = q1(t) sin
πx

a
sin

3πy

b

+ q2(t) sin
3πx

a
sin

πy

b
, (6)

where qi (t)(i = 1, 2) represent the amplitudes of two modes,
respectively.

For the linear system, it can generate resonance when
the external excitation frequency is equal to the natural
frequency of the system. It is well known that the ampli-
tude of vibration is the maximum under the case of reso-
nance. The natural frequency of nonlinear continuous sys-
tem does not exist, and there are only modal functions. It
is necessary that the frequency of the external excitation is
the same as the modal frequency in order to analyze char-
acteristics of nonlinear vibration for the mode. This can
stimulate a mode to produce resonance. In this paper, we
study the nonlinear oscillations of a thin plate in (3, 1) and
(1, 3) modes. Therefore, we choose the excitations in the
same form as these modes. The transverse excitation can be
represented as

F(x, y) = F1 sin
πx

a
sin

3πy

b

+ F2 sin
3πx

a
sin

πy

b
, (7)

where Fi (i = 1, 2) respectively represent the amplitudes of
the transverse forcing excitation matching the two chosen
modes.

Substituting Eq. (6) into Eq. (2), considering the boundary
conditions (4) and (5) and integrating, we obtain the stress
function as follows

φ(x, y, t) = φ20(t) cos
2πx

a
+ φ02(t) cos

2πy

b

+φ60(t) cos
6πx

a
+ φ06(t) cos

6πy

b

+φ22(t) cos
2πx

a
cos

2πy

b

+φ24(t) cos
2πx

a
cos

4πy

b

+φ42(t) cos
4πx

a
cos

2πy

b

+φ44(t) cos
4πx

a
cos

4πy

b
− 1

2
py2, (8)

where the coefficients presented in Eq. (8) are given in
Appendix 1.

In order to obtain the dimensionless equations, we intro-
duce the transformations of variables and parameters pre-
sented in Appendix 2. By means of the Galerkin’s method,
substituting Eqs. (6)–(8) into Eq. (1) and integrating, we
obtain the dimensionless equation of motion with two-
degree-of- freedom as follows

q̈1 + εμq̇1 + (ω2
1 + 2ε f1 cos �2t)q1

+ ε(α1q3
1 + α2q1q2

2 ) = εF1 cos �1t, (9a)

q̈2 + εμq̇2 + (ω2
2 + 2ε f2 cos �2t)q2

+ ε(β1q3
2 + β2q2

1 q2) = εF2 cos �1t, (9b)

where the coefficients presented in Eq. (9) are given in
Appendix 3.

The above equations include the cubic terms, in-plane
excitation and transverse excitation. Equation (9) can de-
scribe the nonlinear transverse oscillations of the simply sup-
ported rectangular thin plate. We only consider the case of
1:2 internal resonance and primary parametric resonance-
fundamental parametric resonance. In this resonant case,
there are the following relations

ω2
1 = 1

4
�2

2 + εσ1, ω2
2 = �2

2 + εσ2, �1 = �2,

2ω1 ≈ ω2, (10)

where σ1 and σ2 are the two detuning parameters. For con-
venience of the study, we let �1 = �2 = 2.

According to the relationship between the parameters in
Appendix 1 and 3, we derive the parameter λ = 1.55 under
the last condition in Eq. (10). The parameter λ represents the
ratio between length and width of rectangular thin plate. Rela-
tionships of internal resonance correspond to the structures.
Thus, different structures have different internal resonance
relationships.

The method of multiple scales [35] is employed to Eq. (9)
to find the uniform solutions in the following form
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qn (t, ε) = qn0 (T0, T1) + εqn1 (T0, T1) + · · · , n = 1, 2,

(11)

where T0 = t, T1 = εt .
Substituting Eqs. (10) and (11) into Eq. (9), balancing the

coefficients of corresponding powers of ε on the left-hand and
right-hand sides of equations, and eliminating the terms that
produce secular terms from equations, the four-dimensional
averaged equations in the Cartesian form are obtained as
follows

dx1

dT1
= −1

2
μx1 − 1

2
(σ1 − f1)x2 − 3

2
α1x2

(
x2

1 + x2
2

)
− α2x2

(
x2

3 + x2
4

)
, (12a)

dx2

dT1
= 1

2
(σ1 + f1)x1 − 1

2
μx2 + 3

2
α1x1

(
x2

1 + x2
2

)
+ α2x1

(
x2

3 + x2
4

)
, (12b)

dx3

dT1
= −1

2
μx3 − 1

4
σ2x4 − 3

4
β1x4

(
x2

3 + x2
4

)
− 1

2
β2x4

(
x2

1 + x2
2

)
, (12c)

dx4

dT1
= −1

8
F2 + 1

4
σ2x3 − 1

2
μx4 + 3

4
β1x3

(
x2

3 + x2
4

)
+ 1

2
β2x3

(
x2

1 + x2
2

)
. (12d)

Comparison of Eqs. (9) and (12), it is found that
Eq. (9) is non-autonomous ordinary differential equation
with two-degree-of-freedom and the four-dimensional aver-
aged Eq. (12) is an autonomous nonlinear system. The vari-
ables x1 and x2 in Eq. (12) correspond to the displacement
and the speed of mode described by Eq. (9a). The variables
x3 and x4 in Eq. (12) agree with the displacement and the
speed of mode given by Eq. (9b).

It is necessary to eliminate the secular terms when we
derive averaged equations in the Cartesian form. Parameter
F1 is eliminated since F1 is included in the secular terms.
Thus, there is no F1 in Eq. (12). It is observed from Eq. (12)
that it is difficult directly to analyze the singular points
and orbits. In order to analyze the Shilnikov type multi-
pulse global bifurcations and chaotic dynamics of a simply
supported at four-edge, rectangular thin plate subjected to
transversal and in-plane excitations simultaneously, we need
to reduce Eq. (12) to a normal form. In the next section, we
will give normal form of averaged Eq. (12).

3 Computation of normal form

In order to conveniently analyze the Shilnikov type multi-
pulse orbits and chaotic dynamics for the simply supported
rectangular thin plate subjected to transversal and in-plane
excitations, we need to reduce averaged Eq. (12) to a simpler

normal form. It is seen that there are Z2 ⊕ Z2 and D4 symme-
tries in averaged Eq. (12) when these parameters F2,μ and
f1 do not exist. Therefore, these symmetries are also held in
normal form.

We take into account the exciting amplitude F2 as a per-
turbation parameter. Amplitude F2 can be considered as an
unfolding parameter when the Shilnikov type multi-pulse
orbits are investigated. Obviously, when we do not consider
the perturbation parameter, Eq. (12) becomes

dx1

dT1
= −1

2
μx1 − 1

2
(σ1 − f1)x2 − 3

2
α1x2

(
x2

1 + x2
2

)
− α2x2

(
x2

3 + x2
4

)
, (13a)

dx2

dT1
= 1

2
(σ1 + f1)x1 − 1

2
μx2 + 3

2
α1x1

(
x2

1 + x2
2

)
+ α2x1

(
x2

3 + x2
4

)
, (13b)

dx3

dT1
= −1

2
μx3 − 1

4
σ2x4 − 3

4
β1x4

(
x2

3 + x2
4

)
− 1

2
β2x4

(
x2

1 + x2
2

)
, (13c)

dx4

dT1
= 1

4
σ2x3 − 1

2
μx4 + 3

4
β1x3

(
x2

3 + x2
4

)
+ 1

2
β2x3

(
x2

1 + x2
2

)
. (13d)

Therefore, we can first study normal form of Eq. (13) without
perturbation parameter F2. We add the exciting amplitude
F2to normal form after we obtain normal form of Eq. (13).
It is obviously known that Eq. (13) has a trivial zero solution
(x1, x2, x3, x4) = (0, 0, 0, 0) at which the Jacobi matrix can
be written as

J = Dx X =

⎡
⎢⎢⎢⎢⎢⎣

− 1
2μ − 1

2 (σ1 − f1) 0 0
1
2 (σ1 + f1) − 1

2μ 0 0

0 0 − 1
2μ − 1

4σ2

0 0 1
4σ2 − 1

2μ

⎤
⎥⎥⎥⎥⎥⎦.

(14)

The characteristic equation corresponding to the trivial zero
solution is of the form

(4λ
2 + 4μλ + μ2 + σ2

1 − f 2
1 )(4λ

2 + 4μλ + μ2 + 1

4
σ2

2) = 0.

(15)

Let

�1 = μ2 + σ2
1 − f 2

1 and �2 = μ2 + 1

4
σ2

2. (16)

When μ = 0,�1 = 0 and �2 = 1
4σ2

2 > 0 are simultane-
ously satisfied, Eq. (13) has one non-semisimple double zero
and a pair of pure imaginary Eigenvalues

λ1,2 = 0, λ3,4 = ±iω, (17)
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where ω2 = σ2
2/16, non-semisimple double zero is double

zero Eigenvalue of non-diagonal matrix.
Generally, there exist two kinds of equilibria in the sys-

tem. These equilibria are stable equilibrium and the critical
stable equilibrium, respectively. The stable equilibria do not
change their stability characteristic when they are disturbed.
Only critical stable equilibrium may change the properties
of equilibrium under the perturbation. Thus, it is the most
meaningful that only critical stable equilibrium is studied
theoretically. Equation (13) has one non-semisimple double
zero and a pair of pure imaginary Eigenvalues at (0, 0, 0, 0).
Therefore, the equilibrium at (0, 0, 0, 0) is the critical sta-
ble state. The system will change its stability characteristic
when the system is disturbed. If there are many equilibria in
the system, we must first determine the type of singular points
at equilibria. We can calculate the homoclinic orbits and het-
eroclinic orbits when there are saddle points in the system.
Thus, we use the global perturbation methods to investigate
dynamical characteristic of the homoclinic orbits and hete-
roclinic orbits.

Considering σ̄1,μ and F2 as the perturbation parameters,
letting σ1 = 2σ̄1 − f1 and setting f1 = 1, then, averaged
Eq. (13) without the perturbation parameters becomes the
following form

dx1

dT1
= x2 − 3

2
α1x2

(
x2

1 + x2
2

)
− α2x2

(
x2

3 + x2
4

)
,

(18a)
dx2

dT1
= 3

2
α1x1

(
x2

1 + x2
2

)
+ α2x1

(
x2

3 + x2
4

)
, (18b)

dx3

dT1
= −1

4
σ2x4 − 3

4
β1x4

(
x2

3 + x2
4

)
− 1

2
β2x4

(
x2

1 + x2
2

)
,

(18c)
dx4

dT1
= 1

4
σ2x3 + 3

4
β1x3

(
x2

3 + x2
4

)
+ 1

2
β2x3

(
x2

1 + x2
2

)
(18d)

The difference between Eq. (13) and Eq. (18) is that Eq. (13)
contain the perturbation parameters μ, σ1 and f1. According
to Eq. (18), we have

A =

⎡
⎢⎢⎢⎢⎣

0 1 0 0

0 0 0 0

0 0 0 − 1
4σ2

0 0 1
4σ2 0

⎤
⎥⎥⎥⎥⎦. (19)

Executing the Maple program given by Zhang et al. [36], the
3rd-order normal form of Eq. (18) is obtained as

ẏ1 = y2, (20a)

ẏ2 = 3

2
α1 y3

1 + α2 y1 y2
3 + α2 y1 y2

4 , (20b)

ẏ3 = −1

4
σ2 y4 − 3

4
β1 y3

4 − 1

2
β2 y2

1 y4 − 3

4
β1 y2

3 y4, (20c)

ẏ4 = 1

4
σ2 y3 + 3

4
β1 y3

3 + 1

2
β2 y2

1 y3 + 3

4
β1 y3 y2

4 . (20d)

The nonlinear transformation used here is given as follows

x1 = y1 − 1

4
α1 y3

1 − α2 y1 y2
3 − α2 y1 y2

4 , (21a)

x2 = y2 + 3

2
α1 y3

2 + 3

4
α1 y2

1 y2, (21b)

x3 = y3 − 1

2
β2 y1 y2 y4, (21c)

x4 = y4 + 1

2
β2 y1 y2 y3. (21d)

The above mentioned nonlinear transformation is computed
through the Maple program given Zhang et al. [36], and com-
pletely agrees with those presented by Yu et al. [37]. There-
fore, a simpler 3rd-order normal form with the parameters
for averaged Eq. (12) is obtained as follows

ẏ1 = −μ̄y1 + (1 − σ̄1)y2, (22a)

ẏ2 = σ̄1 y1 − μ̄y2 + 3

2
α1 y3

1 + α2 y1 y2
3 + α2 y1 y2

4 , (22b)

ẏ3 = −μ̄y3 − σ̄2 y4 − 3

4
β1 y3

4 − 1

2
β2 y2

1 y4 − 3

4
β1 y2

3 y4,

(22c)

ẏ4 =− f̄2 + σ̄2 y3−μ̄y4 + 3

4
β1 y3

3 + 1

2
β2 y2

1 y3+ 3

4
β1 y3 y2

4 ,

(22d)

where the coefficients are μ̄ = 1
2μ, σ̄2 = 1

4σ2, and f̄2 =
1
8 F2, respectively.

Further, let

y3 = I cos γ and y4 = I sin γ. (23)

Substituting Eq. (23) into Eq. (22) yields

ẏ1 = −μ̄y1 + (1 − σ̄1) y2, (24a)

ẏ2 = σ̄1 y1 − μ̄y2 + 3

2
α1 y3

1 + α2 y1 I 2, (24b)

İ = −μ̄I − f̄2 sin γ, (24c)

I γ̇ = σ̄2 I + 3

4
β1 I 3 + 1

2
β2 I y2

1 − f̄2 cos γ. (24d)

In order to get the unfolding of Eq. (24), a linear transfor-
mation is introduced[

y1

y2

]
=

√|α2|√∣∣ 1
2β2

∣∣
[

1 − σ̄1 0
μ̄ 1

] [
u1

u2

]
. (25)

Substituting Eq. (25) into Eq. (24), and canceling nonlin-
ear terms including the parameter σ̄1 yield the unfolding as
follows

u̇1 = u2, (26a)

u̇2 = −μ1u1 − μ2u2 + η1u3
1 + α2u1 I 2, (26b)

İ = −μ̄I − f̄2 sin γ, (26c)

I γ̇ = σ̄2 I + η2 I 3 + α2 I u2
1 − f̄2 cos γ, (26d)
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where μ1 = μ̄2 − σ̄1 (1 − σ̄1) ,μ2 = 2μ̄,η1 = 3α1α2
β2

and

η2 = 3
4β1.

The scale transformations to be introduced into Eq. (26)
are

μ2 →εμ2, μ̄→εμ̄, f̄2 → ε f̄2,η1 → η1,η2 → η2, (27)

where ε(0 < ε << 1) is a small perturbation parameter. In
this paper, we only consider weak perturbation. Therefore,
we introduce the small perturbation parameter ε into damp-
ing μ2, μ̄ and excitation f̄2. Then, normal form (26) can be
rewritten in the form with the perturbations

u̇1 = ∂ H

∂u2
+ εgu1 = u2, (28a)

u̇2 = − ∂ H

∂u1
+ εgu2

= −μ1u1 + η1u3
1 + α2u1 I 2 − εμ2u2, (28b)

İ = ∂ H

∂γ
+ εgI = −εμ̄I − ε f̄2 sin γ, (28c)

I γ̇ = −∂ H

∂ I
+ εgγ

= σ̄2 I + η2 I 3 + α2 I u2
1 − ε f̄2 cos γ, (28d)

where the Hamiltonian function H is of the form

H(u1, u2, I, γ) = 1

2
u2

2 + 1

2
μ1u2

1 − 1

4
η1u4

1

− 1

2
α2 I 2u2

1 − 1

2
σ̄2 I 2 − 1

4
η2 I 4, (29)

and gu1, gu2 , gI and gγ are the perturbation terms induced
by the dissipative effects

gu1 = 0, gu2 = −μ2u2, gI = −μ̄I − f̄2 sin γ,

gγ = − f̄2 cos γ. (30)

4 Unperturbed dynamics

In this section, we focus on studying the nonlinear dynamics
characteristic of the unperturbed system. In this paper, we
use the global perturbation methods and the extended Mel-
nikov method to investigate the Shilnikov type multi-pulse
global bifurcations and chaotic dynamics of the rectangular
thin plate. When ε = 0, it can be known that system from
Eq. (28) is an uncoupled two-degree-of-freedom nonlinear
system. Thus, we can study the nonlinear dynamics charac-
teristic of the unperturbed system and the perturbed system,
respectively. Then, we adopt the extended Melnikov method
to analyze interactions between the two modes.

The variable I appears in the subspace (u1, u2) of Eq. (28)
as a parameter since İ = 0. Consider the first two decoupled
equations of Eq. (28)

u̇1 = u2, (31a)

u̇2 = −μ1u1 + η1u3
1 + α2 I 2u1. (31b)

Since η1 > 0, Eq. (31) can exhibit the heteroclinic bifurca-
tions. Based on studies given by Guckenheimer and Holmes
[38], it is obvious from Eq. (31) that when μ1 − α2 I 2 < 0,
the only solution to Eq. (31) is the trivial zero solution,
(u1, u2) = (0, 0), which is the saddle point. On the curve
defined by μ1 = α2 I 2, that is,

μ̄2 = σ̄1(1 − σ̄1) + α2 I 2, (32)

or

I1,2 = ±
[
μ̄2 − σ̄1(1 − σ̄1)

α2

] 1
2

, (33)

the trivial zero solution bifurcates into three solutions through
a pitchfork bifurcation, which are given by q0 = (0, 0) and
q±(I ) = (B, 0), respectively, where

B = ±
{

1
η1

[
μ̄2 − σ̄1(1 − σ̄1) − α2 I 2

]} 1
2

. (34)

From the Jacobian matrix evaluated at the non-zero solutions,
it can be found that the singular points q±(I ) are the saddle
points and the singular point q0 is center point. It is observed
that the I and γ actually represent the amplitude and phase of
the vibrations. Therefore, we assume that I ≥ 0 and Eq. (33)
becomes

I1 = 0 and I2 =
[
μ̄2 − σ̄1(1 − σ̄1)

α2

] 1
2

, (35)

such that for all I ∈ [I1, I2], Eq. (31) has two hyper-
bolic saddle points, q±(I ), which are connected by a pair
of heteroclinic orbits, uh±(T1, I ), that is, lim

T1→±∞ uh±(T1, I ) =
q±(I ). Thus, in the full four-dimensional phase space, the set
defined by

M = { (u, I, γ)| u = q±(I ), I1 ≤ I ≤ I2, 0 ≤ γ < 2 π}
(36)

is a two-dimensional invariant manifold.
From the results obtained by Kovacic et al. [22–24], it is

known that the two-dimensional invariant manifold M is nor-
mally hyperbolic. The two-dimensional normally hyperbolic
invariant manifold M has three-dimensional stable and unsta-
ble manifolds represented as W s(M) and W u(M), respec-
tively. The existence of the heteroclinic orbit of Eq. (31) to
q±(I ) = (B, 0) indicates that W s(M) and W u(M) inter-
sect non-transversally along a three-dimensional heteroclinic
manifold denoted by 	, which can be written as
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	 = {(u, I, γ)| u = uh±(T1, I ), I1 < I < I2,

γ =
T1∫

0

DI H(uh±(T1, I ), I )ds + γ0

⎫⎬
⎭ . (37)

We analyze the dynamics of the unperturbed system of
Eq. (28) restricted to M . Considering the unperturbed system
of Eq. (28) restricted to M yields

İ = 0, (38a)

I γ̇ = DI H(q±(I ), I ), I1 ≤ I ≤ I2, (38b)

where

DI H(q±(I ), I ) = −∂ H(q±(I ), I )

∂ I
= σ̄2 I + η2 I 3 + α2 I q2±(I ). (39)

From the results obtained by Kovacic et al. [22–24], it is
known that if DI H(q±(I ), I ) �= 0, I = constant is called
a periodic orbit, and if DI H(q±(I ), I ) = 0, I = constant
is known as a circle of the singular points. Any value of
I ∈ [I1, I2] at which DI H(q±(I ), I ) = 0 is a resonant value
I and these singular points are resonant singular points. We
denoted a resonant value by Ir such that

DI H(q±(I ), I ) = σ̄2 Ir + η2 I 3
r + α2

η1

[
μ̄2

− σ̄1(1 − σ̄1) − α2 I 2
r

]
Ir = 0. (40)

Then, we obtain

Ir = ±
{

σ̄2η1 + α2[μ̄2 − σ̄1(1 − σ̄1)]
α2

2 − η1η2

} 1
2

. (41)

The geometry structure of the stable and unstable mani-
folds of M in the full four-dimensional phase space for the
unperturbed system of Eq. (28) is given in Fig. 2. Since γ

represents the phase of oscillations, when I = Ir , the phase
shift �γ of oscillations is defined by

�γ = γ(+∞, Ir ) − γ(−∞, Ir ). (42)

The physical interpretation of the phase shift is the phase
difference between the two end points of the orbit. In the sub-
space (u1, u2), there exists a pair of the heteroclinic orbits
connecting to the two saddles. Therefore, the homoclinic
orbit in the subspace (I, γ) is, in fact, a heteroclinic con-
necting in the full four-dimensional space (u1, u2, I, γ). The
phase shift denotes the difference of the value γ when a tra-
jectory leaves and returns to the basin of attraction of M .
We will use the phase shift in subsequent analysis to obtain
the condition for the existence of the Shilnikov-type multi-
pulse orbit. The phase shift will be calculated later in the
heteroclinic orbit analysis.

0

I = I1

I = Ir

I = I2
2πγ

(b)

u2

u2I

(a)

γ

M ×

Fig. 2 The geometric structure of manifolds M, W s(M) and W u(M)

is given in the full four-dimensional phase space

We consider the heteroclinic orbits of equation (31). Let
ε1 = μ1 − α2 I 2 and μ2 = ε2, Eq. (31) can be rewritten as

u̇1 = u2, (43a)

u̇2 = −ε1u1 + η1u3
1 − εε2u2. (43b)

Set ε = 0. Equation (43) is a system with the Hamiltonian
function

H̄(u1, u2) = 1

2
u2

2 + 1

2
ε1u2

1 − 1

4
η1u4

1. (44)

When H̄ = ε2
1/(4η1), there is a heteroclinic loop	0 which

consists of the two hyperbolic saddles q± and a pair of het-
eroclinic orbits u±(T1). In order to calculate the phase shift
and the extended Melnikov function, we obtain the equations
of a pair of heteroclinic orbits

u1(T1) = ±
√

ε1

η1
tanh

(√
2ε1

2
T1

)
, (45a)

u2(T1) = ± ε1√
2η1

sech2
(√

2ε1

2
T1

)
. (45b)

We turn our attention to the computation of the phase
shift. Substituting the first equation of Eq. (45) into the fourth
equation of the unperturbed system of Eq. (28) yields

γ̇ = σ̄2 + η2 I 2 + α2ε1

η1
tanh2

(√
2ε1

2
T1

)
. (46)
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Integrating Eq. (46) yields

γ(T1) = ωr T1 − α2
√

2ε1

η1
tanh

(√
2ε1

2
T1

)
+ γ0, (47)

where ωr = σ̄2 + η2 I 2 + ε1α2
η1

.
At I = Ir , there is ωr ≡ 0. Therefore, the phase shift may

be expressed as

�γ =
[
−2α2

√
2ε1

η1

]
I=Ir

= −2α2

η1

√
2
[
μ̄2 − σ̄1(1 − σ̄1) − α2 I 2

r

]
. (48)

5 Existence of multi-pulse orbits

After obtaining detailed information on the nonlinear dyna-
mic characteristics of the subspace (u1, u2) for the unper-
turbed system from Eq. (28), the next step is to examine the
effects of small perturbation terms (0 < ε  1) on the unper-
turbed system from Eq. (28). The extended Melnikov method
developed by Kovacic et al. [22–24] is utilized to discover the
existence of the Shilnikov type multi-pulse orbits and chaotic
dynamics of the nonlinear vibration for the simply supported
rectangular thin plate. We start by studying the influence of
such small perturbations on the manifold M . The objective
of the research is to identify the parameter regions where
the existence of the multi-pulse orbits is possible in the per-
turbed phase space. The main aim is to verify whether these
parameters satisfy the transversality condition of multi-pulse
chaotic dynamics. It will be shown that these multi-pulse
orbits can occur in the Hamilton system with dissipative per-
turbations if the parameters meet the transversality condition.
The existence of such multi-pulse orbits provides a robust
mechanism for the existence of the complicated dynamics in
the perturbed system. In this section, the emphasis is put on
the application aspects of the extended Melnikov method to
Eq. (28).

5.1 Dissipative perturbations

We analyze dynamics of the perturbed system and the influ-
ence of small perturbations on M . Based on the analysis
by Kovacic et al. [22–24], we know that M along with its
stable and unstable manifolds are invariant under small, suf-
ficiently differentiable perturbations. It is noticed that the
singular points q±(I ) in Eq. (31) maintains the characteristic
of the hyperbolic singular point under small perturbations,
in particular, M → Mε.Therefore, we obtain

M = Mε = { (u, I, γ)| u = q±(I ),

I1 ≤ I ≤ I2, 0 ≤ γ < 2 π}. (49)

Considering the last two equations of Eq. (28) yields

İ = −μ̄I − f̄2 sin γ, (50a)

γ̇ = σ̄2 + η2 I 2 + α2u2
1 − f̄2

I
cos γ. (50b)

It is known from the above analysis that the last two equa-
tions of Eq. (28) are of a pair of pure imaginary Eigenvalues.
Therefore, the resonance can occur in Eq. (50). Also intro-
duce the scale transformations

μ̄ → εμ̄, I = Ir + √
εh, f̄2 → ε f̄2, T1 → T1√

ε
.

(51)

Substituting the above transformations into Eq. (50) yields

ḣ = −μ̄Ir − f̄2 sin γ − √
εhμ̄, (52a)

γ̇ = −2δ

η1
Ir h − √

ε

(
δ

η1
h2 + f̄2

Ir
cos γ

)
, (52b)

where δ = α2
2 − η1η2.

When ε = 0, Eq. (52) becomes

ḣ = −μ̄Ir − f̄2 sin γ, (53a)

γ̇ = −2δ

η1
Ir h. (53b)

The unperturbed system from Eq. (53) is a Hamilton system
with the function

ĤD(h, γ) = −μ̄Irγ + f̄2 cos γ + δ

η1
Ir h2. (54)

The singular points of Eq. (53) are given as

P0 = (0, γc) =
(

0,− arcsin
μ̄Ir

f̄2

)
,

Q0 = (0, γs) =
(

0,π + arcsin
μ̄Ir

f̄2

)
. (55)

Based on the characteristic equations evaluated at the two
singular points P0 and Q0, we can know the stabilities of
these singular points. Therefore, it is known that the singular
point P0 is a center point. The singular point Q0 is a saddle
which is connected to itself by a homoclinic orbit. The phase
portrait of system for Eq. (53) is shown in Fig. 3a.

It is found that for the sufficiently small parameter ε, the
singular point Q0 remains a hyperbolic singular point Qε of
the saddle stability type. For small perturbations, the singular
point P0 becomes a hyperbolic sink Pε. The phase portrait of
the perturbed system from Eq. (52) is depicted in Fig. 3b.

Using the function (54), at h = 0, the estimate of the basin
of attractor for γmin is obtained as

− μ̄Irγmin + f̄2 cos γmin = −μ̄Irγs + f̄2 cos γs . (56)
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minγ

γ  

cγ  

γ  

h 

h 

0P  0Q  

sγ

εP  
εQ  

(a)

(b) 

Fig. 3 Dynamics on the normally hyperbolic manifold is described; a
the unperturbed case; b the perturbed case

Substituting γs in Eq. (55) into Eq. (56) yields

γmin − f̄2

μ̄Ir
cos γmin = π+ arcsin

μ̄Ir

f̄2
+

√
f̄ 2
2 − μ̄2 I 2

r

μ̄Ir
.

(57)

Define an annulus Aε near I = Ir as

Aε =
{
(u1, u2, I, γ)

∣∣∣u1 = B, u2 = 0,∣∣∣I − Ir

∣∣∣ <
√

εC, γ ∈ T l
}

, (58)

where C is a constant and is sufficiently large so that the
unperturbed homoclinic orbit is enclosed within the annulus.

It is noticed that three-dimensional stable and unstable
manifolds of Aε, denoted as W s(Aε) and W u(Aε), are the
subsets of W s(Mε) and W u(Mε), respectively. We will indi-
cate that for the perturbed system, the saddle focus Pε on
Aε has the multi-pulse orbits which come out of the annulus

u

h

γ

cγ c+3Δγ γ

εp cq

Fig. 4 The Shilnikov type three-pulse homoclinic orbits is obtained

Aε and can return to the annulus in the full four-dimensional
space. These orbits, which are asymptotic to some invariant
manifolds in the slow manifold Mε, leave and enter a small
neighborhood of Mεmultiple times, and finally return and
approach an invariant set in Mε asymptotically, as shown in
Fig. 4. In Fig. 4, this is an example of the three-pulse jumping
orbit which depicts the formation mechanism of the multi-
pulse orbits.

5.2 The k-pulse Melnikov function

The extended Melnikov method was first presented by
Kovacic et al. [22–24], which is an extension of the global
perturbation method used by Feng et al. [11–21]. Kovacic et
al. [22–24] gave the detail procedure of mathematical proof
on the extended Melnikov method, which unifies several dis-
joint perturbation theoretical methods. This method can be
also utilized to detect the Shilnikov type multi-pulse orbits
to the slow manifolds of four-dimensional near-integrable
Hamilton systems or higher-dimensional, nonlinear systems.
The extended Melnikov function is different from the usual
Melnikov function, and describes slow dynamics of the
multi-pulse orbits on the hyperbolic manifold. The extended
Melnikov function is computed by a recursion procedure
from the usual one-pulse Melnikov function, and depends
on the small perturbation parameter ε through a logarithmic
function which calculates the asymptotic in the particularly
delicate small ε limit.

We use the extended Melnikov method described by
Kovacic et al. [22–24] to find the Shilnikov type multi-pulse
orbits for nonlinear vibration for the simply supported rec-
tangular thin plate. We search for the multi-pulse excur-
sions to find the non-degenerate zeroes of the extended Mel-
nikov function Mk(ε, I, γ0, μ̄) with the certain combination
of parameters ε, I, γ0 and μ̄, which we name the k-pulse
Melnikov function.

It is important to obtain the detailed expression of the
k-pulse Melnikov function. We compute the one-pulse Mel-
nikov function based on the formula obtained by Kovacic
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et al. [22–24] at the resonant case I = Ir . The one-pulse
Melnikov function M1(ε, Ir , γ0, μ̄) coincides with the stan-
dard Melnikov function M(Ir , γ0, μ̄). The one-pulse Mel-
nikov function M(Ir , γ0, μ̄) on both manifolds W s(M) and
W u(M) is given as follows

M(Ir , γ0, μ̄,η1, α2, ε1) =
+∞∫

−∞

〈
n(ph(t)), g(ph(t),μ, 0)

〉
dT1

=
+∞∫

−∞

(
∂ H

∂u1
gu1 + ∂ H

∂u2
gu2 + ∂ H

∂ I
gI + ∂ H

∂γ
gγ

)
dT1

= −2
√

2μ2

3η1
ε

3/2
1 − 2

√
2α2μ̄I 2

r
ε

1/2
1
η1

− f̄2 Ir

[
cos

(
γ0 − α2

√
2ε1

η1

)
− cos

(
γ0 + α2

√
2ε1

η1

)]
.

(59)

Based on the results given by Kovacic et al. [22–24], it is
known that the k-pulse Melnikov function Mk(ε, Ir , γ0, μ̄)

(k = 1, 2, . . .) is defined as

Mk(ε, Ir , γ0, μ̄) =
k−1∑
j=0

M(Ir , j�γ(Ir )

+	 j (ε, Ir , γ0, μ̄) + γ0, μ̄), (60)

where

	 j (ε, Ir , γ0, μ̄) = �(x̄0(Ir ), Ir )

λ(Ir )

j∑
r=1

log

∣∣∣∣ ς(Ir )

εMr (ε, Ir , γ0, μ̄)

∣∣∣∣,
(61)

for j = 1, . . . , k − 1 and 	0(ε, Ir , γ0, μ̄) = 0.
It is noticed that the angle function 	 j (ε, Ir , γ0, μ̄) is the

complex formula where Mk(ε, Ir , γ0, μ̄) appears as the argu-
ment of a logarithm. When resonance occurs, the periodic
orbit corresponding to the value Ir degenerates into a cir-
cle of equilibria. In this case, there exist roots of parameters
Ir , γ0 and μ̄ for 	 j (ε, Ir , γ0, μ̄) = 0, ( j = 0, 1, . . . , k −1).
Based on the expression obtained by Kovacic et al. [22–24],
the k-pulse Melnikov function can be shown as

Mk(Ir , γ0, μ̄,η1, α2, ε1)

=
k−1∑
j=0

M(Ir , γ0 + j�γ(Ir ), μ̄,η1, α2, ε1)

= − f̄2 Ir

[
cos

(
γ0 − α2

√
2ε1

η1

)
−cos

(
γ0 + α2

√
2ε1

η1

)]

−2
√

2μ2

3η1
ε

3/2
1 − 2

√
2α2μ̄I 2

r
ε

1/2
1
η1

− f̄2 Ir

[
cos

(
γ0 − α2

√
2ε1

η1
− 2α2

√
2ε1

η1

)

− cos

(
γ0 + α2

√
2ε1

η1
− 2α2

√
2ε1

η1

)]

− 2
√

2μ2

3η1
ε

3/2
1 − 2

√
2α2μ̄I 2

r
ε

1/2
1
η1

+ · · · · · ·

− f̄2 Ir

[
cos

(
γ0 − α2

√
2ε1

η1
− 2(k − 1)α2

√
2ε1

η1

)

− cos

(
γ0 + α2

√
2ε1

η1
− 2(k − 1)α2

√
2ε1

η1

)]

−2
√

2μ2

3η1
ε

3/2
1 − 2

√
2α2μ̄I 2

r
ε

1/2
1
η1

= − f̄2 Ir

[
cos

(
γ0 − α2

√
2ε1

η1
− 2(k − 1)α2

√
2ε1

η1

)

− cos

(
γ0 + α2

√
2ε1

η1

)]
− 2

√
2kμ2

3η1
ε

3/2
1

− 2
√

2kμ̄I 2
r α2

ε
1/2
1
η1

. (62)

If we set �γ = −2α2

√
2ε1
η1

and γk−1 = γ0 + (k − 1)�γ

2 ,
Eq. (62) is rewritten as follows

Mk(Ir , γ0, μ̄,η1, α2, ε1)

= Mk(Ir , γk−1 − (k − 1)
�γ

2
, μ̄,η1, α2, ε1)

= f̄2 Ir

[
cos

(
γk−1 − 1

2
k�γ

)
− cos

(
γk−1 + 1

2
k�γ

)]

+ kμ2ε1

3α2
�γ + 2μ̄I 2

r

(
1

2
k�γ

)

= 2 f̄2 Ir sin γk−1 sin

(
1

2
k�γ

)

+ 2μ2ε1

3α2

(
1

2
k�γ

)
+ 2μ̄I 2

r

(
1

2
k�γ

)
. (63)

Based on Proposition 3.1 given by Kovacic et al. [22–24],
the nonfolding condition is always satisfied in the resonant
case. We obtain the following two conditions

∣∣∣∣∣
1
2 k�γ

sin
( 1

2 k�γ
) (μ2ε1 + 3α2μ̄I 2

r )

3α2 f̄2 Ir

∣∣∣∣∣ < 1 and
1

2
k�γ �= n π,

n = 0,±1,±2, . . . . (64)

The main aim of the following analysis focuses on identi-
fying simple zeroes of the k-pulse Melnikov function. Define
a set that contains all such simple zeroes to be

Zn− = {
(Ir , γk−1, μ̄,η1, α2, ε1)| Mk = 0, Dγ0 Mk �= 0

}
.

(65)

The k-pulse Melnikov function has two simple zeroes in the
interval γk−1 ∈ [0,π]
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γ̄k−1,1 = − arcsin
1
2 k�γ

sin
( 1

2 k�γ
) (μ2ε1 + 3α2μ̄I 2

r )

(3α2 f̄2 Ir )
and

γ̄k−1,2 = π+γ̄k−1,1. (66)

5.3 Geometric structure of the multi-pulse orbits

Based on the above analysis, we obtain the following conclu-
sions. When the parameters of k,μ2, ε1, μ̄, α2 and f̄2 satisfy
condition (64), the k-pulse Melnikov function (63) has simple
zeroes at γk−1 = γ̄k−1,1 and γk−1 = γ̄k−1,2 = π+γ̄k−1,1.
For i = 1 or i = 2, when the j-pulse Melnikov function
M j (Ir , γ̄0,i , μ̄,η1, α2, ε1) have no simple zeroes, the sta-
ble and unstable manifolds W s(Mε) and W u(Mε) intersect
transversely along a symmetric pair of the two-dimensional,
k-pulse surfaces

∑μ̄,η1,α2,ε1±,ε (γ̄k−1,i ). This signifies that the
presence of the Shilnikov type n-pulse orbits leads to chaotic
dynamics in the sense of the Smale horseshoes for non-
linear vibration for the simply supported rectangular thin
plate. In the phase space of the unperturbed system from
Eq. (28), this symmetric pair of the two-dimensional, k-
pulse surfaces breaks down smoothly onto a pair of limit-
ing k-pulse surfaces,

∑μ̄,η1,α2,ε1
±,0 (γ̄k−1,i ), parametrized by

Eqs. (45) and (47) with I = Ir , γ0 = γ̄k−1,i − (k −
1)(�γ/2) + j�γ, and an arbitrary h. The sign in Eq. (45)
is determined by the sign of the corresponding j-pulse Mel-
nikov functionM j (Ir , γ̄0,i , μ̄,η1, α2, ε1).

From the discussion given by Kovacic et al. [22–24], it
is easily found that for γ̄0,i = γ̄k−1,i − (k − 1)(�γ/2) +
j�γ (i = 1 or i = 2), the values of the j-pulse Mel-
nikov functions M j (Ir , γ̄0,i , μ̄,η1, α2, ε1) are not zero for
all j = 1, . . . , k − 1, and all jhave the same sign. It is
known that this sign is negative for γ̄0,1 and positive for
γ̄0,2. Therefore, the k-pulse surfaces

∑μ̄,η1,α2,ε1±,ε (γ̄k−1,1) and∑μ̄,η1,α2,ε1±,ε (γ̄k−1,2) indeed exist, and the limiting k-pulse

surfaces
∑μ̄,η1,α2,ε1

±,0 (γ̄k−1,1) and
∑μ̄,η1,α2,ε1

±,0 (γ̄k−1,2) also
exist when ε = 0. Since the regions enclosed by the stable
and unstable manifolds W s(M) and W u(M) are both convex,
and the normal vector

n =
((

−μ1u1 + η1u3
1 + α2 I 2u1

)
,−u2, 0, 0

)
is known to point out of these manifolds, it demonstrates that
the orbits forming each of the surfaces

∑μ̄,η1,α2,ε1
±,0 (γ̄k−1,1)

are parametrized by Eqs. (45) and (47) with the alter-
nating signs, and the orbits forming each of the surfaces∑μ̄,η1,α2,ε1

±,0 (γ̄k−1,2) are parametrized by Eqs. (45) and (47)
with the same signs.

For the parameter μ = μ̄, there exist N −1 orbit segments
Oi (μ̄) (i = 2, . . . , N ) on the annulus M , where the end
points of the segments Oi (μ̄) are di (μ̄) and ci (μ̄), respec-
tively. The trajectories of Eq. (53) on the segments Oi (μ̄)

travel from the end points di (μ̄) to ci (μ̄) in forward time.

Fig. 5 The three-bump orbit with the single-pulse is depicted

Therefore, the end points di (μ̄) and ci (μ̄) are respectively
referred to as the departure and landing points of the jump-
ing 	i . In addition, the line γ = γ̄0,i (Ir , μ̄)−�γ−(Ir ) trans-
versely intersects the segments Oi (μ̄) at the end point ci (μ̄)

for i = 2, · · · , N , while the line γ = γ̄0,i (Ir , μ̄) + �γ+(Ir )

transversely intersects the segments Oi+1(μ̄) at the end point
di+1(μ̄) when i = 1, . . . , N − 1. For all i = 2, . . . , N − 1,
the difference in the coordinates h of two end points ci (μ̄)

and di+1(μ̄) is zero, namely,

h(ci (μ̄)) − h(di+1(μ̄)) = 0. (67)

For each i = 2, . . . , N−1, one of the orbits represented by
	i and contained in the limiting surfaces

∑μ̄,η1,α2,ε1
0 (γ̄0,i )

at the value μ = μ̄, connects two intersection points ci (μ̄)

and di+1(μ̄). Therefore, an orbit 	1 on the limiting surfaces∑μ̄,η1,α2,ε1
0 (γ̄0,1) connects the certain point c1(μ̄) on the

annulus M to the end point d2(μ̄) on the segment O2(μ̄).
It is also known that an orbit 	N on the limiting surfaces∑μ̄,η1,α2,ε1

0 (γ̄0,N ) connects the end point cN (μ̄) on the seg-
ments ON (μ̄) to the certain point dN+1(μ̄) on the annulus
M . According to the study of Kovacic et al. [22–24], there
exists an n-bump singular transition orbit or a modified N -
bump singular transition orbit. The three-bump jumping orbit
depicted in Fig. 5 consists of the orbits 	i (i = 1, 2, 3)

on the limiting surfaces
∑μ̄,η1,α2,ε1

0 (γ̄0,i ) (i = 1, 2, 3)

at the parameter μ = μ̄ and the orbit segments O1(μ̄)

and O2(μ̄) of Eq. (53). It is known from the above analy-
sis that the orbit segments Oi (μ̄)(i = 2, . . . , N ) intersect
transversely with the lines γ = γ̄0,i (Ir , μ̄) + �γ+(Ir ) and
γ = γ̄0,i (Ir , μ̄) − �γ−(Ir ).

The two-bump singular surface shown in Fig. 6 is com-
posed of two single-pulse singular intersection surfaces∑μ̄,η1,α2,ε1

0 (γ̄k−1,1) and
∑μ̄,η1,α2,ε1

0 (γ̄k−1,2). This surface
connects the singular points of Eq. (53) that lie on the line
γ = γ̄0,1 − �γ− to those of Eq. (53) that lie on the line
γ = γ̄0,1 − �γ+ on the annulus M .
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Fig. 6 The two-pulse singular surfaces
∑

(γ̄0,1, γ̄0,2) is depicted

We obtain a countable infinity of the singular jumping
orbits as follows. Each orbit starts along one branch of the
manifold W (Q0) of the saddle Q0 on the annulus M. Then,
the singular jumping orbit departs from the annulus M, goes
along one of the singular k-pulse orbits 	k , and lands back at
a point on the separatrix that connects the saddle Q0 to itself
on the annulus M. After traveling along the separatrix for a
while, the singular jumping orbit takes off again along the
singular l-pulse orbit 	l , and continues such process. Eventu-
ally, the singular jumping orbit lands back on the separatrix.

Therefore, it is concluded that the multi-pulse orbits of
Eq. (28) consist of several portions of the slow time scale on
the hyperbolic manifold Mε and many fast time scale pulses
leaving from the manifold Mε, and these multi-pulse orbits
form a consecutive and recurrence process.

6 Numerical results of chaotic motions

Based on the above qualitative analysis for the multi-pulse
orbits and chaotic dynamics of the simply supported rec-
tangular thin plate, the conditions of the chaotic motion in
the sense of the Smale horses are obtained. The heteroclinic
bifurcations of Eq. (12) appear when η1 > 0. Therefore, the
above theoretical analysis is focused on the situation which
the heteroclinic bifurcations of Eq. (12) exist. The parameter
η1 is the combination of the parameters α1, α2 and β2, where
η1 = (3α1α2)/β2. In this section, we have only performed
numerical simulations of the multi-pulse chaotic motions of
the simply supported rectangular thin plate under heteroclinic
bifurcations in order to further verify the theoretical analy-
sis. Consequently, the parameters α1, α2 and β2 are chosen
to satisfy η1 > 0.

The chaotic and periodic responses of nonlinear dynami-
cal system can be identified by several conventional criteria

such as waveform, phase portraits and Poincare map. In this
section, we use these mathematical tools to detect the exis-
tence of chaotic motions in the simply supported rectangular
thin plate. For the periodic motions, Poincare map is of sev-
eral separate points. For a chaotic motion, the Poincare map
consists of a number of points on the limited Poincare section.
Therefore, it can be observed that chaotic motion of the sim-
ply supported rectangular thin plate appear from Poincare
map. We choose the averaged Eq. (12) to conduct numer-
ical simulations. The averaged Eq. (12) is obtained under
the case of 1:2 internal resonance and primary parametric
resonance-fundamental parametric resonance. A numerical
approach through the computer software Matlab is utilized
to explore the existence of the Shilnikov type multi-pulse
chaotic motions in the simply supported rectangular thin plate
subjected to transversal and in-plane excitations.

Figure 7 demonstrates the existence of the multi-pulse
chaotic motion of the simply supported rectangular thin plate
when the in-plane and transversal excitations are f1 = 90,
and F2 = 210.6. Other parameters and initial conditions are
chosen as μ = 0.1, σ1 = 1.0, σ2 = 1.75, α1 = 1.6, α2 =
2.55, β1 = −1.35, β2 = 3.15, x10 = 0.1385, x20 = 0.55,

x30 = 0.35, x40 = −0.180. Figure 7a and c represent the
phase portraits on the planes (x1, x2) and (x3, x4), respec-
tively. Figure 7b and d give the waveforms on the planes
(t, x1) and (t, x3), respectively. Figure 7e and f are the three-
dimensional phase portrait in the space (x1, x2, x3) and the
Poincare map on the plane (x1, x2), respectively. There are
two kinds of chaotic motions during numerical simulations.
One is the transient chaotic motion, the other is steady chaotic
motion. There has been steady chaos and transient chaos will
disappear when time increase. In this paper, numerical sim-
ulations start from 1000 seconds since we mainly investigate
steady chaotic motion of the rectangular thin plate.

Figure 8 indicates that the multi-pulse chaotic motion of
the simply supported rectangular thin plate occurs when the
in-plane and transversal excitations, parameters and initial
conditions respectively are f1 = 70, F2 = 531.1,μ =
0.01, σ1 = 2.0, σ2 = 6.5, α1 = −1.6, α2 = 1.1, β1 =
−5.7, β2 = −2.3, x10 = 1.4, x20 = 0.55, x30 = 2.35 and
x40 = 1.8. Comparing with Figs. 7 and 8, it is found that
there are differences in the phase portraits, the waveforms
and the Poincare map, respectively. From the phase portrait
on the plane (x1, x2), waveform on the plane (t, x1), the three-
dimensional phase portrait and Poincare map in Fig. 8, we
can see that the obvious multi-pulse jumping phenomenon
exists.

In the following numerical simulations, several differ-
ent sets of parameters and initial conditions are given in
order to investigate the different shapes of the multi-pulse
chaotic motion. When we respectively change the in-plane
and transversal excitations, parameters and initial conditions
to f1 = 62, F2 = 222.2,μ = 0.03, σ1 = 2.0, σ2 = 35,
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Fig. 7 The multi-pulse chaotic motion is obtained when f1 = 90,

F2 = 210.6,μ = 0.1, σ1 = 1.0, σ2 = 1.75, α1 = 1.6, α2 =
2.55, β1 = −1.35, β2 = 3.15, x10 = 0.1385, x20 = 0.55, x30 =
0.35, x40 = −0.180, a the phase portrait on the plane (x1, x2); b the

waveform on the plane (t, x1); c the phase portrait on the plane (x3, x4);
d the waveform on the plane (t, x3); e the phase portraits in the three-
dimensional space(x1, x2, x3); f Poincare map on the plane (x1, x2)
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Fig. 8 The multi-pulse chaotic motion is obtained when f1 =
70, F2 = 531.1,μ = 0.01, σ1 = 2.0, σ2 = 6.5, α1 = −1.6, α2 =
1.1, β1 = −5.7, β2 = −2.3, x10 = 1.4, x20 = 0.55, x30 =
2.35, x40 = 1.8, a the phase portrait on the plane (x1, x2); b the wave-

form on the plane (t, x1); c the phase portrait on the plane (x3, x4); d
the waveform on the plane (t, x3); e the phase portraits in the three-
dimensional space(x1, x2, x3); f Poincare map on the plane (x1, x2)
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Fig. 9 The multi-pulse chaotic motion is obtained when f1 = 62,

F2 = 222.2,μ = 0.03, σ1 = 2.0, σ2 = 35, α1 = −3.2, α2 =
−5.1, β1 = −2.7, β2 = 6.3, x10 = 0.14, x20 = 0.55, x30 = 0.35 and
x40 = −0.180, a the phase portrait on the plane (x1, x2); b the wave-

form on the plane (t, x1); c the phase portrait on the plane (x3, x4); d
the waveform on the plane (t, x3); e the phase portraits in the three-
dimensional space(x1, x2, x3); f Poincare map on the plane (x1, x2)
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Fig. 10 The multi-pulse chaotic motion is obtained when σ2 = 45,
a the phase portrait on the plane (x1, x2); b the waveform on the
plane (t, x1); c the phase portrait on the plane (x3, x4); d the wave-

form on the plane (t, x3); e the phase portraits in the three-dimensional
space(x1, x2, x3); f Poincare map on the plane (x1, x2)
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Fig. 11 The multi-pulse chaotic motion is obtained when σ2 = 34,
a the phase portrait on the plane (x1, x2); b the waveform on the
plane (t, x1); c the phase portrait on the plane (x3, x4); d the wave-

form on the plane (t, x3); e the phase portraits in the three-dimensional
space(x1, x2, x3); f Poincare map on the plane (x1, x2)
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α1 = −3.2, α2 = −5.1, β1 = −2.7, β2 = 6.3, x10 =
0.14, x20 = 0.55, x30 = 0.35 and x40 = −0.180, we can
see that there is another shape for the multi-pulse chaotic
motion from Fig. 9. It is found that the shapes of these two
phenomena depicted in Figs. 8 and 9 are completely different.

In Fig. 10, the multi-pulse chaotic motion of the rectangu-
lar thin plate is discovered when the detuning parameter σ2 is
changed to σ2 = 45, and other parameters and initial condi-
tions are the same as those in Fig. 9. In contrast to Figs. 9 and
10, it can be seen that the phase portraits, the waveforms and
the Poincare map are not like each other. Figure 11 is obtained
when the detuning parameter σ2 is selected as σ2 = 34. In
this case, other parameters and initial conditions are the same
as those in Fig. 10. From the three-dimensional phase por-
traits of Figs. 9, 10 and 11, it is observed that the multi-pulse
chaotic motions exist in nonlinear vibration of the simply
supported rectangular thin plate. The above analysis proves
that parameters make a great impact on the occurrence of the
multi-pulse chaotic motions of the simply supported rectan-
gular thin plate.

7 Conclusions

In this paper, the nonlinear vibrations of the simply supported
rectangular thin plate are studied by applying the theories
of the global bifurcations and chaotic dynamics for high-
dimensional nonlinear systems. The multi-pulse orbits and
chaotic dynamics are investigated using the extended Mel-
nikov method for the case where the averaged equations have
one non-semisimple double zero and a pair of pure imagi-
nary Eigenvalues. Analysis of the multi-pulse orbits in the
rectangular thin plate demonstrates that such an analysis is a
typical singular perturbation problem in which there are two
different time scales. Dynamics on the hyperbolic manifold
Mε is of the slow time scale and the multi-pulse jumping
orbits taking off from this manifold are of the fast time scale.
It is shown that the transfer of energy between the different
modes occurs through the multi-pulse jumping orbits. The
studies have led to the following conclusions:

(1) There exist the Shilnikov type multi-pulse chaotic
motions in the nonlinear vibrations of the simply sup-
ported rectangular thin plate. The geometric interpreta-
tion of the k-pulse Melnikov function is a signed dis-
tance measured along the normal to a manifold, which
gives the more delicate local estimates near the hyper-
bolic manifold. In the resonant case, the k-pulse extended
Melnikov function Mk(I, γ0,μ) does not depend on the
small perturbation parameter 0 < ε  1, and the non-
folding condition is automatically satisfied, resulting in
the angle function 	 j (ε, Ir , θ0,μ)( j = 0, 1, . . . , k − 1)

being zero. Therefore, the computing procedure of the
extended Melnikov function can be simplified.

(2) Based on the theoretically qualitative analysis, it is found
that parameters μ̄ and f̄2 play an important role in the
multi-pulse chaotic motions of the simply supported rec-
tangular thin plate. Parameters μ̄ and f̄2 have relation-
ships with the parameters μ and F2, respectively, where
μ̄ = 1

2μ, f̄2 = 1
2 F2. Parameter μ is the damping coef-

ficient of nonlinear system from the simply supported
rectangular thin plate. Parameter F2 describes the trans-
verse excitation of the simply supported rectangular thin
plate. Thus, the above analysis proves that the trans-
verse excitation F2 and the damping coefficient μ make a
great impact on the occurrence of the multi-pulse chaotic
motions of the simply supported rectangular thin plate.

(3) There exist different shapes of the chaotic motions in
nonlinear vibration of the simply supported rectangular
thin plate under different excitation, parameters, and ini-
tial conditions. It is found from numerical simulations
that the shapes of the chaotic motions are completely
different. Therefore, parameters and initial conditions
impact on the shapes of the multi-pulse chaotic motions.

(4) There exist multi-pulse chaotic motions in the averaged
equations. It is well known that the multi-pulse chaotic
motions in the averaged equations can lead to the multi-
pulse amplitude modulated chaotic vibrations in the
original system under certain conditions. Therefore, the
multi-pulse amplitude modulated chaotic motions occur
in the simply supported rectangular thin plate.
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Appendix 1

The coefficients presented in Eq. (8) are as follows

φ20(t) = 9Eh

32λ2 q2
1 , φ02(t) = 9λ2 Eh

32
q2

2 ,

φ60(t) = Eh

288λ2 q2
2 ,
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φ06(t) = λ2 Eh

288
q2

1 , φ22(t) = − λ2 Eh(
λ2 + 1

)2 q1q2,

φ24(t) = 25λ2 Eh

16
(
λ2 + 4

)2 q1q2,

φ42(t) = 25λ2 Eh

16
(
4λ2 + 1

)2 q1q2,

φ44(t) = − λ2 Eh

16
(
λ2 + 1

)2 q1q2, λ = b

a
. (68)

Appendix 2

In order to obtain the dimensionless equations, we introduce
the transformations of variables and parameters

q̄i = (ab)1/2

h2 qi (i = 1, 2), F̄i = (ab)7/2

π4 Eh7 Fi (i = 1, 2),

p̄ = b2

π2 D
p, t̄ = π2

ab

(
D
ρ h

)1/2

t,

�̄k = ab

π2

(
ρ h

D

)1/2

�k(k = 1, 2), ε = 12
(
1 − ν2

)
h2

ab
,

μ̄ = a2b2

π2 h4

(
1

12
(
1 − ν2

)
ρ E

)1/2

μ, (69)

where ε is a small parameter. For simplicity, we drop the
overbars in the following analysis.

Appendix 3

The coefficients presented in Eq. (9) are as follows

α1 = λ2 + 81

16λ2 , β1 = 1

16

(
81λ

2 + 1

λ2

)
,

α2 = β2 = 17λ2(
1 + λ2

)2 + 625λ2

16
(
4 + λ2

)2 + 625λ2

16
(
1 + 4λ2

)2 ,

ω2
k =

((
ω∗

k

)2 − hk p0

)
and

hk =
{

1, k = 1,

9, k = 2,
p∗

1(ω∗
1)

2 =
(
9 + λ2

)2

λ2 ,

p∗
2 = (ω∗

2)
2 =

(
9λ2 + 1

)2

λ2 , fk = 1

2
hk p1

and k = 1, 2, (70)

where ωk(k = 1, 2) are two linear natural frequencies of the
thin plate, p∗

k (k = 1, 2) are the critical forces corresponding
to two buckling modes at which thin plate looses its stability,
ω∗

k(k = 1, 2) are the natural frequencies of the two buckling

modes, and fk(k = 1, 2) are the amplitudes of parametric
excitation.
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